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Abstract: We give an It6 formula associated to a non-linear semi-group associated to a
m-accretive operator.
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1. Introduction

Let us recall the Itd formula in the Stratonovich Calculus [1]. Let B; be a one dimensional Brownian
motion and f be a smooth function on R. Then

F(B) = £(Bo) + / J(B.)dB, ()

where we consider the Stratonovich differential.

In [2,3], we have remarked that the couple (B, f(B;)) is a diffusion on R x R whose generator can be
easily computed. This leads to an interpretation inside the semi-group theory of the It6 formula. Various
It6 formulas were stated by ourself for various partial differential equations where there is no stochastic
process [4-9]. See [9] for a review. For an Itd formula associated to a bilaplacian viewed inside the Fock
space, we refer to [10].

There is roughly speaking following Hunt theory a stochastic process associated to a linear semi-group
when the infinitesimal generator of the semi-group satisfied the maximum principle.

For nonlinear semi-group, the role of maximum principle is played by the notion of accretive operator.
The goal of this paper is to state an It6 formula for a nonlinear semi-group associated to a m-accretive
operator on C,(T'?), the space of continuous functions on the d-dimensional torus 7 endowed with the

uniform metric ||.||oo-
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2. Statement of the Theorems

Let (E,|.||) be a Banach space. Let L be a non-linear operator densely defined on £. We suppose
L0 = 0. We recall that L is said to be accretive if for A > 0

ler — ea + A(L(er) — L(ez))|| > [ler — eq| (2

It is said to be m-accretive if for A > 0

Im(I+AL)=F 3)
Let us recall what is a mild solution of the non-linear parabolic equation
0
aut 4+ Lu; =0; wug=e 4)
We consider a subdivision 0 < ¢; < --- < ty = 1. We say that u;, is an e-discretization of
Equation (4) if:
liy1 —1; <€ (5)
U, — Up,
——— 4+ Lu; =0 (6)
lit1 — U

Definition 1. v is said to be a mild solution of Equation (4) if for all € there exist an e-discretization u of
Equation (6) such that ||u; — v|| < e

Let us recall the main theorem of [11,12]:

Theorem 1. If L is m-accretive, there exists for all e in E a unique mild-solution of Equation (4). This

generates therefore a non-linear semi-group exp|—tL].

We consider the d-dimensional torus. We consider £ = C,(7) and let L be an m-accretive operator
whose domain contains C{°(T'?), the space of smooth functions on 7% with bounded derivatives at each
order which is continuous from C¢°(7¢) into C,(T9).

Let f € C°(T?) . We consider g € Cy(T? x R).

We consider the diffeomorphism ¢/ of T¢ x R:

W (x,y) = (2,y + f(z)) @)
It defines a continuous linear isometry W/ of C,(T? x R)
Vgl (x,y) = g o v (z,y) ®)

Definition 2. The It6 transform L’ of L is the operator densely defined on Cy,(T¢ x R)

LI =@l o(LeL)ow )
Let us give the domain of L ® I;. Cy,(T% x R) is constituted of function g(z,y).
L& Lgl(z,y) = Lag(z,y) (10)

where we apply the operator L on the continuous function  — g(x,y) supposed in the domain of L
for all y. We suppose moreover that (z,y) — L,g(z,y) is bounded continuous. The domain contains
clearly C°(T¢ x R).
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Theorem 2. If L is m-accretive on Cy(T?), its Ito-transform is m-accretive on Cy(T* x R).
We deduce therefore two non-linear semi-groups if L is m-accretive:

- exp[—tL] acting on Cy(T?).
- exp|[—tL/] acting on Cy(T? x R).

Let g be an element of C,(T% x R). We consider g/ (z) = g(z, f(x)). We get:

Theorem 3. (1t6 formula) We have the relation

exp[—tL][g')(x) = exp[—tL!][g](z, f(x)) (11)

This formula is an extension in the non-linear case of the classical 1td formula for the Brownian
motion. If we take L = —1/ 283—;2 acting densely on C,(R), we have

exp[—tL][g](z) = E[g(B: + z)] (12)

where ¢ — B, is a Brownian motion on R starting from 0. (B; + x, f(B; + ) + y) is a diffusion on
R x R whose generator is L.

3. Proof of the Theorems

Proof of Theorem 2. L ® I, is clearly m-accretive on Cy(T x R). Let us show this result.

- L ® I, is densely defined. Let g be a bounded continuous function on 7% x R. By using a suitable
partition of unity on R, we can write

g(z,y) =>_ g"(x,y) (13)

where ¢"(z,y) = 0 if y does not belong to [—n — 1, n+ 1]. By an approximation by convolution we
can find a smooth function ¢"(x, y) close from g(z, y) for the supremum norm and with bounded
derivative of each order. + — L, ¢™* is continuous in z and the joint function (z,y) — L,¢™(z,y)
is bounded continuous in (z, y) by the hypothesis on L.

- Clearly Equation (2) is satisfied.

- It remains to show Equation (3). If g belong to Cy(T% x R) we can find x — h(z, y) such that

h(z,y) + ALz, y) = g(x,y) (14)
19 y) — 9 ¥ )lso = 1R(,y) — R(, )|l (15)

Therefore (x,y) — h(x,y) is jointly bounded continuous.

Since W/ is a linear isometry of Cj, (7% x R) which transform a smooth function into a smooth function,

LM =@l o(LehL)ow (16)

is clearly still m-accretive. O
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Proof of Theorem 3. Let us consider t; = i/N to simplify the exposition.

e-discretization u_ of the parabolic equation associated to L/. This means that

Let us consider an

w, € (W) (o +1/N(L® 1)~ W/g (17)
I, is the identity on Cy(7% x R). But
(Igp1 +1I/N(L® 1)) = (Ig+1/NL)® I, (18)
such that
(I +1/NL)' @ I)W/u,, = Vg (19)
By doing y = 0 in the previous equality, we deduce that
(1+ L/N)'u, = g7 (20)
Therefore uf is an e-discretization to the parabolic equation associated to L. 0
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