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1. Introduction

Non-commutative geometry is a branch of mathematics concerned with geometric approach to
non-commutative algebras, and with constructions of spaces which are locally presented by
non-commutative algebras of functions. Its main motivation is to extend the commutative duality
between spaces and functions to the non-commutative setting.

More specifically, in topology, compact Hausdorff topological spaces can be reconstructed from the
Banach algebra of functions on the space. The Pontryagin duality theorem refers to the duality between
the category of compact Hausdorff Abelian groups and the category of discrete Abelian groups. The
Pontryagin–van Kampen duality theorem extends this duality to all locally compact Hausdorff Abelian
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topological groups by including the categories of compact Hausdorff Abelian groups and discrete
Abelian groups into the category of locally compact Hausdorff Abelian topological groups (see [1]).
This can be illustrated by the following diagram:

LCA oo (−,T )

(−,T )
// LCA

Cpct oo (−,T )

(−,T )
//

OO

Disc.

OO

Taking the Pontryagin–van Kampen duality theorem as a model, an extension for the duality between
finite dimensional algebras and coalgebras to the category of finite dimensional Yang–Baxter structures
was constructed in [2]. The resulting duality theorem can be illustrated by the following diagram:

f.d. YB str. oo D=()∗

D=()∗
// f.d. YB str.

f.d. k-alg. oo ()∗

()∗
//

F

OO

f.d. k-coalg.

G

OO

Our motivation in this paper is to extend the above duality to the non-commutative setting.
In Section 2, we present in a new fashion the duality between right finitely generated projective

corings and ring extensions (compare with [3]).
In Section 3, we define the category of (right finitely generated projective) generalized Yang–Baxter

structures. We construct full and faithful embeddings from the categories of ring extensions and corings
to the category of generalized Yang–Baxter structures. We show that taking the right dual is a duality
functor in the category of right finitely generated projective generalized Yang–Baxter structures. Then
we conclude that the duality between right finitely generated projective corings and ring extensions can
be lifted up to the category of right finitely generated projective generalized Yang–Baxter structures.

There are some more comments to be made.

(i) We propose as a research project the investigation of other connections between the duality of
(co)algebras and the Pontryagin duality. (For example, one might try to endow the (co)algebra
structures with some topological structures.)

(ii) At the epistemologic level, the extension of the duality of (co)algebra structures seems to be
a model for the relation between interdisciplinarity, pluridisciplinarity and transdisciplinarity
(see [4]).

(iii) This paper explains that taking the dual of some objects can be seen a “continuous” process. Let us
visualize this statement by considering an example from geometry. We take a triangular prism: We
can see it as two parallel triangles joint by 3 segments. In total it has 5 planar geometric figures,
9 edges and 6 vertices. The geometric dual of the triangular prism has 6 planar geometric figures,
9 edges and 5 vertices. Now, one can start with a triangular prism, “shave” its corners, and then
continuously deform that figure in order to obtain the geometric dual of the triangular prism.
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2. Notations and Preliminaries

Throughout this paper K is a commutative ring, and all K-modules M are such that for all m ∈ M ,
2m = 0 implies m = 0.

LetA, B, C, etc. be algebras over ground commutative ring K. Unadorned tensor product will denote
the tensor product over K. For modules M in AMB, symbols M∗, ∗M , ∗M∗ denote right dual, left dual
and bidual of M , and AMB(M,N) denotes the K-module of (A,B)-bimodule maps M → N . In what
follows we shall concentrate on right dual of M but similar observations can be made for the left dual
as well.

For all φ ∈ AMB(M,N), let φ∗ : N∗ →M∗ denote the right adjoint of φ i.e., φ∗(g)(m) := g ◦φ(m).
We denote by (·)op : A → Aop the canonical anti-algebra isomorphism from the algebra A into its

opposite Aop (which is the identity on the underlying K-modules), i.e., a = aop as module elements and
(aa′)op = a′opaop for all a, a′ ∈ A.

The following facts are well known, but we recall them to set up the notation:

(i) If M ∈ AMB then M∗ ∈ AopMBop with (aopfbop)(m) = bf(am).

Assume that M ∈ AMB is also finitely generated projective as a right B-module, i.e., there exists a dual
basis f̂i ∈M∗, m̂i ∈M , i ∈ I such that for any m ∈M , m =

∑
i m̂if̂i(m). Then

(ii) The mapping κM : M →M∗∗, κM(m)(f) = f(m)op is an isomorphism in AMB, with the inverse
κ−1
M (m̃) =

∑
i m̂im̃(f̂i)

op. In fact κ is a natural morphism between identity functor in AMB and
the functor ()∗∗ : AMB → AMB.

