

Article

Quasitriangular Structure of Myhill–Nerode Bialgebras

Robert G. Underwood

Department of Mathematics/Informatics Institute, Auburn University Montgomery, P.O. Box 244023, Montgomery, AL 36124, USA; E-Mail: runderwo@aum.edu; Tel.: +1-334-244-3325; Fax: +1-334-244-3826

Received: 20 June 2012; in revised form: 15 July 2012 / Accepted: 17 July 2012 / Published: 24 July 2012

Abstract: In computer science the Myhill–Nerode Theorem states that a set L of words in a finite alphabet is accepted by a finite automaton if and only if the equivalence relation \sim_L , defined as $x \sim_L y$ if and only if $xz \in L$ exactly when $yz \in L, \forall z$, has finite index. The Myhill–Nerode Theorem can be generalized to an algebraic setting giving rise to a collection of bialgebras which we call Myhill–Nerode bialgebras. In this paper we investigate the quasitriangular structure of Myhill–Nerode bialgebras.

Keywords: algebra; coalgebra; bialgebra; Myhill–Nerode theorem; Myhill–Nerode bialgebra; quasitriangular structure

1. Introduction

Let Σ_0 be a finite alphabet and let $\hat{\Sigma}_0$ denote the set of words formed from the letters in Σ_0 . Let $L \subseteq \hat{\Sigma}_0$ be a language, and let \sim_L be the equivalence relation defined as $x \sim_L y$ if and only if $xz \in L$ exactly when $yz \in L, \forall z \in \hat{\Sigma}_0$. The Myhill–Nerode Theorem of computer science states that L is accepted by a finite automaton if and only if \sim_L has finite index (cf. [1, 1, Chapter III, §9, Proposition 9.2], [2, §3.4, Theorem 3.9]). In [3, Theorem 5.4] the authors generalize the Myhill–Nerode theorem to an algebraic setting in which a finiteness condition involving the action of a semigroup on a certain function plays the role of the finiteness of the index of \sim_L , while a bialgebra plays the role of the finite automaton which accepts the language. We call these bialgebras *Myhill–Nerode bialgebras*.

The purpose of this paper is to investigate the quasitriangular structure of Myhill–Nerode bialgebras.

By construction, a Myhill–Nerode bialgebra B is cocommutative and finite dimensional over its base field. Thus B admits (at least) the trivial quasitriangular structure $(B, 1 \otimes 1)$. We ask: does B (or its linear dual B^*) have any non-trivial quasitriangular structures? Towards a solution to this problem, we construct a class of commutative Myhill–Nerode bialgebras and give a complete account of the quasitriangular structure of one of them. We begin with some background information regarding algebras, coalgebras, and bialgebras.

2. Algebras, Coalgebras and Bialgebras

Let K be an arbitrary field of characteristic 0 and let A be a vector space over K with scalar product ra for all $r \in K$, $a \in A$. Scalar product defines two maps $s_1 : K \otimes A \to A$ with $r \otimes a \mapsto ra$ and $s_2 : A \otimes K \to A$ with $a \otimes r \mapsto ra$, for $a \in A$, $r \in K$. Let $I_A : A \to A$ denote the identity map. A *K*-algebra is a triple (A, m_A, η_A) where $m_A : A \otimes A \to A$ is a K-linear map which satisfies

$$m_A(I_A \otimes m_A)(a \otimes b \otimes c) = m_A(m_A \otimes I_A)(a \otimes b \otimes c) \tag{1}$$

and $\eta_A: K \to A$ is a K-linear map for which

$$m_A(I_A \otimes \eta_A)(a \otimes r) = ra = m_A(\eta_A \otimes I_A)(r \otimes a)$$
⁽²⁾

for all $r \in K$, $a, b, c \in A$. The map m_A is the *multiplication map* of A and η_A is the *unit map* of A. Condition (1) is the *associative property* and Condition (2) is the *unit property*.

We write $m_A(a \otimes b)$ as ab. The element $1_A = \eta_A(1_K)$ is the unique element of A for which $a1_A = a = 1_A a$ for all $a \in A$. Let A, B be algebras. An algebra homomorphism from A to B is a K-linear map $\phi : A \to B$ such that $\phi(m_A(a_1 \otimes a_2)) = m_B(\phi(a_1) \otimes \phi(a_2))$ for all $a_1, a_2 \in A$, and $\phi(1_A) = 1_B$. In particular, for A to be a subalgebra of B we require $1_A = 1_B$.

For any two vector spaces V, W let $\tau : V \otimes W \to W \otimes V$ denote the *twist map* defined as $\tau(a \otimes b) = b \otimes a$, for $a \in V, b \in W$. For K-algebras A, B, we have that $A \otimes B$ is a K-algebra with multiplication

$$m_{A\otimes B}: (A\otimes B)\otimes (A\otimes B) \to A\otimes B$$

defined by

$$m_{A\otimes B}((a\otimes b)\otimes (c\otimes d)) = (m_A\otimes m_B)(I_A\otimes \tau\otimes I_B)(a\otimes (b\otimes c)\otimes d)$$
$$= (m_A\otimes m_B)((a\otimes c)\otimes (b\otimes d)) = ac\otimes bd$$

for $a, c \in A, b, d \in B$. The unit map $\eta_{A \otimes B} : K \to A \otimes B$ given as

$$\eta_{A\otimes B}(r) = \eta_A(r) \otimes 1_B$$

for $r \in K$.

Let C be a K-vector space. A K-coalgebra is a triple $(C, \Delta_C, \epsilon_C)$ in which $\Delta_C : C \to C \otimes C$ is K-linear and satisfies

$$(I_C \otimes \Delta_C) \Delta_C(c) = (\Delta_C \otimes I_C) \Delta_C(c) \tag{3}$$

and $\epsilon_C : C \to K$ is K-linear with

$$s_1(\epsilon_C \otimes I_C)\Delta_C(c) = c = s_2(I_C \otimes \epsilon_C)\Delta_C(c) \tag{4}$$

for all $c \in C$. The maps Δ_C and ϵ_C are the *comultiplication* and *counit* maps, respectively, of the coalgebra C. Condition (3) is the *coassociative property* and Condition (4) is the *counit property*.

We use the notation of M. Sweedler $[4, \S 1.2]$ to write

$$\Delta_C(c) = \sum_{(c)} c_{(1)} \otimes c_{(2)}$$

Note that Condition (4) implies that

$$\sum_{(c)} \epsilon_C(c_{(1)}) c_{(2)} = c = \sum_{(c)} \epsilon_C(c_{(2)}) c_{(1)}$$
(5)

Let C be a K-coalgebra. A nonzero element c of C for which $\Delta_C(c) = c \otimes c$ is a grouplike element of C. If c is grouplike, then

$$c = s_1(\epsilon_C \otimes I_C)\Delta_C(c)$$

= $s_1(\epsilon_C \otimes I_C)(c \otimes c) = \epsilon_C(c)c$

and so, $\epsilon_C(c) = 1$. The grouplike elements of C are linearly independent [4, Proposition 3.2.1].

