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Abstract: In computer science the Myhill–Nerode Theorem states that a set L of words in
a finite alphabet is accepted by a finite automaton if and only if the equivalence relation ∼L,
defined as x ∼L y if and only if xz ∈ L exactly when yz ∈ L,∀z, has finite index. The
Myhill–Nerode Theorem can be generalized to an algebraic setting giving rise to a collection
of bialgebras which we call Myhill–Nerode bialgebras. In this paper we investigate the
quasitriangular structure of Myhill–Nerode bialgebras.
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1. Introduction

Let Σ0 be a finite alphabet and let Σ̂0 denote the set of words formed from the letters in Σ0. Let
L ⊆ Σ̂0 be a language, and let ∼L be the equivalence relation defined as x ∼L y if and only if xz ∈ L
exactly when yz ∈ L,∀z ∈ Σ̂0. The Myhill–Nerode Theorem of computer science states that L is
accepted by a finite automaton if and only if ∼L has finite index (cf. [1, 1, Chapter III, §9, Proposition
9.2], [2, §3.4, Theorem 3.9]). In [3, Theorem 5.4] the authors generalize the Myhill–Nerode theorem
to an algebraic setting in which a finiteness condition involving the action of a semigroup on a certain
function plays the role of the finiteness of the index of ∼L, while a bialgebra plays the role of the finite
automaton which accepts the language. We call these bialgebras Myhill–Nerode bialgebras.

The purpose of this paper is to investigate the quasitriangular structure of Myhill–Nerode bialgebras.
By construction, a Myhill–Nerode bialgebra B is cocommutative and finite dimensional over its base

field. Thus B admits (at least) the trivial quasitriangular structure (B, 1 ⊗ 1). We ask: does B (or its
linear dual B∗) have any non-trivial quasitriangular structures?
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Towards a solution to this problem, we construct a class of commutative Myhill–Nerode bialgebras
and give a complete account of the quasitriangular structure of one of them. We begin with some
background information regarding algebras, coalgebras, and bialgebras.

2. Algebras, Coalgebras and Bialgebras

Let K be an arbitrary field of characteristic 0 and let A be a vector space over K with scalar product
ra for all r ∈ K, a ∈ A. Scalar product defines two maps s1 : K ⊗ A → A with r ⊗ a 7→ ra and
s2 : A ⊗ K → A with a ⊗ r 7→ ra, for a ∈ A, r ∈ K. Let IA : A → A denote the identity map. A
K-algebra is a triple (A,mA, ηA) where mA : A⊗ A→ A is a K-linear map which satisfies

mA(IA ⊗mA)(a⊗ b⊗ c) = mA(mA ⊗ IA)(a⊗ b⊗ c) (1)

and ηA : K → A is a K-linear map for which

mA(IA ⊗ ηA)(a⊗ r) = ra = mA(ηA ⊗ IA)(r ⊗ a) (2)

for all r ∈ K, a, b, c ∈ A. The map mA is the multiplication map of A and ηA is the unit map of A.
Condition (1) is the associative property and Condition (2) is the unit property.

We write mA(a ⊗ b) as ab. The element 1A = ηA(1K) is the unique element of A for which
a1A = a = 1Aa for all a ∈ A. Let A,B be algebras. An algebra homomorphism from A to
B is a K-linear map φ : A → B such that φ(mA(a1 ⊗ a2)) = mB(φ(a1) ⊗ φ(a2)) for all a1,

a2 ∈ A, and φ(1A) = 1B. In particular, for A to be a subalgebra of B we require 1A = 1B.
For any two vector spaces V , W let τ : V ⊗ W → W ⊗ V denote the twist map defined as

τ(a⊗ b) = b⊗ a, for a ∈ V , b ∈ W . For K-algebras A,B, we have that A ⊗ B is a K-algebra
with multiplication

mA⊗B : (A⊗B)⊗ (A⊗B)→ A⊗B

defined by

mA⊗B((a⊗ b)⊗ (c⊗ d)) = (mA ⊗mB)(IA ⊗ τ ⊗ IB)(a⊗ (b⊗ c)⊗ d)

= (mA ⊗mB)((a⊗ c)⊗ (b⊗ d)) = ac⊗ bd

for a, c ∈ A, b, d ∈ B. The unit map ηA⊗B : K → A⊗B given as

ηA⊗B(r) = ηA(r)⊗ 1B

for r ∈ K.
Let C be a K-vector space. A K-coalgebra is a triple (C,∆C , εC) in which ∆C : C → C ⊗ C is

K-linear and satisfies
(IC ⊗∆C)∆C(c) = (∆C ⊗ IC)∆C(c) (3)

and εC : C → K is K-linear with

s1(εC ⊗ IC)∆C(c) = c = s2(IC ⊗ εC)∆C(c) (4)
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for all c ∈ C. The maps ∆C and εC are the comultiplication and counit maps, respectively, of the
coalgebra C. Condition (3) is the coassociative property and Condition (4) is the counit property.

