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Abstract: We carried out a directed crystallization of a melt of the following composition (in mol. %):
Fe 31.79, Cu 15.94, Ni 1.70, S 50.20, Sn 0.05, As 0.04, Pt, Pd, Rh, Ru, Ag, Au, Se, Te, Bi, and Sb by
0.03. The obtained cylindrical sample consisted of monosulfide solid solution (mss), nonstoichometric
isocubanite (icb*), and three modifications of intermediate solid solution (iss1, iss2, iss3) crystallized
from the melt. The simultaneous formation of two types of liquids separated during cooling of the
parent sulfide melt was revealed. In the first, concentrations of noble metals associated with Bi, Sb, and
Te were found. The second is related to Cu and was found to contain a large amount of S in addition
to Bi and Sb. We established the main types of inclusions formed during fractional crystallization of
Pt-bearing sulfide melt. It was shown that noble metals are concentrated in inclusions in the form of
RuS2, PdTe2, (Pt,Pd)Te2, PtRhAsS, and Ag2Se, doped with Ag, Cu, and Pd, in mss and in the form of
PtAs2; Au-doped with Ag, Cu, and Pd; Ag2Te; and Pd(Bi,Sb)xTe1−x in icb* and iss. As solid solutions
in the base metal sulfides, Rh is present in mss, Sn in iss.

Keywords: Cu-Fe-Ni-S system; platinum-group elements; Au; Ag; metalloid elements; fractional
crystallization; drop-shaped inclusions

1. Introduction

Massive ore bodies of copper-nickel deposits are formed from zones with various phases and
chemical compositions. When passing from one zone to another, their phase and chemical composition
changes abruptly [1–4]. Such a structure suggests that they resulted from fractional crystallization
of magmatic sulfide melt [5–9]. For the Noril’sk deposit, no less than two main types of zonality are
observed, in one of which the fugacity of sulfur increases, and in the second, it decreases [1,2,10].
The possibility of several types of zonality is shown in the experiments on directed crystallization of
Cu-Fe-Ni-sulfide melts [11–19] (The terms “directed crystallization” and “fractional crystallization”
describe the process of gradual solidification of the melt in the absence of mixing in the solid ingot
and complete or partial mixing in the melt. From the physicochemical point of view, when modeling
the solidification of a cylindrical ingot in laboratory or industrial equipment, the term “directed
crystallization” is more acceptable).

The Noril’sk ores contain a wide variety of geochemically important trace elements. The most
significant are noble metals (Pt, Pd, Rh, Ru, Ir, Au, Ag), heavy metals (Zn, Sn, Pb), and anion-forming
elements (As, Sb, Bi, Se, Te). Noble metals can enter the lattice of the main ore-forming minerals or form
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independent phases both with the main elements and with other trace elements. Since the Noril’sk
ores are an important industrial source of the platinum group elements (PGE), intense research on the
regularities of Ag-Au-PGE mineralization has been carried out [1–4,20–24].

Most geologists assume that magmatic sulfide liquids are the source of PGE [2,4,10,25]. In [24],
a hypothesis is presented about the pneumatolytic genesis of compounds of noble metals. Both hypotheses
are based on the results of geochemical observations and on experimental data [1,2,4,10,17–19,26–35].
Fundamental knowledge about the behavior of noble metals is contained primarily in the phase diagram
of the systems related to this problem (see the review in [36–41]). Useful information is contained
in experimental data on the composition and structure of samples obtained by prolonged isothermal
annealing of partially crystallized samples and further quenching to room temperature [30–32,36–41]. For
example, in [36], diagrams of the following systems were described: Pd-Fe-S, Pd-Ni-S, Pd-Cu-S, Pd-Pt-S,
Fe-Pt-S, Pt-Fe-As-S, Pt-Pd-As-S, Pd-Ni-As, Pd-Sb-Te, Pt-Pd-Sb, Pd-Bi-Te, Pd-Pt-Sb, and so on. In this case,
the composition of the samples is chosen by the experimenter. By contrast, in our works, we studied
samples obtained by directed crystallization of melts of a given composition [11–19]. Usually, this method
is applied in the case of gradual solidification of a cylindrical sample from one end to another. In this
process, the melt is separated from the crystallized mass by a single interface—the crystallization front.
The difference in the compositions of the melt and coexisting solid phases leads to fractionation of the
components during crystallization, i.e., to a gradual change in the compositions of the melt and solid
phases. With a particular melt composition, a phase reaction can run at the crystallization front, in the
course of which some of the phases produced from the melt can disappear and new phases can appear.
Therefore, crystallization of a multicomponent melt usually produces a sample consisting of several zones
with different phase compositions. A similar zoning is also observed in sulfide orebodies.