(iii) If N ∈ BMC then κM,N : M∗ ⊗Bop N∗ → (M ⊗B N)∗, given by κM,N(f ⊗Bop g)(m ⊗ n) =

g(f(m)n), is an isomorphism in AopMCop with the inverse

κ−1
M,N(α) =

∑
i

f̂i ⊗Bop α(m̂i ⊗B ·) (1)

(iv) Let M ∈ AMB, N ∈ BMC , P ∈ CMD, where A, B, C, D are algebras. Then the following
diagram is commutative:

M∗ ⊗Bop N∗ ⊗Cop P ∗
κM,N⊗CopP ∗

//

M∗⊗BopκN,P

��

(M ⊗B N)∗ ⊗Cop P ∗

κM⊗BN,P

��
M∗ ⊗Bop (N ⊗C P )∗

κM,N⊗CP // (M ⊗B N ⊗C P )∗

(2)

(v) Let M ∈ AMB be finitely generated projective as B-module, with dual basis m̂i ∈ M , f̂i ∈ M∗,
i ∈ I , and let N ∈ BMC be finitely generated projective as a C-module with dual basis n̂i ∈ N ,
ĝi ∈ N∗, i ∈ J . Then M ⊗B N ∈ AMC is finitely generated projective as a C-module with a
dual basis

mi ⊗B nj ∈M ⊗B N, κM,N(f̂i ⊗Bop ĝj) ∈ (M ⊗B N)∗, i ∈ I, j ∈ J (3)
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The following terminology and theorems concerning corings and ring extensions are needed in this
paper. For a review on coalgebras see: [5–7]. For a review on corings see [3].

Definition 2.1 C ∈ BMB is called a B-coring if there exist morphisms ∆C, εC ∈ BMB, ∆C : C →
C ⊗B C, εC : C → B such that

(∆C ⊗B C) ◦∆C = (C ⊗B ∆C) ◦∆C (4)

(εC ⊗B C) ◦∆C = C = (C ⊗B εC) ◦∆C (5)

In the sequel we shall use Sweedler’s notation ∆C(c) = c(1)⊗B c(2). Given B-corings C andD, a map
φ ∈ BMB(C,D) is called a morphism of B-corings if (φ ⊗B φ) ◦∆C = ∆D ◦ φ and εD ◦ φ = εC . The
category of B-corings is denoted by CrgB.

Definition 2.2 RingR is called an extension of a ring B if there exists an injective unital ring morphism
ıR : B → R. Observe that R ∈ BMB by ıR. Given ring extensions ıR : B → R and ıP : B → P , a
ring morphism α : R → P is called a morphism of ring extensions if α ◦ ıR = ıP or, equivalently, if
α ∈ BMB(R,P). The category of ring extensions of B is denoted by RgeB.

The full subcategory of CrgB (resp. RgeB) consisting of those B-corings (resp. ring extensions of B)
that are finitely generated projective as right B-modules is denoted by r.f.g.pCrgB (resp. r.f.g.pRgeB).

Lemma 2.3 (i) If C ∈ CrgB then C∗ ∈ BopMBop is a ring extension of Bop with multiplication

(rr′)(c) := r′(r(c(1))c(2)), for all r, r′ ∈ C∗ (6)

unit 1C∗ := εC and embedding map

ıC∗ : B → C∗, bop 7→ bop1C∗ (7)

(ii) If φ : C → D is any coring morphism then φ∗ : D∗ → C∗ is a ring extension morphism.
(iii) IfR ∈ r.f.g.pRgeB thenR∗ is a Bop-coring with comultiplication and counit

∆R
∗

: R∗ → R∗ ⊗Bop R∗ c 7→
∑
i

f̂i ⊗Bop c(r̂i·) (8)

εR
∗

: R∗ → Bop, c 7→ c(1R)op (9)

where r̂i ∈ R, f̂i ∈ R∗, i ∈ I is a (finite) dual basis ofR.
(iv) If φ : R → S is a morphism of right finitely generated projective ring extensions of B, then

φ : S∗ → R∗ is a morphism of Bop-corings.
(v) Functor ()∗∗ : r.f.g.pRgeB → r.f.g.pRgeB is equivalent to the identity functor on r.f.g.pRgeB. For

allR ∈ r.f.g.pRgeB, κR : R → R∗∗ is a ring extension isomorphism facilitating this equivalence.
(vi) Functor ()∗∗ : r.f.g.pCrgB → r.f.g.pCrgB is equivalent to the identity functor on r.f.g.pCrgB. For

all C ∈ r.f.g.pCrgB, κC : C → C∗∗ is a B-coring isomorphism facilitating this equivalence.