We use the notation of M. Sweedler [4, §1.2] to write

∆C(c) =
∑
(c)

c(1) ⊗ c(2)

Note that Condition (4) implies that

∑
(c)

εC(c(1))c(2) = c =
∑
(c)

εC(c(2))c(1) (5)

Let C be a K-coalgebra. A nonzero element c of C for which ∆C(c) = c ⊗ c is a grouplike element
of C. If c is grouplike, then

c = s1(εC ⊗ IC)∆C(c)

= s1(εC ⊗ IC)(c⊗ c) = εC(c)c

and so, εC(c) = 1. The grouplike elements of C are linearly independent [4, Proposition 3.2.1].
LetC,D be coalgebras. AK-linear map φ : C → D is a coalgebra homomorphism if (φ⊗φ)∆C(c) =

∆D(φ(c)) and εC(c) = εD(φ(c)) for all c ∈ C. The tensor product C ⊗D of two coalgebras is again a
coalgebra with comultiplication map

∆C⊗D : C ⊗D → (C ⊗D)⊗ (C ⊗D)

defined by

∆C⊗D(c⊗ d) = (IC ⊗ τ ⊗ ID)(∆C ⊗∆D)(c⊗ d)

= (IC ⊗ τ ⊗ ID)(∆C(c)⊗∆D(d))

= (IC ⊗ τ ⊗ ID)(
∑

(c),(d)

c(1) ⊗ c(2) ⊗ d(1) ⊗ d(2))

=
∑

(c),(d)

c(1) ⊗ d(1) ⊗ c(2) ⊗ d(2)

for c ∈ C, d ∈ D. The counit map εC⊗D : C ⊗D → K is defined as

εC⊗D(c⊗ d) = εC(c)εD(d)

for c ∈ C, d ∈ D.
A K-bialgebra is a K-vector space B together with maps mB, ηB, ∆B, εB for which (B,mB, ηB) is

a K-algebra and (B,∆B, εB) is a K-coalgebra and for which ∆B and εB are algebra homomorphisms.
Let B,B′ be bialgebras. A K-linear map φ : B → B′ is a bialgebra homomorphism if φ is both an
algebra and coalgebra homomorphism.

A K-Hopf algebra is a bialgebra H together with an additional K-linear map σH : H → H

that satisfies

mH(IH ⊗ σH)∆H(h) = εH(h)1H = mH(σH ⊗ IH)∆H(h) (6)
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for all h ∈ H . The map σH is the coinverse (or antipode) map and property Condition (6) is the coinverse
(or antipode) property. Though we will not consider Hopf algebras here, more details on the subject can
be found in [5–8].

An important example of a K-bialgebra is given as follows. Let G be a semigroup with unity, 1. Let
KG denote the semigroup algebra. Then KG is a bialgebra with comultiplication map

∆KG : KG→ KG⊗KG

defined by x 7→ x ⊗ x, for all x ∈ G, and counit map εKG : KG → K given by x 7→ 1, for all x ∈ G.
The bialgebra KG is the semigroup bialgebra on G.

Let B be a bialgebra, and let A be an algebra which is a left B-module with action denoted by “·”.
Suppose that

b · (aa′) =
∑
(b)

(b(1) · a)(b(2) · a′)

and
b · 1A = εB(b)1A

for all a, a′ ∈ A, b ∈ B. Then A is a left B-module algebra. A K-linear map φ : A → A′ is a left
B-module algebra homomorphism if φ is both an algebra and a left B-module homomorphism.

Let C be a coalgebra and a right B-module with action denoted by “·”. Suppose that for all c ∈ C,
b ∈ B,

∆C(c · b) =
∑
(c),(b)

c(1) · b(1) ⊗ c(2) · b(2)

and
εC(c · b) = εC(c)εB(b)

Then C is a right B-module coalgebra. A K-linear map φ : C → C ′ is a right B-module coalgebra
homomorphism if φ is both a coalgebra and a right B-module homomorphism.

Let C be a coalgebra and let C∗ = HomK(C,K) denote the linear dual of C. Then the coalgebra
structure of C induces an algebra structure on C∗.

Proposition 2.1 If C is a coalgebra, then C∗ is an algebra.

Proof. Recall that C is a triple (C,∆C , εC) where ∆C : C → C ⊗ C is K-linear and satisfies the
coassociativity property, and εC : C → K is K-linear and satisfies the counit property. The dual map of
∆C is a K-linear map

∆∗C : (C ⊗ C)∗ → C∗

Since C∗ ⊗ C∗ ⊆ (C ⊗ C)∗, we define the multiplication map of C∗, denoted as mC∗ , to be the
restriction of ∆∗C to C∗ ⊗ C∗. For f, g ∈ C∗, c ∈ C,

(fg)(c) = mC∗(f ⊗ g)(c) = ∆∗C(f ⊗ g)(c) = (f ⊗ g)(∆C(c)) =
∑
(c)

f(c(1))g(c(2))

The coassociatively property of ∆C yields the associative property of mC∗ . Indeed, for f, g, h ∈ C∗,
c ∈ C,



Axioms 2012, 1 159

mC∗(IC∗ ⊗mC∗)(f ⊗ g ⊗ h)(c) = ∆∗C(IC∗ ⊗∆∗C)(f ⊗ g ⊗ h)(c)

= ∆∗C(f ⊗∆∗C(g ⊗ h))(c)

= (f ⊗∆∗C(g ⊗ h))∆C(c)

=
∑
(c)

f(c(1))∆
∗
C(g ⊗ h)(c(2))

=
∑
(c)

f(c(1))(g ⊗ h)∆C(c(2))

= (f ⊗ g ⊗ h)(
∑
(c)

c(1) ⊗∆C(c(2)))

= (f ⊗ g ⊗ h)(
∑
(c)

∆C(c(1))⊗ c(2)) by Condition (3)

=
∑
(c)