Below, we describe the main advantage of the directional crystallization method in a
quasi-equilibrium regime to study the behavior of elements during the fractional crystallization
of sulfide melts. First, an experiment with this process permits a large set of data on the equilibrium
phase diagram of a multicomponent (the main and minor elements) system to be obtained. Second,
the experiment helps to study the behavior of the main and minor elements both during crystallization
and during a subsequent cooling of the crystallized sample. Third, with this method, it is possible to
determine the sequence of phase formation during fractional crystallization, which is rather difficult to
do using the results of the study of annealed samples.

During the directed crystallization of a sample of a given composition, the “chemical system
itself chooses” the crystallization path. This path in the quasi-equilibrium process uniquely depends
on the composition of the initial sample and the liquid–solid diagram. This method can be used for
systems with an arbitrary number of components, and its results, for constructing both simple and
complex diagrams. In experiments on isothermal annealing, the set of quenched samples is studied,
the composition of which is determined by the experimenter.

The crystallized zone of the ingot imitates the structure of the ore body. The ingot is used for
preparing genetically related samples, the composition of which is determined by the rules of directed
crystallization. Thus, we simulated the formation of pyrrhotite-cubanite, pentlandite-bornite, and
other mineral varieties of massive ore bodies from the Noril’sk deposit and also studied the behavior
of ensembles of minor elements [11–14,16–18,33,42]. In particular, Cu-Fe-Ni sulfide melts with the
following ensembles of impurities were crystallized by this method: Pt, Pd, Rh, Ru, Ir, Au, Ag [42], Pt,
Pd, Rh, Ru, Ir, Au, Ag, Co, As [17], Pt, Pd, Au, As, Te, Bi, and Sn [18,19,33]. The distribution curves of
components were constructed, and phase and chemical compositions of inclusions containing PGE
(drop-shaped included) were analyzed.

Results of the geochemical and experimental studies described in the literature are insufficient for
the verification of two hypotheses (magmatic and pneumatolytic) about the impurity mineralization of
the Noril’sk deposits. To understand the role of these processes, additional results are required. In this
paper, we carried out experimental modeling of fractionation crystallization of melt formed from Cu,
Ni, S, Pt, Pd, Rh, Ru, Ag, Au, As, Se, Sn, Te, Bi, and Sb, in a closed system, which corresponds to the
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magmatogenic mechanism of formation of solid ore bodies. New data on the evolution of the studied
physicochemical system in this process were obtained.

2. Experimental

2.1. Sample Preparation

We carried out a directed crystallization of a melt of the following composition (in mol. %): Fe
31.79, Cu 15.94, Ni 1.70, S 50.20, Sn 0.05, As 0.04, Pt, Pd, Rh, Ru, Ag, Au, Se, Te, Bi, and Sb by 0.03. This
composition imitates the composition of representative ore samples from the Octyabr’sky mine [26].
The initial sample, 20 g in weight, was prepared from sulfur (99.9999%), additionally purified by
vacuum distillation, and other elements with a purity grade of 99.99%. The mixture was heated at a
rate of about 100 deg/day up to 700 ◦C and then for a day up to 1050 ◦C. The melted sample was kept
for 2 days and then quenched in a switched-off furnace. After dry grinding, the powdered sample was
replaced into the ampoule, with an 8 mm diameter and a conical end, which was then evacuated and
sealed. A scheme showing the experimental apparatus and the procedure of preparing the sample
were described in detail in [18]. Crystallization was performed using the Bridgman method in a
vertical two-zoned furnace, with a diaphragm, by lowering the ampoule with a homogeneous melt
from the hot zone to the cold zone at a rate of 2.3 × 10−8 m/s. This regime provided quasi-equilibrium
conditions for directed crystallization. The temperature in the lower end of the quartz container was
1025 ◦C at the beginning of crystallization, and 825 ◦C at the end. After crystallization, the ampoule
was cooled in air at an average rate of ~100 deg/min.

2.2. Investigation of Crystallized Samples

The obtained ingot, about 120 mm in length and 8 mm in diameter, was cut perpendicular to
the longitudinal axis into 19 parts. These were weighed and the fraction of crystallized melt, g, was
determined. Seventeen fragments were used to prepare polished sections, which were studied by
microscopic and chemical analysis.