Let C, D be coalgebras. A K-linear map $\phi : C \to D$ is a *coalgebra homomorphism* if $(\phi \otimes \phi)\Delta_C(c) = \Delta_D(\phi(c))$ and $\epsilon_C(c) = \epsilon_D(\phi(c))$ for all $c \in C$. The tensor product $C \otimes D$ of two coalgebras is again a coalgebra with comultiplication map

$$\Delta_{C\otimes D}: C\otimes D \to (C\otimes D)\otimes (C\otimes D)$$

defined by

$$\begin{split} \Delta_{C\otimes D}(c\otimes d) &= (I_C\otimes \tau\otimes I_D)(\Delta_C\otimes \Delta_D)(c\otimes d) \\ &= (I_C\otimes \tau\otimes I_D)(\Delta_C(c)\otimes \Delta_D(d)) \\ &= (I_C\otimes \tau\otimes I_D)(\sum_{(c),(d)}c_{(1)}\otimes c_{(2)}\otimes d_{(1)}\otimes d_{(2)}) \\ &= \sum_{(c),(d)}c_{(1)}\otimes d_{(1)}\otimes c_{(2)}\otimes d_{(2)} \end{split}$$

for $c \in C$, $d \in D$. The counit map $\epsilon_{C \otimes D} : C \otimes D \to K$ is defined as

$$\epsilon_{C\otimes D}(c\otimes d) = \epsilon_C(c)\epsilon_D(d)$$

for $c \in C$, $d \in D$.

A *K*-bialgebra is a *K*-vector space *B* together with maps m_B , η_B , Δ_B , ϵ_B for which (B, m_B, η_B) is a *K*-algebra and $(B, \Delta_B, \epsilon_B)$ is a *K*-coalgebra and for which Δ_B and ϵ_B are algebra homomorphisms. Let *B*, *B'* be bialgebras. A *K*-linear map $\phi : B \to B'$ is a bialgebra homomorphism if ϕ is both an algebra and coalgebra homomorphism.

A *K*-Hopf algebra is a bialgebra *H* together with an additional *K*-linear map $\sigma_H : H \to H$ that satisfies

$$m_H(I_H \otimes \sigma_H)\Delta_H(h) = \epsilon_H(h)1_H = m_H(\sigma_H \otimes I_H)\Delta_H(h)$$
(6)

for all $h \in H$. The map σ_H is the *coinverse* (or *antipode*) map and property Condition (6) is the *coinverse* (or *antipode*) *property*. Though we will not consider Hopf algebras here, more details on the subject can be found in [5–8].

An important example of a K-bialgebra is given as follows. Let G be a semigroup with unity, 1. Let KG denote the semigroup algebra. Then KG is a bialgebra with comultiplication map

$$\Delta_{KG}: KG \to KG \otimes KG$$

defined by $x \mapsto x \otimes x$, for all $x \in G$, and counit map $\epsilon_{KG} : KG \to K$ given by $x \mapsto 1$, for all $x \in G$. The bialgebra KG is the *semigroup bialgebra on* G.

Let B be a bialgebra, and let A be an algebra which is a left B-module with action denoted by "·". Suppose that

$$b \cdot (aa') = \sum_{(b)} (b_{(1)} \cdot a) (b_{(2)} \cdot a')$$

and

$$b \cdot 1_A = \epsilon_B(b) 1_A$$

for all $a, a' \in A$, $b \in B$. Then A is a *left B-module algebra*. A K-linear map $\phi : A \to A'$ is a *left B-module algebra homomorphism* if ϕ is both an algebra and a left B-module homomorphism.

Let C be a coalgebra and a right B-module with action denoted by " \cdot ". Suppose that for all $c \in C$, $b \in B$,

$$\Delta_C(c \cdot b) = \sum_{(c),(b)} c_{(1)} \cdot b_{(1)} \otimes c_{(2)} \cdot b_{(2)}$$

and

$$\epsilon_C(c \cdot b) = \epsilon_C(c)\epsilon_B(b)$$

Then C is a right B-module coalgebra. A K-linear map $\phi : C \to C'$ is a right B-module coalgebra homomorphism if ϕ is both a coalgebra and a right B-module homomorphism.

Let C be a coalgebra and let $C^* = \text{Hom}_K(C, K)$ denote the linear dual of C. Then the coalgebra structure of C induces an algebra structure on C^* .

Proposition 2.1 If C is a coalgebra, then C^* is an algebra.

Proof. Recall that C is a triple $(C, \Delta_C, \epsilon_C)$ where $\Delta_C : C \to C \otimes C$ is K-linear and satisfies the coassociativity property, and $\epsilon_C : C \to K$ is K-linear and satisfies the counit property. The dual map of Δ_C is a K-linear map

$$\Delta_C^* : (C \otimes C)^* \to C^*$$

Since $C^* \otimes C^* \subseteq (C \otimes C)^*$, we define the multiplication map of C^* , denoted as m_{C^*} , to be the restriction of Δ_C^* to $C^* \otimes C^*$. For $f, g \in C^*$, $c \in C$,

$$(fg)(c) = m_{C^*}(f \otimes g)(c) = \Delta_C^*(f \otimes g)(c) = (f \otimes g)(\Delta_C(c)) = \sum_{(c)} f(c_{(1)})g(c_{(2)})$$

The coassociatively property of Δ_C yields the associative property of m_{C^*} . Indeed, for $f, g, h \in C^*$, $c \in C$,

$$\begin{split} m_{C^*}(I_{C^*}\otimes m_{C^*})(f\otimes g\otimes h)(c) &= \Delta^*_C(I_{C^*}\otimes \Delta^*_C)(f\otimes g\otimes h)(c) \\ &= \Delta^*_C(f\otimes \Delta^*_C(g\otimes h))\Delta_C(c) \\ &= \sum_C f(c_{(1)})\Delta^*_C(g\otimes h)(c_{(2)}) \\ &= \sum_{(c)} f(c_{(1)})(g\otimes h)\Delta_C(c_{(2)}) \\ &= \sum_{(c)} f(c_{(1)})(g\otimes h)\Delta_C(c_{(2)}) \\ &= (f\otimes g\otimes h)(\sum_{(c)} c_{(1)}\otimes \Delta_C(c_{(2)})) \\ &= (f\otimes g\otimes h)(\sum_{(c)} \Delta_C(c_{(1)})\otimes c_{(2)}) \quad \text{by Condition (3)} \\ &= \sum_{(c)} (f\otimes g)\Delta_C(c_{(1)})\otimes h(c_{(2)}) \\ &= \sum_{(c)} \Delta^*_C(f\otimes g)(c_{(1)})\otimes h(c_{(2)}) \\ &= (\Delta^*_C(f\otimes g)\otimes h)\Delta_C(c) \\ &= \Delta^*_C(\Delta^*_C(f\otimes g)\otimes h)(c) \\ &= \Delta^*_C(\Delta^*_C \otimes I_{C^*})(f\otimes g\otimes h)(c) \\ &= m_{C^*}(m_{C^*}\otimes I_{C^*})(f\otimes g\otimes h)(c) \end{split}$$