(f ⊗ g)∆C(c(1))⊗ h(c(2))

=
∑
(c)

∆∗C(f ⊗ g)(c(1))⊗ h(c(2))

= (∆∗C(f ⊗ g)⊗ h)∆C(c)

= ∆∗C(∆∗C(f ⊗ g)⊗ h)(c)

= ∆∗C(∆∗C ⊗ IC∗)(f ⊗ g ⊗ h)(c)

= mC∗(mC∗ ⊗ IC∗)(f ⊗ g ⊗ h)(c)

In addition, the counit map of C dualizes to yield

ε∗C : K := K∗ → C∗

defined as ε∗C(k)(c) = k(ε(c)) = kε(c). Thus we define the unit map ηC∗ to be ε∗C . One can show that
the counit property of εC implies the unit property for ηC∗ . To this end, for f ∈ C∗, r ∈ K, c ∈ C,

mC∗(IC∗ ⊗ ηC∗)(f ⊗ r)(c) = ∆∗C(IC∗ ⊗ ε∗C)(f ⊗ r)(c)

= ∆∗C(f ⊗ ε∗C(r))(c)

= (f ⊗ ε∗C(r))(∆C(c))

=
∑
(c)

f(c(1))ε
∗
C(r)(c(2))

=
∑
(c)

f(c(1))r(εC(c(2)))

= r
∑
(c)

f(c(1))εC(c(2))

= r
∑
(c)

εC(c(2))f(c(1))

= r
∑
(c)

f(εC(c(2))c(1))

= rf(
∑
(c)

εC(c(2))c(1))

= rf(c) by Condition (5)
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In a similar manner, one obtains

mC∗(ηC∗ ⊗ IC∗)(r ⊗ f) = rf

Thus (C∗,mC∗ , ηC∗) is an algebra. Note that ηC∗(1K)(c) = εC(c),∀c, and so, εC is the unique element
of C∗ for which εCf = f = fεC for all f ∈ C∗. �

Let (A,mA, ηA) be a K-algebra. Then one may wonder if A∗ is a K-coalgebra. The multiplication
map mA : A ⊗ A → A dualizes to yield m∗A : A∗ → (A ⊗ A)∗. Unfortunately, if A is infinite
dimensional over K, then A∗ ⊗ A∗ is a proper subset of (A ⊗ A)∗, and hence m∗A may not induce the
required comultiplication map A∗ → A∗ ⊗ A∗.

There is still however aK-coalgebra arising via duality from the algebraA. An ideal I ofA is cofinite
if dim(A/I) <∞. The finite dual A◦ of A is defined as

A◦ = {f ∈ A∗ : f(I) = 0 for some cofinite ideal I of A}

Note that A◦ is the largest subspace W of A∗ for which m∗A(W ) ⊆ W ⊗W .

Proposition 2.2 If A is an algebra, then A◦ is a coalgebra.

Proof. The proof is similar to the method used in Proposition 2.1. We restrict the map m∗A to A◦ to
yield the K-linear map m∗A : A◦ → (A ⊗ A)∗. Now by [4, Proposition 6.0.3], m∗A(A◦) ⊆ A◦ ⊗ A◦.
Let ∆A◦ denote the restriction of m∗A to A◦. We show that ∆A◦ satisfies the coassociative condition. For
f ∈ A◦, a, b, c ∈ A, we have

(I ⊗∆A◦)∆A◦(f)(a⊗ b⊗ c) = (I ⊗m∗A)m∗A(f)(a⊗ b⊗ c)
= m∗A(f)((I ⊗mA)(a⊗ b⊗ c))
= m∗A(f)(a⊗ bc)
= f(mA(a⊗ bc))
= f(a(bc))

= f((ab)c)

= f(mA(ab⊗ c))
= m∗A(f)(ab⊗ c)
= m∗A(f)((mA ⊗ I)(a⊗ b⊗ c))
= (m∗A ⊗ I)m∗A(f)(a⊗ b⊗ c)
= (∆A◦ ⊗ I)∆A◦(f)(a⊗ b⊗ c)

For the counit map of A◦, we consider the dual map η∗A : A∗ → K∗ := K. Now η∗A restricts to a map
η∗A : A◦ → K. We let εA◦ denote the restriction of η∗A to A◦. For f ∈ A◦, r ∈ K,

εA◦(f)(r) = f(ηA(r)) = f(r1A) = rf(1A) = f(1A)(r)

and so, εA◦(f) = f(1A). We show that εA◦ satisfies the counit property. First let s1 : K ⊗ A◦ → A◦ be
defined by the scalar multiplication of A◦. For f ∈ A◦, r ∈ K, a ∈ A,
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s1((εA◦ ⊗ I)∆A◦(f))(a) = s1((η
∗
A ⊗ I)m∗A(f))(a)

= (η∗A ⊗ I)m∗A(f)(s∗1(a))

= (η∗A ⊗ I)m∗A(f)(1⊗ a)

= m∗A(f)((ηA ⊗ I)(1⊗ a))

= f(mA(ηA ⊗ I)(1⊗ a))

= f(a)

In a similar manner, one obtains

s2((I ⊗ εA◦)∆A◦(f))(a) = f(a)

where s2 : A◦ ⊗K → A◦ is given by scalar multiplication. Thus A◦ is a coalgebra.
�

Proposition 2.3 If B is a bialgebra, then B◦ is a bialgebra.