Proof. The statements (i) and (ii) are contained in Proposition 3.2 [8], while (iii) and (v) are rephrasings
of Theorem 3.7 [8] (cf. [3], 17.8–17.13)
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(iv) Consider any ring extension morphism φ : R → S . Let r̂i ∈ R, f̂i ∈ R∗, i ∈ I be any finite dual
basis ofR, and let ŝi ∈ S, ĝi ∈ S∗, i ∈ J be any finite dual basis of S. For all s ∈ S∗,

∆R
∗ ◦ φ∗(s) =

∑
i

f̂i ⊗Bop s(φ(r̂i)φ(·)) =
∑
ij

f̂i ⊗Bop s(ŝj ĝj(φ(r̂i))φ(·))

=
∑
ij

f̂i ⊗Bop s(ŝjφ(ĝj(φ(r̂i))·)) =
∑
ij

f̂i ⊗Bop ĝj(φ(r̂i))
ops(ŝjφ(·))

=
∑
ij

f̂iĝj(φ(r̂i))
op ⊗Bop s(ŝjφ(·)) =

∑
j

ĝj ◦ φ⊗Bop s(ŝjφ(·))

= (φ∗ ⊗Bop φ∗)(
∑
j

ĝj ⊗Bop s(ŝj·)) = (φ∗ ⊗Bop φ∗) ◦∆S(s)

and
εR

∗ ◦ φ∗(s) = εR
∗
(s ◦ φ) = (s ◦ φ)(1R) = s(1S) = εS

∗
(s)

Hence φ∗ is a coring map.
(vi) It is enough to prove that κC , is a coring map for any C ∈ r.f.g.pCrgB. Let C be a B-coring, and let
ĉi ∈ C, f̂i ∈ C∗, i ∈ I , be any finite dual basis of C. Observe that f̂i ∈ C∗, κC(ĉ) ∈ C∗∗, i ∈ I is a dual
basis of C∗. Indeed, for any g ∈ C∗,

g =
∑
i

f̂ig(m̂i)
op =

∑
i

f̂iκC(m̂i)

Hence, for all c ∈ C,

∆C
∗∗ ◦ κC(c) =

∑
i

κC(ĉi)⊗B κC(c)(f̂i·) =
∑
i

κC(ĉi)⊗B (f̂i·)(c)op

=
∑
i

κC(ĉi)⊗B ·(f̂i(c(1))c(2))
op =

∑
i

κC(ĉi)⊗B κC(f̂i(c(1))c(2))

=
∑
i

κC(ĉif̂i(c(1))⊗B κC(c(2)) = (κC ⊗B κC) ◦∆C(c)

and
εC
∗∗ ◦ κC(c) = κC(c)(1C∗)

op = 1C∗(c)
opop = εC(c)

�

Corollary 2.4 ()∗ is a duality functor between r.f.g.pRgeB and r.f.g.pCrgBop:

r.f.g.pRgeB oo ()∗

()∗
// r.f.g.pCrgBop (10)

3. An Extension for the Duality between Corings and Ring Extensions

Our aim in this section is to extend the duality between right finitely generated projective
ring extensions and corings to the category of right finitely generated projective generalized
Yang–Baxter structures.
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We use the following terminology concerning the Yang–Baxter equation. Some references on this
topic are: [9–11], etc.

LetB be a K-algebra. Given a (B,B)-bimodule V and a (B,B)-bilinear mapR : V ⊗BV → V ⊗BV
we write R12 = R⊗B id, R23 = id⊗B R : V ⊗B V ⊗B V → V ⊗B V ⊗B V where id : V → V is the
identity map.

Definition 3.1 An invertible (B,B)-linear map R : V ⊗B V → V ⊗B V is called a generalized
Yang–Baxter operator (or simply a generalised YB operator ) if it satisfies the equation

R12 ◦R23 ◦R12 = R23 ◦R12 ◦R23 (11)

Definition 3.2 For an algebra B, we define the category YB strB whose objects are 4-tuples
(V, ϕ, e, ε), where

(i) V is a (B,B)-bimodule;
(ii) ϕ : V ⊗B V → V ⊗B V is a generalized YB operator;

(iii) e ∈ V such that for all b ∈ B, eb = be, and for all x ∈ V , ϕ(x⊗e) = e⊗B x, ϕ(e⊗B x) = x⊗B e;
(iv) ε : V → B is a (B,B)-bimodule map, such that (id⊗B ε) ◦ϕ = ε⊗B id, (ε⊗B id) ◦ϕ = id⊗B ε.