In addition, the counit map of ${\cal C}$ dualizes to yield

$$\epsilon_C^*: K := K^* \to C^*$$

defined as $\epsilon_C^*(k)(c) = k(\epsilon(c)) = k\epsilon(c)$. Thus we define the unit map η_{C^*} to be ϵ_C^* . One can show that the counit property of ϵ_C implies the unit property for η_{C^*} . To this end, for $f \in C^*$, $r \in K$, $c \in C$,

$$m_{C^*}(I_{C^*} \otimes \eta_{C^*})(f \otimes r)(c) = \Delta_C^*(I_{C^*} \otimes \epsilon_C^*)(f \otimes r)(c)$$

$$= \Delta_C^*(f \otimes \epsilon_C^*(r))(c)$$

$$= (f \otimes \epsilon_C^*(r))(\Delta_C(c))$$

$$= \sum_{(c)} f(c_{(1)})\epsilon_C^*(r)(c_{(2)})$$

$$= \sum_{(c)} f(c_{(1)})r(\epsilon_C(c_{(2)}))$$

$$= r\sum_{(c)} f(c_{(1)})\epsilon_C(c_{(2)})$$

$$= r\sum_{(c)} \epsilon_C(c_{(2)})f(c_{(1)})$$

$$= r\sum_{(c)} f(\epsilon_C(c_{(2)})c_{(1)})$$

$$= rf(\sum_{(c)} \epsilon_C(c_{(2)})c_{(1)})$$

$$= rf(c) \text{ by Condition (5)}$$

In a similar manner, one obtains

$$m_{C^*}(\eta_{C^*} \otimes I_{C^*})(r \otimes f) = rf$$

Thus $(C^*, m_{C^*}, \eta_{C^*})$ is an algebra. Note that $\eta_{C^*}(1_K)(c) = \epsilon_C(c), \forall c$, and so, ϵ_C is the unique element of C^* for which $\epsilon_C f = f = f \epsilon_C$ for all $f \in C^*$.

Let (A, m_A, η_A) be a *K*-algebra. Then one may wonder if A^* is a *K*-coalgebra. The multiplication map $m_A : A \otimes A \to A$ dualizes to yield $m_A^* : A^* \to (A \otimes A)^*$. Unfortunately, if *A* is infinite dimensional over *K*, then $A^* \otimes A^*$ is a proper subset of $(A \otimes A)^*$, and hence m_A^* may not induce the required comultiplication map $A^* \to A^* \otimes A^*$.

There is still however a K-coalgebra arising via duality from the algebra A. An ideal I of A is *cofinite* if dim $(A/I) < \infty$. The *finite dual* A° of A is defined as

 $A^{\circ} = \{ f \in A^* : f(I) = 0 \text{ for some cofinite ideal } I \text{ of } A \}$

Note that A° is the largest subspace W of A^{*} for which $m_{A}^{*}(W) \subseteq W \otimes W$.

Proposition 2.2 If A is an algebra, then A° is a coalgebra.

Proof. The proof is similar to the method used in Proposition 2.1. We restrict the map m_A^* to A° to yield the K-linear map $m_A^* : A^\circ \to (A \otimes A)^*$. Now by [4, Proposition 6.0.3], $m_A^*(A^\circ) \subseteq A^\circ \otimes A^\circ$. Let Δ_{A° denote the restriction of m_A^* to A° . We show that Δ_{A° satisfies the coassociative condition. For $f \in A^\circ, a, b, c \in A$, we have

$$(I \otimes \Delta_{A^{\circ}})\Delta_{A^{\circ}}(f)(a \otimes b \otimes c) = (I \otimes m_{A}^{*})m_{A}^{*}(f)(a \otimes b \otimes c)$$

$$= m_{A}^{*}(f)((I \otimes m_{A})(a \otimes b \otimes c))$$

$$= m_{A}^{*}(f)(a \otimes bc)$$

$$= f(m_{A}(a \otimes bc))$$

$$= f(a(bc))$$

$$= f((ab)c)$$

$$= f((ab)c)$$

$$= m_{A}^{*}(f)(ab \otimes c)$$

$$= m_{A}^{*}(f)(ab \otimes c)$$

$$= (m_{A}^{*} \otimes I)m_{A}^{*}(f)(a \otimes b \otimes c)$$

$$= (\Delta_{A^{\circ}} \otimes I)\Delta_{A^{\circ}}(f)(a \otimes b \otimes c)$$

For the counit map of A° , we consider the dual map $\eta_A^* : A^* \to K^* := K$. Now η_A^* restricts to a map $\eta_A^* : A^{\circ} \to K$. We let $\epsilon_{A^{\circ}}$ denote the restriction of η_A^* to A° . For $f \in A^{\circ}$, $r \in K$,

$$\epsilon_{A^{\circ}}(f)(r) = f(\eta_A(r)) = f(r1_A) = rf(1_A) = f(1_A)(r)$$

and so, $\epsilon_{A^{\circ}}(f) = f(1_A)$. We show that $\epsilon_{A^{\circ}}$ satisfies the counit property. First let $s_1 : K \otimes A^{\circ} \to A^{\circ}$ be defined by the scalar multiplication of A° . For $f \in A^{\circ}$, $r \in K$, $a \in A$,

$$s_1((\epsilon_{A^\circ} \otimes I)\Delta_{A^\circ}(f))(a) = s_1((\eta_A^* \otimes I)m_A^*(f))(a)$$

$$= (\eta_A^* \otimes I)m_A^*(f)(s_1^*(a))$$

$$= (\eta_A^* \otimes I)m_A^*(f)(1 \otimes a)$$

$$= m_A^*(f)((\eta_A \otimes I)(1 \otimes a))$$

$$= f(m_A(\eta_A \otimes I)(1 \otimes a))$$

$$= f(a)$$

In a similar manner, one obtains

$$s_2((I \otimes \epsilon_{A^\circ})\Delta_{A^\circ}(f))(a) = f(a)$$

where $s_2: A^{\circ} \otimes K \to A^{\circ}$ is given by scalar multiplication. Thus A° is a coalgebra.

Proposition 2.3 If B is a bialgebra, then B° is a bialgebra.