Results of the sample study showed that the crystallization front was flat, perpendicular to the
axis of the ingot, and homogenous in the averaged chemical composition of components. The average
chemical composition of the ingot and inclusions, as well as the local composition phases, were
measured using energy dispersion spectrometry (SEM-EDS) on a high-resolution microscope MIRA 3
LMU (Tescan Orsay Holding, Brno–Kohoutovice, Czech Republic), combined with X-ray microanalysis
systems INCA Energy 450+ X-Max 80 and INCA Wave 500 (Oxford Instruments Nanoanalysis Ltd,
Abingdon, UK) in the Analytical Center for multi-elemental and isotope research SB RAS (analyst N.S.
Karmanov, Novosibirsk, Russia). For the analysis, K-series (S, Fe, Cu, Ni) and L-series (Pt, Pd, Rh, Ru,
Au, Ag, As, Te, Se, Bi, Sb, Sn) of X-ray radiation were used. As the standards, we used FeS2 (on S),
PbTe (on Te), PtAs2 (on As), and the pure elements of Fe, Ni, Cu, Se, Ru, Rh, Pd, Ag, Sn, Sb, Pt, Au, and
Bi. Phases smaller than 5 µm were analyzed using a point probe, and larger phases were analyzed in a
small raster mode with the size of the scanned area up to 100 µm2. The measurements were conducted
at an accelerating voltage of 20 kV, electron beam current of 1.5 nA, and live acquisition time of spectra
of 30 s. Under these conditions of analysis, the limit of detection (LOD) was 0.4 to 0.5 wt. % for Pt, Au,
and Bi, and 0.1 to 0.2 wt. % for the others. The error in determining was no more than 1 to 1.5 relation
% for the major components and 2 to 5 relation % for minor. To estimate the average composition of
multi-phase areas, we used the total spectrum obtained by scanning the areas of up to 1.5 mm2. To
reduce the limit of detection to about 2 times, the accumulation time of spectra was increased to 120 s.
The average composition of phase mixtures was calculated by 3 to 5 analyses from various areas of
each section along the ingot. The error in determining the major components was 1 to 2 relation % [18].

Some specific features of determining the composition of analyzed phases by the SEM-EDS
method are noteworthy. As a result of the low-resolution ability of EDS, the peaks of Au M-series
lines significantly overlap the peaks of M-series lines of heavy platinoids and K-series of sulfur.
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Unfortunately, the software of the spectrometer in this spectral region (1.9–2.5 keV) does not properly
perform the deconvolution of the spectrum, which is probably due to the discrepancy between the
model and the real shape of the lines. This leads to a distortion of the analysis results. Therefore, we
used the L-series of radiation for these elements, though the lower LOD is 2-fold higher compared to
the M-series. In this region of spectra (9–11 keV), we also observed a significant overlapping of lines of
the L-series of PGE and Au, but the effect of the deconvolution error of the spectra was much smaller.
It is noteworthy that the lack of spectrometer software can lead to a false detection of sulfur in the
amount of 0.8 wt. % in gold-bearing phases, as the peak of the S Kα line is located on the “tail” of the
Au Mα peak. Additional difficulties arise in the analysis of microphases, the typical size of which is
smaller than the X-ray generation region. Errors in the determination of gold-bearing alloys can be
related to the possible contamination of low hardness phases during preparation of the samples. These
features were taken into account when processing and interpreting data.

The change in melt composition during crystallization was calculated by the formula:

cL
i =

ci0 −

g∫
0

cS
i dg

1− g
(1)

Here, g is the fraction of crystallized melt, ci0 is the concentration of the i-th component in the
initial ingot, cS

i is the average concentration of the i-th component on the surface of the polished section,
and the g coordinate is the concentration of the i-th component in the melt. The obtained results were
used to determine the average distribution coefficients of components between solid phases and the
sulfide melt:

k j
i = c j

i /cL
i (2)

where c j
i is the average concentration of the i-th component in the j phase.

3. Results

3.1. Behavior of Base Components

Visually, the ingot consists of five zones with different chemical and mineral compositions. Primary
zones appeared during the successive crystallization of base metal sulfides (BMS) in accordance with
the solid–liquid diagram of the system Cu-Fe-Ni-S [6,43,44]. On cooling of the ingot, the primary
minerals completely or partially decayed to form secondary low-temperature minerals. Their sequence
formed a second zonality of the crystallized ingot. The examples of microstructures in the cooled
sample are shown in Figure 1.
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Figure 1. Structure of the directly crystallized sample. (A) Scheme of zonality. The coordinate of
the process is a fraction of the crystallized melt g. (B) Back-scattered electron images of the polished
sections belonging to different zones at g 0.30 (I), 0.32 (II), 0.81 (III), 0.96 (IV), and ~1 (V). Designations
of phases: mss is monosulfide solid solution Fe43.0Ni2.3Cu1.1S53.5, icb is isocubanite CuFe2S3, icb* is
non-stoichiometric isocubanite Cu1.1Fe1.9S3, pn is pentlandite (Fe,Ni)9S8, cp is chalcopyrite CuFeS2, put
is putoranite (Cu,Ni)1.1Fe1S2, tal is talnakhite (Cu,Ni)18Fe16S32, bn is bornite Cu4.3Fe1.5S4.2.
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The change in the composition of the ingot along its length is presented in Table S1. To determine
the primary zonality of the sample, we constructed the distribution curves of the components along
the ingot and calculated their solid/liquid distribution coefficients. Data for Ni, Cu, and S are shown
in Figure 2. Using these data, similar curves for Fe can easily be constructed. The distribution of
components in the solid ingot along the zone was described by curved segments, and at the boundary
between the zones there is a gap. The dependencies of component concentrations in the melt were
described by piecewise continuous curves.Minerals 2019, 9, x FOR PEER REVIEW 6 of 18 
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Figure 2. Primary chemical zoning of the sample. (A) Dependence of the average concentration of Ni,
Cu, and S in the solid sample (open circles) and in the melt (closed circles). The composition of the
initial ingot is shown by a horizontal dashed line. (B) Dependence of the distribution coefficients of Ni,
Cu, and S on g. Open circles are κ (mss/L), closed circles are κ (icb*/L), open squares are κ (iss1/L), and
closed squares are κ (iss2/L). Dashed vertical lines divide the zones.