Proof. As a coalgebra, B is a triple (B,∆B, εB). By Proposition 2.1, B∗ is an algebra with maps
mB∗ = ∆∗B and ηB∗ = ε∗B. Let mB◦ denote the restriction of mB∗ to B◦ ⊗ B◦, and let ηB◦ denote the
restriction of ηB∗ to B◦. Then the triple (B◦,mB◦ , ηB◦) is a K-algebra.

As an algebra, B is a triple (B,mB, ηB). By Proposition 2.2, B◦ is a coalgebra with maps ∆B◦ and
εB◦ . It remains to show that ∆B◦ and εB◦ are algebra homomorphisms. First observe that for f, g ∈ B◦,
a, b ∈ B one has

(fg)(a) = mB◦(f ⊗ g)(a) = ∆∗B(f ⊗ g)(a) = (f ⊗ g)∆B(a)

and
∆B◦(f)(a⊗ b) = m∗B(f)(a⊗ b) = f(mB(a⊗ b)) = f(ab)

We have

∆B◦(fg)(a⊗ b) = (fg)(ab)

= (f ⊗ g)(∆B(ab))

= (f ⊗ g)(∆B(a)∆B(b))

= (f ⊗ g)(mB⊗B(∆B(a)⊗∆B(b))

= m∗B⊗B(f ⊗ g)(∆B(a)⊗∆B(b))

= (I ⊗ τ ⊗ I)(∆B◦ ⊗∆B◦)(f ⊗ g)(∆B(a)⊗∆B(b))

= (∆B◦(f)⊗∆B◦(g))(I ⊗ τ ⊗ I)(∆B ⊗∆B)(a⊗ b)
= (∆B◦(f)⊗∆B◦(g))(∆B⊗B(a⊗ b))
= ∆∗B⊗B(∆B◦(f)⊗∆B◦(g))(a⊗ b)
= mB◦⊗B◦(∆B◦(f)⊗∆B◦(g))(a⊗ b)
= (∆B◦(f)∆B◦(g))(a⊗ b)

and so ∆B◦ is an algebra map. We next show that εB◦ is an algebra map. For f, g ∈ B◦,

εB◦(f) = εB◦(f)(1) = f(ηB(1)) = f(1B)
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Thus

εB◦(fg) = (fg)(1B)

= f(1B)g(1B)

= εB◦(f)εB◦(g)

and so, εB◦ is an algebra map.
�

Proposition 2.4 Suppose thatB is a bialgebra that is finite dimensional overK. ThenB∗ is a bialgebra.

Proof. If dim(B) <∞, then B◦ = B∗. The result then follows from Proposition 2.3.
�

Let G = {x1, x2, . . . , xn} be a finite semigroup with unity element 1KG = x1, and let KG denote the
semigroup bialgebra. By Proposition 2.4KG∗ is a bialgebra of dimension n overK. Let {e1, e2, . . . , en}
be the dual basis for KG∗ defined as ei(xj) = δi,j .

Proposition 2.5 The comultiplication map ∆KG∗ : KG∗ → KG∗ ⊗KG∗ is given as

∆KG∗(ei) =
∑

xi=xjxk

ej ⊗ ek

and the counit map εKG∗ : KG∗ → K is defined as εKG∗(ei) = ei(x1) = δi,1.

Proof, See [7, (1.3.7)]. �
Let B be a K-bialgebra. Then B is cocommutative if

τ(∆B(b)) = ∆B(b)

for all b ∈ B.

Proposition 2.6 If B is cocommutative, then B◦ is a commutative algebra. If B is a commutative
algebra, then B◦ is cocommutative.

Proof. See [7, Lemma 1.2.2, Proposition 1.2.4].
�

3. Quasitriangular Bialgebras

Let B be a bialgebra and let B ⊗ B be the tensor product algebra. Let U(B ⊗ B) denote the group
of units in B ⊗ B and let R ∈ U(B ⊗ B). The pair (B,R) is almost cocommutative if the element
R satisfies

τ(∆B(b)) = R∆B(b)R−1 (7)

for all b ∈ B.
If the bialgebraB is cocommutative, then the pair (B, 1⊗1) is almost cocommutative sinceR = 1⊗1

satisfies Condition (7). However, if B is commutative and non-cocommutative, then (B,R) cannot be
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almost cocommutative for any R ∈ U(B ⊗ B) since Condition (7) in this case reduces to the condition
for cocommutativity.

Write R =
∑n

i=1 ai ⊗ bi ∈ U(B ⊗B). Let

R12 =
n∑

i=1

ai ⊗ bi ⊗ 1 ∈ B ⊗B ⊗B

R13 =
n∑

i=1

ai ⊗ 1⊗ bi ∈ B ⊗B ⊗B

R23 =
n∑

i=1

1⊗ ai ⊗ bi ∈ B ⊗B ⊗B

The pair (B,R) is quasitriangular if (B,R) is almost cocommutative and the following conditions hold

(∆B ⊗ I)R = R13R23 (8)

(I ⊗∆B)R = R13R12 (9)

Clearly, if B is cocommutative then (B, 1⊗ 1) is quasitriangular.
Let B be a bialgebra. A quasitriangular structure is an element R ∈ U(B ⊗ B) so that (B,R)

is quasitriangular. Let (B,R) and (B′, R′) be quasitriangular bialgebras. Then (B,R), (B′, R′) are
isomorphic as quasitriangular bialgebras if there exists a bialgebra isomorphism φ : B → B′ for which
R′ = (φ⊗ φ)(R). Two quasitriangular structures R,R′ on a bialgebra B are equivalent quasitriangular
structures if (B,R) ∼= (B,R′) as quasitriangular bialgebras.