Proof. As a coalgebra, B is a triple $(B, \Delta_B, \epsilon_B)$. By Proposition 2.1, B^* is an algebra with maps $m_{B^*} = \Delta_B^*$ and $\eta_{B^*} = \epsilon_B^*$. Let m_{B° denote the restriction of m_{B^*} to $B^\circ \otimes B^\circ$, and let η_{B° denote the restriction of η_{B^*} to B° . Then the triple $(B^\circ, m_{B^\circ}, \eta_{B^\circ})$ is a K-algebra.

As an algebra, B is a triple (B, m_B, η_B) . By Proposition 2.2, B° is a coalgebra with maps $\Delta_{B^{\circ}}$ and $\epsilon_{B^{\circ}}$. It remains to show that $\Delta_{B^{\circ}}$ and $\epsilon_{B^{\circ}}$ are algebra homomorphisms. First observe that for $f, g \in B^{\circ}$, $a, b \in B$ one has

$$(fg)(a) = m_{B^{\circ}}(f \otimes g)(a) = \Delta_B^*(f \otimes g)(a) = (f \otimes g)\Delta_B(a)$$

and

$$\Delta_{B^{\circ}}(f)(a \otimes b) = m_B^*(f)(a \otimes b) = f(m_B(a \otimes b)) = f(ab)$$

We have

$$\begin{split} \Delta_{B^{\circ}}(fg)(a \otimes b) &= (fg)(ab) \\ &= (f \otimes g)(\Delta_B(ab)) \\ &= (f \otimes g)(\Delta_B(a)\Delta_B(b)) \\ &= (f \otimes g)(m_{B \otimes B}(\Delta_B(a) \otimes \Delta_B(b)) \\ &= m^*_{B \otimes B}(f \otimes g)(\Delta_B(a) \otimes \Delta_B(b)) \\ &= (I \otimes \tau \otimes I)(\Delta_{B^{\circ}} \otimes \Delta_{B^{\circ}})(f \otimes g)(\Delta_B(a) \otimes \Delta_B(b)) \\ &= (\Delta_{B^{\circ}}(f) \otimes \Delta_{B^{\circ}}(g))(I \otimes \tau \otimes I)(\Delta_B \otimes \Delta_B)(a \otimes b) \\ &= (\Delta_{B^{\circ}}(f) \otimes \Delta_{B^{\circ}}(g))(\Delta_{B \otimes B}(a \otimes b)) \\ &= \Delta^*_{B \otimes B}(\Delta_{B^{\circ}}(f) \otimes \Delta_{B^{\circ}}(g))(a \otimes b) \\ &= m_{B^{\circ} \otimes B^{\circ}}(\Delta_{B^{\circ}}(f) \otimes \Delta_{B^{\circ}}(g))(a \otimes b) \\ &= (\Delta_{B^{\circ}}(f)\Delta_{B^{\circ}}(g))(a \otimes b) \end{split}$$

and so $\Delta_{B^{\circ}}$ is an algebra map. We next show that $\epsilon_{B^{\circ}}$ is an algebra map. For $f, g \in B^{\circ}$,

$$\epsilon_{B^{\circ}}(f) = \epsilon_{B^{\circ}}(f)(1) = f(\eta_B(1)) = f(1_B)$$

Thus

$$\epsilon_{B^{\circ}}(fg) = (fg)(1_B)$$
$$= f(1_B)g(1_B)$$
$$= \epsilon_{B^{\circ}}(f)\epsilon_{B^{\circ}}(g)$$

and so, $\epsilon_{B^{\circ}}$ is an algebra map.

Proposition 2.4 Suppose that B is a bialgebra that is finite dimensional over K. Then B^* is a bialgebra.

Proof. If dim $(B) < \infty$, then $B^{\circ} = B^*$. The result then follows from Proposition 2.3.

Let $G = \{x_1, x_2, \dots, x_n\}$ be a finite semigroup with unity element $1_{KG} = x_1$, and let KG denote the semigroup bialgebra. By Proposition 2.4 KG^* is a bialgebra of dimension n over K. Let $\{e_1, e_2, \ldots, e_n\}$ be the dual basis for KG^* defined as $e_i(x_i) = \delta_{i,j}$.

Proposition 2.5 The comultiplication map $\Delta_{KG^*} : KG^* \to KG^* \otimes KG^*$ is given as

$$\Delta_{KG^*}(e_i) = \sum_{x_i = x_j x_k} e_j \otimes e_k$$

and the counit map $\epsilon_{KG^*}: KG^* \to K$ is defined as $\epsilon_{KG^*}(e_i) = e_i(x_1) = \delta_{i,1}$.

Proof, See [7, (1.3.7)]. Let B be a K-bialgebra. Then B is cocommutative if

$$\tau(\Delta_B(b)) = \Delta_B(b)$$

for all $b \in B$.

Proposition 2.6 If B is cocommutative, then B° is a commutative algebra. If B is a commutative algebra, then B° is cocommutative.

Proof. See [7, Lemma 1.2.2, Proposition 1.2.4].

3. Quasitriangular Bialgebras

Let B be a bialgebra and let $B \otimes B$ be the tensor product algebra. Let $U(B \otimes B)$ denote the group of units in $B \otimes B$ and let $R \in U(B \otimes B)$. The pair (B, R) is almost cocommutative if the element *R* satisfies

$$\tau(\Delta_B(b)) = R\Delta_B(b)R^{-1} \tag{7}$$

for all $b \in B$.

If the bialgebra B is cocommutative, then the pair $(B, 1 \otimes 1)$ is almost cocommutative since $R = 1 \otimes 1$ satisfies Condition (7). However, if B is commutative and non-cocommutative, then (B, R) cannot be

 \diamond

 \diamond

 \diamond

almost cocommutative for any $R \in U(B \otimes B)$ since Condition (7) in this case reduces to the condition for cocommutativity.

Write $R = \sum_{i=1}^{n} a_i \otimes b_i \in U(B \otimes B)$. Let

$$R^{12} = \sum_{i=1}^{n} a_i \otimes b_i \otimes 1 \in B \otimes B \otimes B$$
$$R^{13} = \sum_{i=1}^{n} a_i \otimes 1 \otimes b_i \in B \otimes B \otimes B$$
$$R^{23} = \sum_{i=1}^{n} 1 \otimes a_i \otimes b_i \in B \otimes B \otimes B$$

The pair (B, R) is quasitriangular if (B, R) is almost cocommutative and the following conditions hold

$$(\Delta_B \otimes I)R = R^{13}R^{23} \tag{8}$$

$$(I \otimes \Delta_B)R = R^{13}R^{12} \tag{9}$$

Clearly, if B is cocommutative then $(B, 1 \otimes 1)$ is quasitriangular.