The average chemical composition of the substance in zone I (0 ≤ g ≤ 0.3) varies from
Fe40.54Ni1.89Cu4.38S53.19 to Fe39.86Ni2.05Cu5.22S52.87. These data demonstrate that a monosulfide solid
solution (mss) crystallizes from the melt. During crystallization, Fe and Ni mostly pass into mss (kFe =

1.27). Sulfur has a tendency to be concentrated in the solid ingot (kS = 1.05–1.07), and Cu intensely
enriches the melt. (kCu = 0.25–0.28).

Zone II (0.3 ≤ g ≤ 0.32) occupies 2 vol. % of the sample, but it is clearly reflected in the distribution
curves (Figure 2) The average chemical composition of substance in this zone is Cu17.96Fe30.59Ni0.86S50.58.
It corresponds to nonstoichiometric isocubanite (icb*) with an idealized formula Cu1.1Fe1.9S3 [13]. The
distribution coefficients are kNi = 0.53 and kCu = 0.86.
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Zone III (0.32 ≤ g ≤ 0.87) occupies most of the ingot. The average composition varies from
Fe27.62Ni1.65Cu20.90S49.83 to Fe28.57Ni1.52Cu20.26S49.65. We attributed this solution to the Ni-containing
intermediate solid solution iss1, described by Fleet and Pan (1994). It is worth noting that different
forms of the existence of iss were found in the Noril’sk ores [24]. The distribution coefficients of Ni and
Cu are close to 1.

The average composition of substance in zone IV (0.87 ≤ g ≤ 0.96)
Fe25.44–25.25Ni1.51–1.38Cu24.00–24.32S49.04–49.05 corresponds to iss2. An intermediate solid solution
of a similar composition is reported in [43]. During crystallization, the iss2 melt becomes enriched with
Fe (kFe = 0.82–0.68) and Ni (kNi = 0.79–0.56), and the solid phase, in Cu (kCu = 1.15–1.40) and S (kS =

1.06–1.13).
The average composition of the substance in zone V (0.96 ≤ g < ~1) corresponds to

Fe23.65Ni2.00Cu26.19S48.16. One can see that the composition of this substance is similar to iss1 and iss2

but is highly enriched with copper. We designated it as iss3. This zone is small and crystallized at the
very end of the ingot. This complicates the exact construction of the distribution curves in zone V under
quasi-equilibrium conditions. This is the reason why zone V is not shown on the distribution curves.

The micrographs shown in Figure 1 characterize the secondary zonality of the sample. The
microstructure of the sample in zone I consists of the matrix of mss Fe43.0 ± 0.2Ni2.3 ± 0.1Cu1.1 ± 0.1S53.5 ± 0.1

and lamellar inclusions of nonstoichiometric isocubanite Cu1.1Fe1.9S3 (icb*). On cooling, icb*
decomposed into a mixture of two phases. The main phase is isocubanite of stoichiometric composition
(icb) with 0.4 mol. % Ni. Thin oriented lamellas of the second phase Cu3Fe4S7.1 are contained in the
matrix of icb.

Zone II contained the exsolution products of primary icb*: Oriented lamellas from CuFe2S3, phases
of composition similar to Cu2Fe3S5, and small grains with a content of Ni of 8 mol. %. Most likely,
these are inclusions of pentlandite pn (Fe,Ni)9S8.

The microstructure of the sample in zone III consists of a two-lamellar phase and small light
inclusions (see Figure 1). We could not determine the exact composition of the phases. The light
inclusions contain 18 mol. % Ni and about 48 mol. % S. Most likely, they are pentlandite.

Zone IV is formed of exsolution products of iss2. It contains Ni-bearing chalcopyrite
Fe24.1Ni0.8Cu24.6S49.9 and putaronite Fe24.8Ni1.9Cu24.2S49.1.

Exsolution products of iss3 in zone V are bornite Fe14.5Ni0.2Cu42.2S43.1, talnakhite
Fe24.1Ni1.1Cu26.4S48.4, and chalcopyrite Fe24.1Ni0.8Cu26.1S49.0.

3.2. Behavior of Microcomponents

3.2.1. Solid Solutions of Impurities in BMS

During crystallization of the melt, the impurities may pass into the solid ingot in the form of
solid solutions in primary BMS or form independent minerals. In the former case, the distribution of
impurities between the solid and liquid is characterized by the values of the distribution coefficients
(k). In this work, we determined the k for Rh in mss and for Sn in iss. The contents of other impurities in
mss and in iss in our experiment were below the LOD of the EDS. It is noteworthy that in [37,39,44–46],
laser ablation was used to measure the distribution coefficients of Pt, Pd, Ru, Au, As, Te, Bi, Sb, Sn, and
Se between mss and melt. All of them, besides Ru, were <1.