The following proposition shows that every bialgebra isomorphism φ : B → B′ with B

quasitriangular extends to an isomorphism of quasitriangular bialgebras.

Proposition 3.1 Suppose (B,R) is quasitriangular and suppose that φ : B → B′ is an isomorphism of
K-bialgebras. Let R′ = (φ⊗ φ)(R). Then (B′, R′) is quasitriangular.

Proof. Note that (φ ⊗ φ)(R−1) = ((φ ⊗ φ)(R))−1. Let b′ ∈ B′. Then there exists b ∈ B for which
φ(b) = b′. Now

τ∆B′(b
′) = τ∆B′(φ(b))

= τ(φ⊗ φ)∆B(b)

= (φ⊗ φ)τ∆B(b)

= (φ⊗ φ)(R∆B(b)R−1)

= (φ⊗ φ)(R)(φ⊗ φ)∆B(b)(φ⊗ φ)(R−1)

= (φ⊗ φ)(R)∆B′(φ(b))((φ⊗ φ)(R))−1

= (φ⊗ φ)(R)∆B′(b
′)((φ⊗ φ)(R))−1

= R′∆B′(b
′)(R′)−1

and so, (B,R′) is almost cocommutative. Moreover,
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(∆B′ ⊗ I)(R′) = (∆B′ ⊗ I)(φ⊗ φ)(R)

= (∆B′ ⊗ I)(
n∑

i=1

φ(ai)⊗ φ(bi))

=
n∑

i=1

∆B′φ(ai)⊗ φ(bi))

=
n∑

i=1

(φ⊗ φ)∆B(ai)⊗ φ(bi))

= (φ⊗ φ⊗ φ)(
n∑

i=1

∆B(ai)⊗ bi)

= (φ⊗ φ⊗ φ)(∆B ⊗ I)(R)

= (φ⊗ φ⊗ φ)(R13R23)

= (φ⊗ φ⊗ φ)((
n∑

i=1

ai ⊗ 1⊗ bi)(
n∑

i=1

1⊗ ai ⊗ bi))

= (
n∑

i=1

φ(ai)⊗ 1⊗ φ(bi))(
n∑

i=1

1⊗ φ(ai)⊗ φ(bi))

= ((φ⊗ φ)(R))13((φ⊗ φ)(R))23

= (R′)13(R′)23

In a similar manner one shows that

(I ⊗∆B′)(R
′) = (R′)13(R′)12

Thus (B′, R′) is quasitriangular. �
Quasitriangular bialgebras are important since they give rise to solutions of the equation

R12R13R23 = R23R13R12 (10)

which is known as the quantum Yang–Baxter equation (QYBE). The QYBE was first introduced in
statistical mechanics, see [9]. An element R ∈ B ⊗B which satisfies (10) is a solution to the QYBE.

Certainly, the QYBE admits the trivial solution R = 1 ⊗ 1, and of course, if B is commutative,
then any R ∈ B ⊗ B is a solution to the QYBE. For B non-commutative, it is of great interest to find
non-trivial solutions R ∈ B ⊗B to the QYBE. We have the following result due to V. G. Drinfeld [10].

Proposition 3.2 (Drinfeld) Suppose (B,R) is quasitriangular. Then R is a solution to the QYBE.

Proof. One has
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R12R13R23 = R12(∆⊗ I)(R) by (8)

= (R⊗ 1)(
n∑

i=1

∆(ai)⊗ bi)

=
n∑

i=1

R∆(ai)⊗ bi

=
n∑

i=1

τ∆(ai)R⊗ bi by (7)

= (
n∑

i=1

τ∆(ai)⊗ bi)(R⊗ 1)

= (τ∆⊗ I)(R)R12

= (τ ⊗ I)(∆⊗ I)(R)R12

= (τ ⊗ I)(R13R23)R12 by (8)

= R23R13R12

�
The following proposition provides necessary conditions on R ∈ U(B⊗B) in order for (B,R) to be

quasitriangular.

Proposition 3.3 Suppose (B,R) is quasitriangular. Then

(i) s1(ε⊗ I)(R) = 1,

(ii) s2(I ⊗ ε)(R) = 1.

Proof. For (i) one has

(s1 ⊗ I)(ε⊗ I ⊗ I)(∆⊗ I)(R) = (s1 ⊗ I)(ε⊗ I ⊗ I)(
n∑

i=1

∆(ai)⊗ bi)

= (s1 ⊗ I)(
n∑

i=1

(ε⊗ I)∆(ai)⊗ bi)

=
n∑

i=1

s1(ε⊗ I)∆(ai)⊗ bi

=
∑
i=1

ai ⊗ bi

= R

In view of Condition (8)

R = (s1 ⊗ I)(ε⊗ I ⊗ I)(R13R23)

= (s1 ⊗ I)(ε⊗ I ⊗ I)(R13)(s1 ⊗ I)(ε⊗ I ⊗ I)(R23)

= (s1 ⊗ I)(ε⊗ I ⊗ I)(
n∑

i=1

ai ⊗ 1⊗ bi)(s1 ⊗ I)(ε⊗ I ⊗ I)(
n∑

i=1

1⊗ ai ⊗ bi)