Let B be a bialgebra. A quasitriangular structure is an element $R \in U(B \otimes B)$ so that (B, R) is quasitriangular. Let (B, R) and (B', R') be quasitriangular bialgebras. Then (B, R), (B', R') are *isomorphic as quasitriangular bialgebras* if there exists a bialgebra isomorphism $\phi : B \to B'$ for which $R' = (\phi \otimes \phi)(R)$. Two quasitriangular structures R, R' on a bialgebra B are equivalent quasitriangular structures if $(B, R) \cong (B, R')$ as quasitriangular bialgebras.

The following proposition shows that every bialgebra isomorphism $\phi : B \to B'$ with B quasitriangular extends to an isomorphism of quasitriangular bialgebras.

Proposition 3.1 Suppose (B, R) is quasitriangular and suppose that $\phi : B \to B'$ is an isomorphism of *K*-bialgebras. Let $R' = (\phi \otimes \phi)(R)$. Then (B', R') is quasitriangular.

Proof. Note that $(\phi \otimes \phi)(R^{-1}) = ((\phi \otimes \phi)(R))^{-1}$. Let $b' \in B'$. Then there exists $b \in B$ for which $\phi(b) = b'$. Now

$$\tau \Delta_{B'}(b') = \tau \Delta_{B'}(\phi(b))$$

$$= \tau(\phi \otimes \phi)\Delta_B(b)$$

$$= (\phi \otimes \phi)\tau \Delta_B(b)$$

$$= (\phi \otimes \phi)(R\Delta_B(b)R^{-1})$$

$$= (\phi \otimes \phi)(R)(\phi \otimes \phi)\Delta_B(b)(\phi \otimes \phi)(R^{-1})$$

$$= (\phi \otimes \phi)(R)\Delta_{B'}(\phi(b))((\phi \otimes \phi)(R))^{-1}$$

$$= (\phi \otimes \phi)(R)\Delta_{B'}(b')((\phi \otimes \phi)(R))^{-1}$$

$$= R'\Delta_{B'}(b')(R')^{-1}$$

and so, (B, R') is almost cocommutative. Moreover,

$$\begin{aligned} (\Delta_{B'} \otimes I)(R') &= (\Delta_{B'} \otimes I)(\phi \otimes \phi)(R) \\ &= (\Delta_{B'} \otimes I)(\sum_{i=1}^{n} \phi(a_i) \otimes \phi(b_i)) \\ &= \sum_{i=1}^{n} \Delta_{B'} \phi(a_i) \otimes \phi(b_i)) \\ &= \sum_{i=1}^{n} (\phi \otimes \phi) \Delta_B(a_i) \otimes \phi(b_i)) \\ &= (\phi \otimes \phi \otimes \phi)(\sum_{i=1}^{n} \Delta_B(a_i) \otimes b_i) \\ &= (\phi \otimes \phi \otimes \phi)(\Delta_B \otimes I)(R) \\ &= (\phi \otimes \phi \otimes \phi)(R^{13}R^{23}) \\ &= (\phi \otimes \phi \otimes \phi)((\sum_{i=1}^{n} a_i \otimes 1 \otimes b_i)(\sum_{i=1}^{n} 1 \otimes a_i \otimes b_i)) \\ &= (\sum_{i=1}^{n} \phi(a_i) \otimes 1 \otimes \phi(b_i))(\sum_{i=1}^{n} 1 \otimes \phi(b_i)) \\ &= ((\phi \otimes \phi)(R))^{13}((\phi \otimes \phi)(R))^{23} \\ &= (R')^{13}(R')^{23} \end{aligned}$$

In a similar manner one shows that

$$(I \otimes \Delta_{B'})(R') = (R')^{13}(R')^{12}$$

Thus (B', R') is quasitriangular.

Quasitriangular bialgebras are important since they give rise to solutions of the equation

$$R^{12}R^{13}R^{23} = R^{23}R^{13}R^{12} \tag{10}$$

which is known as the *quantum Yang–Baxter equation (QYBE)*. The QYBE was first introduced in statistical mechanics, see [9]. An element $R \in B \otimes B$ which satisfies (10) is a *solution to the QYBE*.

Certainly, the QYBE admits the trivial solution $R = 1 \otimes 1$, and of course, if B is commutative, then any $R \in B \otimes B$ is a solution to the QYBE. For B non-commutative, it is of great interest to find non-trivial solutions $R \in B \otimes B$ to the QYBE. We have the following result due to V. G. Drinfeld [10].

Proposition 3.2 (Drinfeld) Suppose (B, R) is quasitriangular. Then R is a solution to the QYBE.

Proof. One has

$$\diamond$$

$$\begin{split} R^{12}R^{13}R^{23} &= R^{12}(\Delta \otimes I)(R) \quad \text{by (8)} \\ &= (R \otimes 1)(\sum_{i=1}^{n} \Delta(a_i) \otimes b_i) \\ &= \sum_{i=1}^{n} R\Delta(a_i) \otimes b_i \\ &= \sum_{i=1}^{n} \tau \Delta(a_i) R \otimes b_i \quad \text{by (7)} \\ &= (\sum_{i=1}^{n} \tau \Delta(a_i) \otimes b_i)(R \otimes 1) \\ &= (\tau \Delta \otimes I)(R)R^{12} \\ &= (\tau \otimes I)(\Delta \otimes I)(R)R^{12} \\ &= (\tau \otimes I)(R^{13}R^{23})R^{12} \quad \text{by (8)} \\ &= R^{23}R^{13}R^{12} \end{split}$$

 \diamond

The following proposition provides necessary conditions on $R \in U(B \otimes B)$ in order for (B, R) to be quasitriangular.

Proposition 3.3 Suppose (B, R) is quasitriangular. Then

(i) $s_1(\epsilon \otimes I)(R) = 1$, (ii) $s_2(I \otimes \epsilon)(R) = 1$.

Proof. For (i) one has

$$(s_1 \otimes I)(\epsilon \otimes I \otimes I)(\Delta \otimes I)(R) = (s_1 \otimes I)(\epsilon \otimes I \otimes I)(\sum_{i=1}^n \Delta(a_i) \otimes b_i)$$
$$= (s_1 \otimes I)(\sum_{i=1}^n (\epsilon \otimes I)\Delta(a_i) \otimes b_i)$$
$$= \sum_{i=1}^n s_1(\epsilon \otimes I)\Delta(a_i) \otimes b_i$$
$$= \sum_{i=1}^n a_i \otimes b_i$$
$$= R$$

In view of Condition (8)

$$R = (s_1 \otimes I)(\epsilon \otimes I \otimes I)(R^{13}R^{23})$$

= $(s_1 \otimes I)(\epsilon \otimes I \otimes I)(R^{13})(s_1 \otimes I)(\epsilon \otimes I \otimes I)(R^{23})$
= $(s_1 \otimes I)(\epsilon \otimes I \otimes I)(\sum_{i=1}^n a_i \otimes 1 \otimes b_i)(s_1 \otimes I)(\epsilon \otimes I \otimes I)(\sum_{i=1}^n 1 \otimes a_i \otimes b_i)$
= $(\sum_{i=1}^n \epsilon(a_i)1 \otimes b_i)(\sum_{i=1}^n a_i \otimes b_i)$
= $(\sum_{i=1}^n 1 \otimes \epsilon(a_i)b_i)R$

Thus

$$1 \otimes \sum_{i=1} \epsilon(a_i) b_i = 1 \otimes 1$$

and consequently,

$$1 = s_1(\sum_{i=1}^n \epsilon(a_i) \otimes b_i) = s_1(\epsilon \otimes I)(R)$$

A similar argument is used to prove (ii).