Figure 3 shows the distribution curves of Rh in mss in zone I. The calculated distribution coefficient,
kRh, is 5.2 ± 0.5, i.e., this element is concentrated in mss. In the studies on crystallization of mss of
another composition, kRh (mss/L) is also greater than 1 and ranges from 1.5 to 6.6 [37,44,46]. We
measured the dependence of kRh on melt composition in the system of Fe-Ni-S in the crystallization
region of mss [47]. It was shown that the region is separated into two sites, one of them enriched with
Ni, kRh > 1, and in the other site, kRh < 1.
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the distribution coefficient of Sn between iss1 and melt on the fraction of crystallized melt, g, is shown
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3.2.2. Inclusions of Minor Phases in BMS

The main part of the impurities is present in inclusions smaller than ~100 µm. Most of them are
formed from several phases.

Inclusions in mss (zone I): It was shown above that in zone I, a primary mss partly decomposes
on cooling to form lamellas of icb*. Microphases are present in the matrices of icb*, mss, and at the
grain boundaries of icb* and mss, as well as on the surface of pores. We analyzed 147 single-phase
inclusions. It was found that these were laurite RuS2, tsumoite BiTe, nevskite Bi(Se,S), naumannite
Ag2Se, merenskyites PdTe2, moncheites (Pt,Pd)Te2, minerals of the Pt-Rh-As-S system, most likely
platarsite [27], as well as two-phase intergrowths of Au** and (Pt,Pd)Te2 (Table S2). Typical samples of
inclusions are shown in Figure 5.

Laurite RuS2 forms numerous faceted crystals <40 µm in size (Figure 5A,B). These contain about 1
mol. % Rh and Fe. The crystals are concentrated near the sample surface. Inclusions of merenskyites,
moncheites, and platarsite are present in a large number and are evenly distributed in the cross
section of the sample. They have typical sizes of <1–3 µm, which may lead to an increase in the
inaccuracy of determining their composition. The inclusions of platinum and palladium tellurides are
irregular-shaped and are associated with lamellas of icb* (Figure 5C,D). Platarsite forms two types of
inclusions: Weakly faceted crystals and rosettes (Figure 5G,H). It is worth noting that rosettes have
the fifth-order symmetry axis, i.e., can form quasi-crystals. The number of inclusions of naumannite,
nevskite, and tsumoite are small. They have a weakly faceted form and are localized in the intergranular
cracks in the edge of the sample section (Figure 5B,E,F). Intergrowths of Au and (Pt, Pd)Te2 are <1 µm
in size (Figure 5I). They are localized on the surface of the pores.
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decomposes on cooling to form lamellas of icb. Microphases (bright) are present in the matrices of icb,
mss, and at the grain boundaries of icb and mss, as well as on the surface of pores. Coordinate g equals
0.002 (A,B,F), 0.09 (H), 0.14 (D,G), 0.15 (C,E), and 0.23 (I). Black is pores.

Inclusions in Fe-Cu sulfides (zones II–V): This part of the ingot is formed from Fe- and Cu-rich
sulfides (isocubanite, chalcopyrite, talnakhite, putoranite, bornite) and pentlandite. These zones
contain numerous small (<20 µm) and large (to 1 mm) pores. As an example, Figure 6 shows the
cross section of the sample at g = 0.38 (zone III). The small pores are seen to be arranged in parallel
rows, which is due to the specific trapping mechanism of gas bubbles, present in the sulfide melt, by a
single crystal of iss1. These rows, probably, resulted from the entrapment of bubbles by nanosteps
during the layer-by-layer growth of the single crystal from the melt. Large pores are formed by another
mechanism. The average size and number of pores increases to the end of the ingot.

Minor minerals form multiphase inclusions. The exception is sperrylite PtAs2 crystals, which
may be present in the form of both single-phase inclusions and polyphase intergrowths. The main
quantity of minor elements is concentrated in the irregular-shaped inclusions of up to 100 µm in
size at the interfaces (Figure 7). These inclusions were found to contain the following minerals:
Sobolevskite-kotulskite solid solution Pd(Bi,Sb)xTe1−x, Au with minor Ag, Cu, Pd, hessite Ag2Te, S-rich
sperrylite PtAs2, wittichenite Cu3BiS3, stibiowittichenite Cu3SbS3, parkerite Ni3Bi2S2, tetradymite
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Bi2Te2S, nevskite Bi(Se,S), gersdorffite NiAsS, emplectite CuBiS2, and tsumoite BiTe. In addition, the
matrix of BMS contains small (≤20 µm) single multiphase drop-shaped inclusions, and faceted and
non-faceted inclusions of PtAs2. The inclusions of minor minerals are also present in some pores.Minerals 2019, 9, x FOR PEER REVIEW 9 of 18 
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Figure 8 shows the pore with multiphase inclusions of minor minerals and sperrylite. It was
found that the inclusions in the matrix of BMS and the inclusions associated with pores have similar
chemical and mineral compositions, i.e., were formed by the same mechanism.



