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Abstract: The Yang-Baxter equation first appeared in theoretical physics, in a paper by the 

Nobel laureate C. N. Yang, and in statistical mechanics, in R. J. Baxter’s work. Later, it 

turned out that this equation plays a crucial role in: quantum groups, knot theory, braided 

categories, analysis of integrable systems, quantum mechanics, non-commutative descent 

theory, quantum computing, non-commutative geometry, etc. Many scientists have found 

solutions for the Yang-Baxter equation, obtaining qualitative results (using the axioms of 

various algebraic structures) or quantitative results (usually using computer calculations). 

However, the full classification of its solutions remains an open problem. In this paper, we 

present the (set-theoretical) Yang-Baxter equation, we sketch the proof of a new theorem, 

we state some problems, and discuss about directions for future research. 

Keywords: Yang-Baxter equation; set-theoretical Yang-Baxter equation; algebra 
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1. Introduction 

The Yang-Baxter equation first appeared in theoretical physics, in a paper by Yang [1], and in the 

work of Baxter in Statistical Mechanics [2,3]. It turned out to be one of the basic equations in 

mathematical physics, and more precisely for introducing the theory of quantum groups. It also plays a 

crucial role in: Knot theory, braided categories, non-commutative descent theory, quantum computing, 

non-commutative geometry, etc. Many scientists have used the axioms of various algebraic structures 

(quasi-triangular Hopf algebras, Yetter-Drinfeld categories, quandles, group actions, Lie 

(super)algebras, (co)algebra structures, Jordan triples, Boolean algebras, relations on sets, etc.) or 

computer calculations (and Grobner bases) in order to produce solutions for the Yang-Baxter equation. 

However, the full classification of its solutions remains an open problem. At present the study of 
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solutions of the Yang-Baxter equation attracts the attention of a broad circle of scientists (including 

mathematicians). Some suggested references related to our paper could be References [4,5,6,7,8], etc. 

In this paper we present qualitative results concerning the (set-theoretical) Yang-Baxter equation. 

We first consider the solutions arising from relations. For any relation on a given set we construct a 

map. We give necessary and sufficient conditions for this map to be a solution to the set-theoretical 

Yang-Baxter equation. In Section 3 we give other examples of solutions for the Yang-Baxter equation, 

we present some of their applications, and we sketch the proof of a theorem which resembles 

Kaplansky’s tenth conjecture about the classification of finite dimensional Hopf algebras. Finally, we 

conclude with a short section about directions for future research. 

2. Preliminaries 

Let V be a vector space over a field k, which is algebraically closed and of characteristic zero. 

Definition. A linear automorphism R of V V  is a solution of the Yang-Baxter equation  

(sometimes called the braid relation), if the equality 

(R id) o (id R) o (R id) = (id R) o (R id) o (id R)       (1)

holds in the automorphism group of V V V  . 

Definition. R is a solution of the quantum Yang-Baxter equation (QYBE) if 

12 13 23 23 13 12R R R R R R   
 (2)

where Rij means R acting on the i-th and j-th component. 

Let T be the twist map, T (v w) w v   . Then R satisfies (1) if and only if R T satisfies (2) if 

and only if T R satisfies (2). 

Finding all solutions of the Yang-Baxter equation is a difficult task far from being resolved. 

Nevertheless many solutions of these equations have been found during the last 30 years and the 

related algebraic structures have been studied. 

Reference [9] posed the problem of studying set-theoretical solutions of the Yang-Baxter equation. 

Specifically, we consider a set X and S: X × X → X × X, and we consider the equation (1) as an 

equality of maps from X × X × X to X × X × X: 

( ) ) ( ) ( ) ( ) ( )S id id S S id id S S id id S         （  (3)

We call (3) the set-theoretical Yang-Baxter equation. 

It is obvious that from a solution to (3), one could obtain a solution to (1), by considering the vector 

space generated by the set X, and linearly extending the map S. 

A lesser known example of solutions for the set-theoretical Yang-Baxter equation is the following. 