4. Myhill-Nerode Bialgebras

In this section we review the main result of [3] in which the authors give a bialgebra version of the Myhill–Nerode Theorem. Let G be a semigroup with unity, 1 and let H = KG be the semigroup bialgebra. There is a right H-module structure on H^* defined as

$$(p \leftarrow x)(y) = p(xy)$$

for all $x, y \in H$, $p \in H^*$. For $x \in H$, $p \in H^*$, the element $p \leftarrow x$ is the *right translate of* p by x.

Proposition 4.1 ([3, Proposition 5.4].) Let G be a semigroup with 1, let H = KG denote the semigroup bialgebra. Let $p \in H^*$. Then the following are equivalent.

(i) The set $\{p \leftarrow x : x \in G\}$ of right translates is finite.

(ii) There exists a finite dimensional bialgebra B, a bialgebra homomorphism $\Psi : H \to B$, and an element $f \in B^*$ so that $p(h) = f(\Psi(h))$ for all $h \in H$.

(Note: The bialgebras of (ii) are defined to be Myhill-Nerode bialgebras.)

Proof. $(i) \Longrightarrow (ii)$. Let $Q = \{p \leftarrow x : x \in G\}$ be the finite set of right translates. For each $u \in G$, we define a right operator $r_u : Q \to Q$ by the rule

$$(p \leftarrow x)r_u = (p \leftarrow x) \leftarrow u = p \leftarrow xu$$

Observe that the set $\{r_u : u \in G\}$ is finite with $|\{r_u : u \in G\}| \le |Q|^{|Q|}$. The set $\{r_u : u \in G\}$ is a semigroup with unity, $1 = r_1$ under composition of operators. Indeed,

$$(p \leftarrow x)(r_u r_v) = (p \leftarrow xu)r_v = p \leftarrow xuv = (p \leftarrow x)r_{uv}$$

Thus $r_u r_v = r_{uv}$, for all $u, v \in G$. Let B denote the semigroup bialgebra on $\{r_u : u \in G\}$. Let $\Psi : H \to B$ be the K-linear map defined by $\Psi(u) = r_u$. Then

$$\Psi(uv) = r_{uv} = r_u r_v = \Psi(u)\Psi(v)$$

and

$$\Delta_B(\Psi(u)) = \Delta_B(r_u)$$

= $r_u \otimes r_u$
= $\Psi(u) \otimes \Psi(v)$
= $(\Psi \otimes \Psi)(u \otimes u)$
= $(\Psi \otimes \Psi)\Delta_H(u)$

and so, Ψ is a homomorphism of bialgebras.

Let $f\in B^*$ be defined by

$$f(r_u) = ((p \leftarrow 1)r_u)(1)$$
$$= (p \leftarrow u)(1)$$
$$= p(u)$$

Then $p(h) = f(\Psi(h))$, for all $h \in H$, as required.

 $(ii) \implies (i)$. Suppose there exists a finite dimensional bialgebra B, a bialgebra homomorphism $\Psi : H \to B$, and an element $f \in B^*$ so that $p(h) = f(\Psi(h))$ for all $h \in H$. Define a right H-module action \cdot on B as

$$b \cdot h = b\Psi(h)$$

for all $b \in B$, $h \in H$. Then for $b \in B$, $x \in G$,

$$\begin{split} \Delta_B(b \cdot x) &= \Delta_B(b\Psi(x)) \\ &= \Delta_B(b)\Delta_B(\Psi(x)) \\ &= (\sum_{(b)} b_{(1)} \otimes b_{(2)})(\Psi \otimes \Psi)\Delta_H(x) \\ &= (\sum_{(b)} b_{(1)} \otimes b_{(2)})(\Psi(x) \otimes \Psi(x)) \\ &= \sum_{(b)} b_{(1)}\Psi(x) \otimes b_{(2)}\Psi(x) \\ &= \sum_{(b)} b_{(1)} \cdot x \otimes b_{(2)} \cdot x \end{split}$$

and

$$\epsilon_B(b \cdot x) = \epsilon_B(b\Psi(x)) = \epsilon_B(b)\epsilon_B(\Psi(x)) = \epsilon_B(b)\epsilon_H(x)$$

Thus B is a right H-module coalgebra.

Now, let Q be the collection of grouplike elements of B. Since Q is a linearly independent subset of B and B is finite dimensional, Q is finite. Since B is a right H-module coalgebra with action ".",

$$\Delta_B(q \cdot x) = q \cdot x \otimes q \cdot x$$

for $q \in Q$, $x \in G$. Thus \cdot restricts to give an action (also denoted by " \cdot ") of G on Q. Now for $x, y \in G$,

$$(p \leftarrow x)(y) = p(xy)$$

= $f(\Psi(xy))$
= $f(\Psi(x)\Psi(y))$
= $f((1_B\Psi(x))\Psi(y))$
= $f((1_B \cdot x) \cdot y)$ (11)

Let

 $S = \{q \in Q : q = 1_B \cdot x \text{ for some } x \in G\}$

In view of Condition (11) there exists a function

$$\varrho: S \to \{p \leftarrow x : x \in G\}$$

defined as

$$\varrho(1_B \cdot x)(y) = f((1_B \cdot x) \cdot y) = (p \leftarrow x)(y)$$

Since ρ is surjective and S is finite, $\{p \leftarrow x : x \in G\}$ is finite.

We illustrate the connection between Proposition 4.1 and the usual Myhill–Nerode Theorem. Let $\hat{\Sigma}_0$ denote the set of words in a finite alphabet Σ_0 . Let $L \subseteq \hat{\Sigma}_0$ be a language. Suppose that the equivalence relation \sim_L (as in the Introduction) has finite index. Then the usual Myhill–Nerode Theorem says that there exists a finite automaton which accepts L. We show how to construct this finite automaton using Proposition 4.1.

Consider $G = \hat{\Sigma}_0$ as a semigroup with unity where the semigroup operation is concatenation and the unity element is the empty word. Let H = KG denote the semigroup bialgebra. Then the characteristic function of L extends to an element $p \in H^*$. Since \sim_L has finite index, the set of right translates $\{p \leftarrow x : x \in G\}$ is finite [3, Proposition 2.3]. Now Proposition 4.1 (i) \Longrightarrow (ii) applies to show that there exists a finite dimensional bialgebra B, a bialgebra homomorphism $\Psi : H \to B$ and an element $f \in B^*$ so that $p(h) = f(\Psi(h))$, for all $h \in H$.