Minerals 2019, 9, 531 10 of 18

Minerals 2019, 9, x FOR PEER REVIEW 10 of 18 

 

In the matrixes of BMS, there are a great number of drop-shaped multiphase inclusions (of oval 
and irregular shape with a smooth contour). We analyzed 132 inclusions and divided them into 
three classes according to their chemical and phase composition: 39 inclusions of class I, 21 of class II, 
and 72 of class III. Examples of microstructures are shown in Figures 9–11. The phase and chemical 
compositions are described in Tables S2 and S3. 

 
Figure 8. Microphotograph of the cleavage surface of the sample from zone II at g = 0.3 in reflected 
electrons on the left and in secondary electrons on the right. There are inclusions of microphases in 
the gas cavity. 

 

Figure 9. Backscattered electron images of the typical microphases of class I inclusions, located in the 
matrix of iss1 (A,B) and iss3 (C,D). Drop-shaped inclusions consist of sobolevskite-kotulskite solid 
solution Pd(Bi,Sb)хTe1-х and Au alloys (Au* and Au**). 
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In the matrixes of BMS, there are a great number of drop-shaped multiphase inclusions (of oval
and irregular shape with a smooth contour). We analyzed 132 inclusions and divided them into three
classes according to their chemical and phase composition: 39 inclusions of class I, 21 of class II,
and 72 of class III. Examples of microstructures are shown in Figures 9–11. The phase and chemical
compositions are described in Tables S2 and S3.
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Figure 10. Backscattered electron images. Typical microstructure of class II polyphase inclusions,
located in the matrix of iss1 (B–D) and iss3 (A,E,F). Drop shape or more complicated shape inclusions
consist of Cu3BiS3, Cu3SbS3, Bi(Se,S), Ni3Bi2S2, and CuBiS2 sulfosalts. Inside the inclusions Au*, Ag2Te,
Bi, and fine-dispersed unknown phases occur.
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(A), iss2 (B–E), and iss1 (F). Class III contains composite inclusions from the fragments of I and II classes
and refractory microcrystals of PtAs2.

Class I. The matrix of inclusions was formed from sobolevskite-kotulskite solid solution
Pd(Bi,Sb)xTe1−x described in [27,48]. When cooled, the solution separates into phases on the basis of
sobolevskite PdTe and kotulskite PdBi (Figure 9). This two-phase matrix contains numerous inclusions
≤1 µm in size from Au alloy (Au*, 84 wt. % Au) (Table S2). The structure in Figure 9A,B was, most
likely, formed during eutectic crystallization. The drop-shaped inclusion in Figure 9C has the same
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composition and structure as in Figure 9A,B. However, on its surface, large (3–5 µm) crystals of
high-fineness Au alloy (Au**, 97 wt. % Au) are localized. The melting temperature (Tm) of Au** is
higher than that of Au*. Figure 9D shows another type of inclusion: Au** crystal of ~10 µm in size has
two neighboring drop-shaped inclusions.

Determination of the average chemical composition showed that the inclusions of class I do not
contain S and concentrates of Pd, Au, and Ag (Table S3).

Class II. The examples of this class of inclusions of a drop shape or a more complicated shape are
shown in Figure 10. They were formed from sulfosalts with idealized formulas of Cu3BiS3, Cu3SbS3,
Bi(Se,S), Ni3Bi2S2, and CuBiS2 (Table S2). Most drop-shaped inclusions are located inside the shell
of Cu3SbS3. Frequently, whiskers were observed on the surface of the shell. Inside the inclusions,
fragments of Cu3BiS3 with a fine-dispersed unknown phase, Au*, Ag2Te, and Bi, occurs.

The inclusions of class II contain a large amount of S and Cu and minor quantities of Sb and Te.
Moreover, they contain minor silver and gold and lack Pd. The average composition of inclusions of
class II and their phase composition changes along the ingot (Table S3). The constancy of the average
chemical composition of inclusions of classes I and II along the ingot is noteworthy.

Class III. The matrix of Fe-Cu sulfides contains compound inclusions of various shapes. Their
typical sizes range from ~10 to ~100 µm. The average composition of inclusions varies in a wide range
(Table S2). The inclusions in Figure 11A–E consist of fragments that belong to classes I and II. Less
frequent are inclusions consisting of combinations of (I + PtAs2) and (I + II + PtAs2) (Figure 11E,F).