= (
n∑

i=1

ε(ai)1⊗ bi)(
n∑

i=1

ai ⊗ bi)

= (
n∑

i=1

1⊗ ε(ai)bi)R
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Thus

1⊗
∑
i=1

ε(ai)bi = 1⊗ 1

and consequently,

1 = s1(
n∑

i=1

ε(ai)⊗ bi) = s1(ε⊗ I)(R)

A similar argument is used to prove (ii).
�

4. Myhill–Nerode Bialgebras

In this section we review the main result of [3] in which the authors give a bialgebra version of the
Myhill–Nerode Therorem. Let G be a semigroup with unity, 1 and let H = KG be the semigroup
bialgebra. There is a right H-module structure on H∗ defined as

(p ↼ x)(y) = p(xy)

for all x, y ∈ H , p ∈ H∗. For x ∈ H , p ∈ H∗, the element p ↼ x is the right translate of p by x.

Proposition 4.1 ([3, Proposition 5.4].) LetG be a semigroup with 1, letH = KG denote the semigroup
bialgebra. Let p ∈ H∗. Then the following are equivalent.

(i) The set {p ↼ x : x ∈ G} of right translates is finite.

(ii) There exists a finite dimensional bialgebra B, a bialgebra homomorphism Ψ : H → B, and an
element f ∈ B∗ so that p(h) = f(Ψ(h)) for all h ∈ H .

(Note: The bialgebras of (ii) are defined to be Myhill–Nerode bialgebras.)
Proof. (i) =⇒ (ii). Let Q = {p ↼ x : x ∈ G} be the finite set of right translates. For each u ∈ G,

we define a right operator ru : Q→ Q by the rule

(p ↼ x)ru = (p ↼ x) ↼ u = p ↼ xu

Observe that the set {ru : u ∈ G} is finite with |{ru : u ∈ G}| ≤ |Q||Q|. The set {ru : u ∈ G} is a
semigroup with unity, 1 = r1 under composition of operators. Indeed,

(p ↼ x)(rurv) = (p ↼ xu)rv = p ↼ xuv = (p ↼ x)ruv

Thus rurv = ruv, for all u, v ∈ G. Let B denote the semigroup bialgebra on {ru : u ∈ G}. Let
Ψ : H → B be the K-linear map defined by Ψ(u) = ru. Then

Ψ(uv) = ruv = rurv = Ψ(u)Ψ(v)

and
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∆B(Ψ(u)) = ∆B(ru)

= ru ⊗ ru

= Ψ(u)⊗Ψ(v)

= (Ψ⊗Ψ)(u⊗ u)

= (Ψ⊗Ψ)∆H(u)

and so, Ψ is a homomorphism of bialgebras.
Let f ∈ B∗ be defined by

f(ru) = ((p ↼ 1)ru)(1)

= (p ↼ u)(1)

= p(u)

Then p(h) = f(Ψ(h)), for all h ∈ H , as required.
(ii) =⇒ (i). Suppose there exists a finite dimensional bialgebra B, a bialgebra homomorphism

Ψ : H → B, and an element f ∈ B∗ so that p(h) = f(Ψ(h)) for all h ∈ H . Define a right H-module
action · on B as

b · h = bΨ(h)

for all b ∈ B, h ∈ H . Then for b ∈ B, x ∈ G,

∆B(b · x) = ∆B(bΨ(x))

= ∆B(b)∆B(Ψ(x))

= (
∑
(b)

b(1) ⊗ b(2))(Ψ⊗Ψ)∆H(x)

= (
∑
(b)

b(1) ⊗ b(2))(Ψ(x)⊗Ψ(x))

=
∑
(b)

b(1)Ψ(x)⊗ b(2)Ψ(x)

=
∑
(b)

b(1) · x⊗ b(2) · x

and

εB(b · x) = εB(bΨ(x)) = εB(b)εB(Ψ(x)) = εB(b)εH(x)

Thus B is a right H-module coalgebra.
Now, let Q be the collection of grouplike elements of B. Since Q is a linearly independent subset of

B and B is finite dimensional, Q is finite. Since B is a right H-module coalgebra with action “·”,

∆B(q · x) = q · x⊗ q · x

for q ∈ Q, x ∈ G. Thus · restricts to give an action (also denoted by “·”) of G on Q. Now for x, y ∈ G,
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(p ↼ x)(y) = p(xy)

= f(Ψ(xy))

= f(Ψ(x)Ψ(y))

= f((1BΨ(x))Ψ(y))

= f((1B · x) · y) (11)

Let
S = {q ∈ Q : q = 1B · x for some x ∈ G}

In view of Condition (11) there exists a function

% : S → {p ↼ x : x ∈ G}

defined as
%(1B · x)(y) = f((1B · x) · y) = (p ↼ x)(y)

Since % is surjective and S is finite, {p ↼ x : x ∈ G} is finite.
�

We illustrate the connection between Proposition 4.1 and the usual Myhill–Nerode Theorem. Let Σ̂0

denote the set of words in a finite alphabet Σ0. Let L ⊆ Σ̂0 be a language. Suppose that the equivalence
relation ∼L (as in the Introduction) has finite index. Then the usual Myhill–Nerode Theorem says that
there exists a finite automaton which accepts L. We show how to construct this finite automaton using
Proposition 4.1.