This bialgebra determines a finite automaton $\langle Q, \Sigma, \delta, q_0, F \rangle$, where Q is the finite set of states, Σ is the input alphabet, δ is the transition function, q_0 is the initial state, and F is the set of final states (see [2, Chapter 2] for details on finite automata.)

For the states of the automata, we let Q be the (finite) set of grouplike elements of B. For the input alphabet, we choose $\Sigma = \Sigma_0$. As we have seen, the right H-module structure of B restricts to an action "·" of G on Q, and so we define the transition function $\delta : Q \times \Sigma_0 \to Q$ by the rule $\delta(q, x) = q \cdot x$, for $q \in Q, x \in \Sigma_0$. The initial state is $q_0 = 1_B$, and the set of final states F is the subset of Q of the form $1_B \cdot x, x \in G$ for which

$$p(x) = f(\Psi(x)) = f1_B\Psi(x) = f(1_B \cdot x) = 1$$

By construction, the finite automaton $\langle Q, \Sigma_0, \delta, 1_B, F \rangle$ accepts L.

5. Quasitriangular Structure of Myhill–Nerode Bialgebras

In this section we use Proposition 4.1 to construct a collection of Myhill–Nerode bialgebras. We then compute the quasitriangular structure of one of these bialgebras.

Let $\Sigma_0 = \{a\}$ be the alphabet on a single letter a. Let $\hat{\Sigma}_0 = \{1, a, aa, aaa, ...\}$ denote the collection of all words of finite length formed from Σ_0 . Here 1 denotes the empty word of length 0. For convenience, we shall write

$$a^i = \underbrace{aaa\cdots a}_{i \text{ times}},$$

for $i \geq 0$.

Fix an integer $i \ge 0$ and let $L_i = \{a^i\} \subseteq \hat{\Sigma}_0$. Then the language L_i is accepted by the finite automaton given in Figure 1.

By the usual Myhill–Nerode Theorem, the equivalence relation \sim_{L_i} , defined as $x \sim_{L_i} y$ if and only if $xz \in L_i$ exactly when $yz \in L_i, \forall z$, has finite index. If $p_i : \hat{\Sigma}_0 \to \{0, 1\} \subseteq K$ is the characteristic function of L_i , then \sim_{L_i} is equivalent to the relation \sim_{p_i} defined as: $x \sim_{p_i} y$ if and only if $p_i(xz) = p_i(yz), \forall z \in \hat{\Sigma}_0$. Let $[x]_{p_i}$ denote the equivalence class of x under \sim_{p_i} . The Myhill–Nerode theorem now says that the set $\{[x]_{p_i} : x \in \hat{\Sigma}_0\}$ is finite.

Now we consider $G = \Sigma_0$ as a semigroup with unity 1 with concatenation as the binary operation. Let H = KG be the semigroup bialgebra. The characteristic function p_i of L_i extends to an element of H^* . By [3, Proposition 2.3], the set of right translates $\{p_i \leftarrow x : x \in G\}$ is finite. Thus by Proposition 4.1, there exists a finite dimensional bialgebra B_i , a bialgebra homomorphism $\Psi : H \to B_i$, and an element $f_i \in B_i^*$ so that $p_i(h) = f_i(\Psi(h))$ for all $h \in H$.

In what follows, we give the bialgebra structure of the collection $\{B_i : i \ge 0\}$ and compute the quasitriangular structure of the bialgebra B_0 .

For $i \ge 0$, the finite set of right translates of $p_i \in H^*$ is

$$Q_i = \{p_i \leftarrow 1, p_i \leftarrow a, p_i \leftarrow a^2, \dots, p_i \leftarrow a^i, p_i \leftarrow a^{i+1}\}$$

One finds that the set of right operators on Q_i is $\{r_1, r_a, r_{a^2}, \ldots, r_{a^i}, r_{a^{i+1}}\}$. Under composition, the set of right operators is a semigroup with unity r_1 . We have, for $0 \le m, n \le i+1$,

$$r_{a^m} r_{a^n} = \begin{cases} r_{a^{m+n}} & \text{if } 0 \le m+n \le i+1 \\ r_{a^{i+1}} & \text{if } m+n > i+1 \end{cases}$$

By construction, B_i is the semigroup bialgebra on $\{r_1, r_a, r_{a^2}, \ldots, r_{a^i}, r_{a^{i+1}}\}$.

5.1. Quasitriangular Structure of B_0

In the case i = 0, B_0 is the semigroup bialgebra on $\{r_1, r_a\}$ with algebra structure defined by $r_1r_1 = r_1$, $r_1r_a = r_a$, $r_ar_1 = r_a$, $r_ar_a = r_a$. Let $\{e_0, e_1\}$ be the dual basis defined as $e_0(r_1) = 1$, $e_0(r_a) = 0$, $e_1(r_1) = 0$, $e_1(r_a) = 1$. Then $\{e_0, e_1\}$ is the set of minimal idempotents for B_0^* . Comultiplication on B_0^* is given as

$$\Delta_{B_0^*}(e_0) = e_0 \otimes e_0$$
$$\Delta_{B_0^*}(e_1) = e_0 \otimes e_1 + e_1 \otimes e_0 + e_1 \otimes e_1$$

and the counit map is defined by

$$\epsilon_{B_0^*}(e_0) = 1, \quad \epsilon_{B_0^*}(e_1) = 0$$

Proposition 5.1 Let B_0 be the K-bialgebra as above. Then there is exactly one quasitriangular structure on B_0 , namely, $R = 1_{B_0} \otimes 1_{B_0}$.