Let us consider in more detail the behavior of some microminerals of noble metals.
Sobolevskite-kotulskite solid solution Pd(Bi,Sb)xTe1−x is the main concentrator of Pd. This phase

together with Au* and Au** forms, most likely, the eutectic-like structure. It is typical of drop-shaped
inclusions of class I. The composition of solid solution varies in a wide range: Pd from 30 to 44 mol. %,
Bi from 3 to 20 mol. %, Sb from 11 to 29 mol. %, and Te from 8 to 38 mol. %. The systems of Pd-Te-Bi and
Pd-Te-Sb contain continuous regions of solid solutions between PdTe-PdBi and PdTe-PdSb [27,36,48].

The Au alloys are presented in drop-shaped inclusions as numerous non-faceted or weakly faceted
crystallites ranging from <1 to ~10 µm in size in the matrix of Pd(Bi,Sb)xTe1-x. Analysis showed that
the content of Ag in Au alloys ranges from 3.2 to 18.0 mol. %. Additionally, Au can dissolve copper
(4.3–7.6 mol. %) and palladium (0.8 mol. %) (Table S2). These results are consistent with the state
diagrams of binary systems, Au-Ag, Au-Cu, and Au-Pd, and the ternary system, Au-Ag-Cu, whose
phase diagrams show the presence of wide regions of solid solutions [49,50].

Hessite Ag2Te is associated mainly with sulfosalts in the inclusions of classes II and III. It is
worth noting that in the Ag-Te system, tellurium-rich phases with low melting temperatures are also
present [49].

S-rich sperrylite is the main Pt carrier in the crystallized sample. It is the only compound that
forms single-phase inclusions. Besides, it is a fragment of compound inclusions. Owing to the different
genesis, these varieties differ in the content of sulfur (about 17 and 25 mol. % S, respectively). In
addition, all inclusions contain minor contents of Cu, Pd, Sb, and Bi (Table S2). High solubility of S in
PtAs2 was found in [36].

There are more than 100 mineral types of sulfosalts (Godovikov, 1992). In our samples, the major
sulfosalts are Cu3BiS3 and Cu3SbS3. Moreover, they contain Ni3Bi2S2, Bi2Te2S, Bi(Se,S), NiAsS, and
CuBiS2. The presence of other finely dispersed sulfosalts is also probable. It is noteworthy that the
grains of elementary Bi with minor Cu, Fe, Sb, and Te were observed.

4. Discussion

As described above, a crystallized ingot consists of five primary zones with different chemical
and phase compositions: mss (zone I), icb* (zone II), iss1 (zone III), and iss2 (zone IV). Zone V is not
described in detail. These zones are sequentially formed with a gradual decrease in the temperature
of the melt. In zone I, a phase reaction proceeds with the formation of a monosulfide solid solution
from the melt: L→ mss. At the boundary of zones I and II, non-stoichiometric isocubanite is formed
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by reaction: L + mss → icb*. When zone III occurs, the peritectic reaction of the formation of the
intermediate solid solution iss1 proceeds: L + icb*→ iss1. At the boundary between zones III and IV,
iss2 is formed by reaction: L + iss1→ iss2. At the end of the ingot, iss3 is formed, presumably by the
reaction: L + iss2→ iss3. We carried out differential thermal analysis studies of samples from different
zones of the sample. According to these data, the onset crystallization temperature is 1025 ◦C for mss,
953 ◦C for icb*, 947 ◦C for iss1, and 910 ◦C for iss2.

In the experimental samples, minor amounts of noble metals were dissolved in BMS (Rh b mss,
Sn in iss) and in other phases (Ag in Au*, Au**; Au, Pt, Pd in Bi). Such forms were observed both in
Noril’sk ores and in synthetic samples [2,4,10,18,23,26,33,34,37,51]. However, most parts of the noble
metals are present in the inclusions in the form of their own minerals—alloys and compounds with
metalloid admixtures (Au*, Au**, PtAs2, Pd(Bi,Sb)xTe1−x, Ag2Te). In addition, inclusions of sulfosalts
also exist that do not contain noble metals of Cu3BiS3, Cu3SbS3, Ni3Bi2S2, Bi2Te2S, Bi(Se,S), NiAsS, and
CuBiS2. Using the obtained experimental data, the classification scheme of inclusions in the sample
was constructed (Figure 12).
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The refractory compounds RuS2, (Pt,Pd)Te2, PtRhAsS, Ag2Se, and PtAs2 have melting temperatures
higher than the liquidus temperature in the Cu-Fe-Ni-S system. Therefore, they crystallize in
sulfide melt and then are trapped during the crystallization of BMS. The existence of two types of
drop-shaped inclusions suggests that they resulted from the solidification of liquid drops of different
compositions. Most likely, these drops separated as a result of the immiscibility of the parent sulfide
melt with impurities.