Consider G = Σ̂0 as a semigroup with unity where the semigroup operation is concatenation and the
unity element is the empty word. Let H = KG denote the semigroup bialgebra. Then the characteristic
function of L extends to an element p ∈ H∗. Since ∼L has finite index, the set of right translates
{p ↼ x : x ∈ G} is finite [3, Proposition 2.3]. Now Proposition 4.1 (i)=⇒ (ii) applies to show that
there exists a finite dimensional bialgebra B, a bialgebra homomorphism Ψ : H → B and an element
f ∈ B∗ so that p(h) = f(Ψ(h)), for all h ∈ H .

This bialgebra determines a finite automaton 〈Q,Σ, δ, q0, F 〉, where Q is the finite set of states, Σ

is the input alphabet, δ is the transition function, q0 is the initial state, and F is the set of final states
(see [2, Chapter 2] for details on finite automata.)

For the states of the automata, we let Q be the (finite) set of grouplike elements of B. For the input
alphabet, we choose Σ = Σ0. As we have seen, the right H-module structure of B restricts to an action
“·” of G on Q, and so we define the transition function δ : Q × Σ0 → Q by the rule δ(q, x) = q · x, for
q ∈ Q, x ∈ Σ0. The initial state is q0 = 1B, and the set of final states F is the subset of Q of the form
1B · x, x ∈ G for which

p(x) = f(Ψ(x)) = f1BΨ(x)) = f(1B · x) = 1

By construction, the finite automaton 〈Q,Σ0, δ, 1B, F 〉 accepts L.
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5. Quasitriangular Structure of Myhill–Nerode Bialgebras

In this section we use Proposition 4.1 to construct a collection of Myhill–Nerode bialgebras. We then
compute the quasitriangular structure of one of these bialgebras.

Let Σ0 = {a} be the alphabet on a single letter a. Let Σ̂0 = {1, a, aa, aaa, . . . } denote the
collection of all words of finite length formed from Σ0. Here 1 denotes the empty word of length 0.
For convenience, we shall write

ai = aaa · · · a︸ ︷︷ ︸
i times

,

for i ≥ 0.
Fix an integer i ≥ 0 and let Li = {ai} ⊆ Σ̂0. Then the language Li is accepted by the finite automaton

given in Figure 1.

Figure 1. Finite automaton accepting Li = {ai}, accepting state is i.

 k … 
a a a a a 

a 

i+1 i 0 1 2 

By the usual Myhill–Nerode Theorem, the equivalence relation ∼Li
, defined as x ∼Li

y if and
only if xz ∈ Li exactly when yz ∈ Li,∀z, has finite index. If pi : Σ̂0 → {0, 1} ⊆ K is the
characteristic function of Li, then ∼Li

is equivalent to the relation ∼pi
defined as: x ∼pi

y if and only if
pi(xz) = pi(yz),∀z ∈ Σ̂0. Let [x]pi

denote the equivalence class of x under ∼pi
. The Myhill–Nerode

theorem now says that the set {[x]pi
: x ∈ Σ̂0} is finite.

Now we considerG = Σ̂0 as a semigroup with unity 1 with concatenation as the binary operation. Let
H = KG be the semigroup bialgebra. The characteristic function pi of Li extends to an element of H∗.
By [3, Proposition 2.3], the set of right translates {pi ↼ x : x ∈ G} is finite. Thus by Proposition 4.1,
there exists a finite dimensional bialgebra Bi, a bialgebra homomorphism Ψ : H → Bi, and an element
fi ∈ B∗i so that pi(h) = fi(Ψ(h)) for all h ∈ H .

In what follows, we give the bialgebra structure of the collection {Bi : i ≥ 0} and compute the
quasitriangular structure of the bialgebra B0.

For i ≥ 0, the finite set of right translates of pi ∈ H∗ is

Qi = {pi ↼ 1, pi ↼ a, pi ↼ a2, . . . , pi ↼ ai, pi ↼ ai+1}

One finds that the set of right operators on Qi is {r1, ra, ra2 , . . . , rai , rai+1}. Under composition, the
set of right operators is a semigroup with unity r1. We have, for 0 ≤ m,n ≤ i+ 1,

ramran =

{
ram+n if 0 ≤ m+ n ≤ i+ 1

rai+1 if m+ n > i+ 1

By construction, Bi is the semigroup bialgebra on {r1, ra, ra2 , . . . , rai , rai+1}.
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5.1. Quasitriangular Structure of B0

In the case i = 0, B0 is the semigroup bialgebra on {r1, ra} with algebra structure defined by
r1r1 = r1, r1ra = ra, rar1 = ra, rara = ra. Let {e0, e1} be the dual basis defined as e0(r1) = 1,
e0(ra) = 0, e1(r1) = 0, e1(ra) = 1. Then {e0, e1} is the set of minimal idempotents for B∗0 .
Comultiplication on B∗0 is given as

∆B∗0
(e0) = e0 ⊗ e0

∆B∗0
(e1) = e0 ⊗ e1 + e1 ⊗ e0 + e1 ⊗ e1

and the counit map is defined by

εB∗0 (e0) = 1, εB∗0 (e1) = 0

Proposition 5.1 LetB0 be theK-bialgebra as above. Then there is exactly one quasitriangular structure
on B0, namely, R = 1B0 ⊗ 1B0 .