Proof. Certainly, $1 \otimes 1 = 1_{B_0} \otimes 1_{B_0}$ is a quasitriangular structure for B_0 . We claim that $1 \otimes 1$ is the only quasitriangular structure. Observe that there is bialgebra isomorphism $\phi : B_0 \to B_0^*$ defined as $\phi(r_1) = e_0 + e_1$, $\phi(r_a) = e_0$. Thus if (B_0, R) is quasitriangular, then (B_0^*, R') , $R' = (\phi \otimes \phi)(R)$, is quasitriangular by Proposition 3.1. So, we first compute all of the quasitriangular structures of B_0^* . To this end, suppose that (B_0^*, R') is quasitriangular for some element $R' \in B_0^* \otimes B_0^*$. Since

$$B_0^* \otimes B_0^* = K(e_0 \otimes e_0) \oplus K(e_0 \otimes e_1) \oplus K(e_1 \otimes e_0) \oplus K(e_1 \otimes e_1)$$
$$R' = w(e_0 \otimes e_0) + x(e_0 \otimes e_1) + y(e_1 \otimes e_0) + z(e_1 \otimes e_1)$$

for $w, x, y, z \in K$. By Proposition 3.3(i),

$$1_{B_0^*} = e_0 + e_1$$

= $s_1(\epsilon \otimes I)(w(e_0 \otimes e_0) + x(e_0 \otimes e_1) + y(e_1 \otimes e_0) + z(e_1 \otimes e_1))$
= $we_0 + xe_1$

and so, w = x = 1. From Proposition 3.3(ii), one also has y = 1. Thus

$$R' = e_0 \otimes e_0 + e_0 \otimes e_1 + e_1 \otimes e_0 + z(e_1 \otimes e_1)$$

for $z \in K$. Now,

$$(\Delta \otimes I)(R') = (\Delta \otimes I)(e_0 \otimes e_0 + e_0 \otimes e_1 + e_1 \otimes e_0 + z(e_1 \otimes e_1))$$

$$= (e_0 \otimes e_0) \otimes e_0 + (e_0 \otimes e_0) \otimes e_1 + (e_0 \otimes e_1 + e_1 \otimes e_0 + e_1 \otimes e_1) \otimes e_0$$

$$+ z((e_0 \otimes e_1 + e_1 \otimes e_0 + e_1 \otimes e_1) \otimes e_1)$$

$$= e_0 \otimes e_0 \otimes e_0 + e_0 \otimes e_0 \otimes e_1 + e_0 \otimes e_1 \otimes e_0 + e_1 \otimes e_0 \otimes e_0 + e_1 \otimes e_0$$

$$+ z(e_0 \otimes e_1 \otimes e_1) + z(e_1 \otimes e_0 \otimes e_1) + z(e_1 \otimes e_1 \otimes e_1)$$
(12)

Moreover,

$$(R')^{13}(R')^{23} = (e_0 \otimes (e_0 + e_1) \otimes e_0 + e_0 \otimes (e_0 + e_1) \otimes e_1 + e_1 \otimes (e_0 + e_1) \otimes e_0 \otimes e_1 + z(e_1 \otimes (e_0 + e_1) \otimes e_1)) \cdot ((e_0 + e_1) \otimes e_0 \otimes e_0 + (e_0 + e_1) \otimes e_0 \otimes e_1 + (e_0 + e_1) \otimes e_1 \otimes e_0 + z((e_0 + e_1) \otimes e_1 \otimes e_1)) = (e_0 \otimes e_0 \otimes e_0 + e_0 \otimes e_1 \otimes e_0 + e_0 \otimes e_0 \otimes e_1 + e_0 \otimes e_1 \otimes e_1 + e_1 \otimes e_0 \otimes e_0 + e_1 \otimes e_1 \otimes e_0 + z(e_1 \otimes e_0 \otimes e_1) + z(e_1 \otimes \otimes e_1 \otimes e_1)) \cdot (e_0 \otimes e_0 \otimes e_0 + e_1 \otimes e_0 \otimes e_0 + e_0 \otimes e_0 \otimes e_1 + e_1 \otimes e_1 \otimes e_0 + e_0 \otimes e_1 \otimes e_0 + e_1 \otimes e_1 \otimes e_0 + z(e_0 \otimes e_1 \otimes e_1) + z(e_1 \otimes \otimes e_1 \otimes e_1)) = e_0 \otimes e_0 \otimes e_0 + e_0 \otimes e_1 \otimes e_0 + e_0 \otimes e_0 \otimes e_1 + z(e_0 \otimes e_1 \otimes e_1) + e_1 \otimes e_0 \otimes e_0 + e_1 \otimes e_1 \otimes e_0 + z(e_1 \otimes e_0 \otimes e_1) + z^2(e_1 \otimes e_1 \otimes e_1)$$
(13)

Equations 12 and 13 yield the relation $z^2 = z$. Thus either z = 0 or z = 1. If z = 0, then R' is not a unit in $B_0^* \otimes B_0^*$. Thus

$$R' = e_0 \otimes e_0 + e_0 \otimes e_1 + e_1 \otimes e_0 + e_1 \otimes e_1 = 1 \otimes 1$$

is the only quasitriangular structure for B_0^* .

Consequently, if (B_0, R) is quasitriangular, then $(\phi \otimes \phi)(R) = 1_{B_0^*} \otimes 1_{B_0^*}$. It follows that $R = 1_{B_0} \otimes 1_{B_0}$.

 \diamond

5.2. Questions for Future Research

Though the Myhill–Nerode bialgebra B_0 has only the trivial quasitriangular structure, it remains to compute the quasitriangular structure of B_i for $i \ge 1$. Moreover, the linear dual B_i^* is a commutative, cocommutative K-bialgebra and it would be of interest to find its quasitriangular structure. Unlike the i = 0 case, we may have $B_i \not\cong B_i^*$ (for instance, $B_1 \not\cong B_1^*$) and so this is indeed a separate problem.

Suppose that L is a language of words built from the alphabet $\Sigma_0 = \{a, b\}$. If L is accepted by a finite automaton, then by Proposition 4.1, L gives rise to a Myhill–Nerode bialgebra B (see for example, [3, §6].) By construction, B is a cocommutative K-bialgebra and hence B has at least the trivial quasitriangular structure. Are there any other structures? Note that B^* is a commutative K-algebra. For which R (if any) is (B^*, R) quasitriangular?

References

- 1. Eilenberg, S. Automata, Languages, and Machines, Vol. A; Academic Press: New York, NY, USA, 1974.
- 2. Hopcroft, J.E.; Ullman, J.D. *Introduction to Automata Theory, Languages, and Computation*; Addison-Wesley: Upper Saddle River, NJ, USA, 1979.
- 3. Nichols, W.D.; Underwood, R.G. Algebraic Myhill-Nerode theorems. *Theor. Comp. Sci.* 2011, 412, 448–457.
- 4. Sweedler, M. Hopf Algebras; W. A. Benjamin: New York, NY, USA, 1969.

- 5. Abe, E. Hopf Algebras. In *Cambridge Tracts in Mathematics*, 74; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1980.
- 6. Childs, L.N. *Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory (Surveys and Monographs) 80*; American Mathematical Society: Providence, RI, USA, 2000.
- 7. Montgomery, S. *Hopf Algebras and Their Actions on Rings. CBMS* 82; American Mathematical Society: Providence, RI, USA, 1993.
- 8. Underwood, R.G. An Introduction to Hopf Algebras; Springer: New York, NY, USA, 2011.
- 9. Nichita, F. Introduction to the yang-baxter equation with open problems. Axioms 2012, 1, 33–37.
- 10. Drinfeld, V.G. On almost cocommutative Hopf algebras. Leningr. Math. J. 1990, 1, 321–342.

© 2012 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).