The main amount of minor minerals is present in composite inclusions in the matrix of Fe-Cu
sulfides. The inclusions of class I are formed from a refractory Au* that melts at ~1000 ◦C and a
low-melting Pd(Bi,Sb)xTe1−x with an estimated melting point of <750 ◦C (for PdTe Tm = 746 ◦C [52].
It is likely that at liquidus temperatures, drops of this compound with minor Au are present in the
sulfide melt. On cooling, these drops are trapped during the crystallization of the BMS matrix. On
further cooling, gold crystals are separated from the drops, and solid inclusions are formed during the
solidification of Pd(Bi,Sb)xTe1−x.
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Sulfosalts of copper form low-melting crystals. For example, the temperature of incongruent
decomposition of stibiowittichenite Cu3SbS3 is 613 ◦C [53], wittichenite Cu3BiS3 is 535 ◦C [54], and
tetrahedrite is 574 ◦C [55]. Au, Ag, and Te are dissolved in sulfosalt drops. On cooling, at first Au* and
Ag2Te (Tm ~ 960 ◦C [56]) crystallize, then sulfosalts solidify.

Class III contains composite inclusions from the fragments of I and II classes and refractory
microcrystals of PtAs2. It can be assumed that associations of microcrystals PtAs2 and drops I and II
are in the sulfide melt. They solidify to form inclusions of class III.

The system under investigation contains Au* and Au** phases, Tm of which is above the liquidus
temperature. Nevertheless, these do not form inclusions. We assume that the gold content in sulfide
melt is low at liquidus temperature, and the main amount of Au is concentrated in liquid drops and
during solidification is separated as independent phases of Au* and Au**.

During solidification of BMS, small droplets can be trapped on flat areas of the crystallization
front. Large liquid drops can fall on the region of the crystallization front with the boundary between
the crystallites. In the process of crystallite growth, the drops are trapped, and inclusions of an intricate
shape are formed at interfaces (Figure 11B).

Similar inclusions of minor phases were observed in the ores from the Noril’sk and Sudbury
deposits [4,23,24,28,57–60] and in synthetic samples [17,18,34,38,39,45]. However, we did not find
any results of modeling of fractional crystallization of melts with the formation of two types of
PGE–metalloid liquids. Theoretical substantiation of the described phenomena is the data on the phase
diagrams of binary, ternary, and more complex systems (e.g., review in [36]).

In this study, we once again demonstrated that in the directed crystallization an ingot is obtained
in which phases and phase associations are spatially separated. This makes it possible to reliably
and unambiguously determine the sequence of separation of primary phases during fractionation
crystallization of a multicomponent sulfide melt and the change in melt composition and phase
reactions when passing from one zone to another. As a result of crystallization, one can obtain a
number of genetically related samples, allowing determination of the behavior of impurities at different
stages of the process. It is difficult to obtain this information of phase processes by other methods.
This is especially true of multiphase systems. It is worth noting that laboratory experiments imitate
the continuous process of fractionation crystallization of natural sulfide liquids. Nevertheless, the
methods of directional crystallization and isothermal annealing and quenching supplement each other.

Many researchers believe that the formation of massive ore bodies during fractionation
crystallization takes place in the intrusive cavity in a closed system (for example, [1,2]). We modeled this
process. Nowadays, there is also a hypothesis about a significant effect of hydrothermal sulfur-bearing
liquids on this process (e.g., [24]). To determine the role of this or that process, additional experimental
and theoretical research is necessary.

5. Conclusions

On the basis of our experimental data on the directed crystallization of the multicomponent
Cu-Fe-Ni sulfide liquid with minor noble metals and As, Te, Se, Bi, Sb, and Sn, the following conclusions
can be made:

1. It was shown that, in directed crystallization of melt, inclusions formed, which are similar to
those observed in isothermal experiments and in sulfide ores. This is additional evidence that
the minor contents of noble minerals and metalloids were present in the initial sulfide melt
after its separation from the silicate melt. There is a probability of low-temperature platinum
mineralization of sulfide ores as a result of hydrothermal processes but, most likely, it is realized
in the aureoles of disseminated ores surrounding the massive ore bodies.

2. For the first time, simultaneous formation of two types of liquids separated during cooling of
the parent sulfide melt was revealed. In the first, noble metals associated with Bi, Sb, and Te
are concentrated. The second is related to Cu and contains a large amount of S in addition to Bi
and Sb.



Minerals 2019, 9, 531 15 of 18

3. We established the main types of inclusions formed during fractional crystallization of Pt-bearing
sulfide melt. It was shown that noble metals are concentrated in inclusions in the form of RuS2,
PdTe2, (Pt,Pd)Te2, PtRhAsS, and Ag2Se, Au** in mss and in the form of PtAs2, Au*, Au**, and
Ag2Te, Pd(Bi,Sb)xTe1−x in icb* and iss. As solid solutions in the BMS sulfides, Rh is present in mss
and Sn in iss.

Thus, our experiment showed a more complex behavior of noble metals and metalloid elements
during the crystallization of multicomponent sulfide-metalloid melts compared to the earlier reported
data of isothermal experiments.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/9/9/531/s1.
Table S1: Average concentrations of components in solid phases and in the melt and distribution coefficients of
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EDS results for average composition of the inclusions.
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