Given a binary relation R on X (i.e., R is a subset of X × X), we define a map 

S: X × X → X × X 

S(u, v) =        (u, v)  if  (u, v)  R 

               (v, u)  if  (u, v)  R 

(4)
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Theorem 1. (D. Hobby and F. F. Nichita, [10]). Assume R is a reflexive relation. The function S 

derived from the relation R satisfies (3) if and only if RRop is an equivalence relation on X and the 

complement relation of R is a strict partial order on each class of RRop (where Rop is the opposite 

relation of R). 

Remark. The above theorem generalizes the twist map if R is an equivalence relation. For a vector 

space, if we give an equivalence relation on a basis of the space, we can construct a generalization of 

the twist map using formula (4). 

Remark. [10] compared the above solutions with the solutions from Boolean algebras. More precisely, 
the function ( , ) ( , )a b a b a b   is a solution for the set-theoretical Yang-Baxter equation. 

3. Main Results and Discussion 

Let A be a k-algebra, and x, y   k-{0}. We define the k-linear map 

baxabyabxbaAAAAA  11)(,:    . 

Then, according to [11], φ is an invertible solution to (1). Such an operator is called a Yang-Baxter 

operator, or, simply, a YB operator. 

Remarks. 

(i) The above operator is connected to the theory of entwining structures and corings (see [12]). 

(ii) Using the method of [13], the operator φ leads to the Alexander polynomial of knots (see [14]). 

(iii) Other generalizations and properties for φ were presented in [15]: solutions for the initial 

Yang’s equation (see [1]) and a possible vertex model in statistical mechanics. 

Definition. Two YB operators (V, R) and (W, Q) are called isomorphic if there exists WVf :  
such that ( ) ( )Q f f f f R    . 

Remark. Reference [11] showed that for non-isomorphic algebra structures, the associated YB 

operators are non-isomorphic. It follows that, for any finite dimension vector space, the number of 

non-isomorphic classes of algebras structures on that vector space is less than the number of non-

isomorphic YB operators on the same vector space. 

Conjecture. The YB operators from algebra structures can be obtained from some kind of universal  

R-matrix (a universal R-matrix is related to the quasi-triangular structures presented in [6]). 

The Kaplansky’s tenth conjecture about the classification of finite dimensional Hopf algebras was 

proved in negative by references [16–18]. We present a similar result for Yang-Baxter operators below. 

Theorem 2. There exist finite dimensional vector spaces for which there are infinitely many  

non-isomorphic Yang-Baxter operators.  

Proof. The idea of the proof is shown below. The omitted technical details will be included in another 

paper. We take an arbitrary Hopf algebra from [17]. (We know that there are infinitely many  

non-isomorphic finite dimensional Hopf algebras.) Because this Hopf algebra can be viewed as an 

entwining structure, we associate a WXZ system as in [12]. But X is invertible, since its inverse could 
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be obtained by using the antipode of this arbitrary Hopf algebra. We now construct a new Yang-Baxter 

operator using a remark from [12], because X is invertible:  

.),()()()(: H

TX

HRHHHHHHHHR  
  

According to [11], for non-isomorphic algebra (respective coalgebras) structures, ).(  resp  are  

non-isomorphic operators. It follows that for non-isomorphic Hopf algebras we obtain non-isomorphic 

YB operators. 

4. Conclusions and Directions for Future Research 

The author of [19] constructed solutions to the Yang-Baxter equation from algebra and coalgebra 

structures showing that the Yang-Baxter equation captures the fundamental piece of information 

encapsulated in the algebra and coalgebra structures. The solutions for the set-theoretical Yang-Baxter 

equation presented in Section 2 were shown in an attempt to relate the equivalence relations and the 

order relations. 

Some directions for future research are: Finding the smallest dimension of a vector space for which 

Theorem 2 holds, and the study of solutions derived from relations for other non-linear equations from 

Quantum Group Theory. For example, these equations might be: Pentagonal equation, Long equation, 

Frobenius-separability equation (see [4]) or Yang-Baxter systems (which were introduced in [20]). 
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