Proof. Certainly, 1 ⊗ 1 = 1B0 ⊗ 1B0 is a quasitriangular structure for B0. We claim that 1 ⊗ 1 is
the only quasitriangular structure. Observe that there is bialgebra isomorphism φ : B0 → B∗0 defined
as φ(r1) = e0 + e1, φ(ra) = e0. Thus if (B0, R) is quasitriangular, then (B∗0 , R

′), R′ = (φ ⊗ φ)(R), is
quasitriangular by Proposition 3.1. So, we first compute all of the quasitriangular structures of B∗0 . To
this end, suppose that (B∗0 , R

′) is quasitriangular for some element R′ ∈ B∗0 ⊗B∗0 . Since

B∗0 ⊗B∗0 = K(e0 ⊗ e0)⊕K(e0 ⊗ e1)⊕K(e1 ⊗ e0)⊕K(e1 ⊗ e1)

R′ = w(e0 ⊗ e0) + x(e0 ⊗ e1) + y(e1 ⊗ e0) + z(e1 ⊗ e1)

for w, x, y, z ∈ K. By Proposition 3.3(i),

1B∗0
= e0 + e1

= s1(ε⊗ I)(w(e0 ⊗ e0) + x(e0 ⊗ e1) + y(e1 ⊗ e0) + z(e1 ⊗ e1))
= we0 + xe1

and so, w = x = 1. From Proposition 3.3(ii), one also has y = 1. Thus

R′ = e0 ⊗ e0 + e0 ⊗ e1 + e1 ⊗ e0 + z(e1 ⊗ e1)

for z ∈ K. Now,

(∆⊗ I)(R′) = (∆⊗ I)(e0 ⊗ e0 + e0 ⊗ e1 + e1 ⊗ e0 + z(e1 ⊗ e1))
= (e0 ⊗ e0)⊗ e0 + (e0 ⊗ e0)⊗ e1 + (e0 ⊗ e1 + e1 ⊗ e0 + e1 ⊗ e1)⊗ e0
+ z((e0 ⊗ e1 + e1 ⊗ e0 + e1 ⊗ e1)⊗ e1)
= e0 ⊗ e0 ⊗ e0 + e0 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e0 + e1 ⊗ e1 ⊗ e0
+ z(e0 ⊗ e1 ⊗ e1) + z(e1 ⊗ e0 ⊗ e1) + z(e1 ⊗ e1 ⊗ e1) (12)

Moreover,
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(R′)13(R′)23 = (e0 ⊗ (e0 + e1)⊗ e0 + e0 ⊗ (e0 + e1)⊗ e1 + e1 ⊗ (e0 + e1)⊗ e0
+ z(e1 ⊗ (e0 + e1)⊗ e1)) · ((e0 + e1)⊗ e0 ⊗ e0 + (e0 + e1)⊗ e0 ⊗ e1
+ (e0 + e1)⊗ e1 ⊗ e0 + z((e0 + e1)⊗ e1 ⊗ e1))
= (e0 ⊗ e0 ⊗ e0 + e0 ⊗ e1 ⊗ e0 + e0 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e1
+ e1 ⊗ e0 ⊗ e0 + e1 ⊗ e1 ⊗ e0 + z(e1 ⊗ e0 ⊗ e1)
+ z(e1 ⊗⊗e1 ⊗ e1)) · (e0 ⊗ e0 ⊗ e0 + e1 ⊗ e0 ⊗ e0 + e0 ⊗ e0 ⊗ e1 + e1 ⊗ e1 ⊗ e0
+ e0 ⊗ e1 ⊗ e0 + e1 ⊗ e1 ⊗ e0 + z(e0 ⊗ e1 ⊗ e1) + z(e1 ⊗⊗e1 ⊗ e1))
= e0 ⊗ e0 ⊗ e0 + e0 ⊗ e1 ⊗ e0 + e0 ⊗ e0 ⊗ e1 + z(e0 ⊗ e1 ⊗ e1)
+ e1 ⊗ e0 ⊗ e0 + e1 ⊗ e1 ⊗ e0 + z(e1 ⊗ e0 ⊗ e1) + z2(e1 ⊗ e1 ⊗ e1) (13)

Equations 12 and 13 yield the relation z2 = z. Thus either z = 0 or z = 1. If z = 0, then R′ is not a unit
in B∗0 ⊗B∗0 . Thus

R′ = e0 ⊗ e0 + e0 ⊗ e1 + e1 ⊗ e0 + e1 ⊗ e1 = 1⊗ 1

is the only quasitriangular structure for B∗0 .
Consequently, if (B0, R) is quasitriangular, then (φ ⊗ φ)(R) = 1B∗0

⊗ 1B∗0
. It follows that

R = 1B0 ⊗ 1B0 .
�

5.2. Questions for Future Research

Though the Myhill–Nerode bialgebra B0 has only the trivial quasitriangular structure, it remains to
compute the quasitriangular structure of Bi for i ≥ 1. Moreover, the linear dual B∗i is a commutative,
cocommutative K-bialgebra and it would be of interest to find its quasitriangular structure. Unlike the
i = 0 case, we may have Bi 6∼= B∗i (for instance, B1 6∼= B∗1) and so this is indeed a separate problem.

Suppose that L is a language of words built from the alphabet Σ0 = {a, b}. If L is accepted by
a finite automaton, then by Proposition 4.1, L gives rise to a Myhill–Nerode bialgebra B (see for
example, [3, §6].) By construction,B is a cocommutativeK-bialgebra and henceB has at least the trivial
quasitriangular structure. Are there any other structures? Note that B∗ is a commutative K-algebra. For
which R (if any) is (B∗, R) quasitriangular?
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