A morphism f : (V, ϕ, e, ε) → (V ′, ϕ′, e′, ε′) in the category YB strB is a (B,B)-bilinear map
f : V → V ′ such that:

(v) (f ⊗B f) ◦ ϕ = ϕ′ ◦ (f ⊗B f),
(vi) f(e) = e′,

(vii) ε′ ◦ f = ε.

Composition of morphisms is defined as the standard composition of B-linear maps. A full subcategory
of YB strB consisting of all such (V, ϕ, e, ε) for which V is finitely generated projective as a right
B-module is defined by r.f.g.pYB strB.

Remark 3.3 Let R : V ⊗B V → V ⊗B V be a generalised YB operator . Then (V,R, 0, 0) is an object
in the category YB strB.

Theorem 3.4 (i) There exists a functor:

F : RgeB → YB strB, R 7→ (R, ϕR, 1R, 0 ∈ ∗R∗)
where ϕR(r ⊗B r′) = rr′ ⊗B 1 + 1⊗B rr′ − r ⊗B r′ (12)

Any ring extension map f is simply mapped into a (B,B) bimodule map.
(ii) F is a full and faithful embedding.

Proof. i) The proof that ϕR is a generalised YB operator is left to the reader (cf. Proposition 2.1
from [12], ϕ−1

R = ϕR). Furthermore ϕR(r⊗B 1) = r⊗B 1 + 1⊗B r− r⊗B 1 = 1⊗B r, ϕR(1⊗B r) =

1⊗B r+ r⊗B 1− 1⊗B r = r⊗B 1, (id⊗B 0) ◦ϕR = 0 = (0⊗B id), (0⊗B id) ◦ϕR = 0 = (id⊗B 0).
Hence (R, ϕR, 1R, 0) is an object in the category YB strB.
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Let f : R → S be a morphism of ring extensions. Then f(1R) = 1S and 0 ◦ f = 0. Moreover

(f ⊗B f) ◦ ϕR(r ⊗B r′) = f(r)f(r′)⊗B f(1) + f(1)⊗B f(r)f(r′)− f(r)⊗B f(r′)

= ϕS ◦ (f ⊗B f)(r ⊗B r′).

Hence f : (R, ϕR, 1R, 0)→ (S, ϕS , 1S , 0) is a morphism in the category YB strB.
(ii) If FR = FS, for some R,S ∈ RgeB, then obviously R = S as (B,B)-bimodules, 1S = 1R, and
the only thing which can differ is the multiplication. Denote by · the multiplication in R, and by ◦ the
multiplication in S. Then, as ϕR = ϕS , for all r, r′ ∈ R,

r · r′ ⊗B 1 + 1⊗B r · r′ − r ⊗B r′ = r ◦ r′ ⊗B 1 + 1⊗B r ◦ r′ − r ⊗B r′

hence
(r · r′ − r ◦ r′)⊗B 1 = −1⊗B (r · r′ − r ◦ r′)

Multiplying tensor factors on both sides of this equation (whether using multiplication in R or S is
irrelevant) yields 2(r · r′ − r ◦ r′) = 0, hence r · r′ = r ◦ r′, and so R = S as algebras. Therefore F is
an embedding.

Obviously, distinct ring extension maps are also distinct as (B,B)-bimodule morphisms, hence F is
a faithful functor.

Let f : (R, ϕR, 1R, 0)→ (S, ϕS , 1S , 0) be a morphism in YB strB, where R,S ∈ RgeB. Then f is
unital, and (f ⊗B f) ◦ ϕR = ϕS ◦ (f ⊗B f), hence, for all r, r′ ∈ R,

f(rr′)⊗B 1 + 1⊗B f(rr′)− f(r)⊗B f(r′) = f(r)f(r′)⊗B 1 + 1⊗B f(r)f(r′)− f(r)⊗B f(r′).

Multiplying factors in tensor products in both sides of the above equation yields 2(f(rr′)−f(r)f(r′)) =

0, hence f(rr′) = f(r)f(r′) and, as f is a (B,B)-bimodule map, it is a ring extension map. Therefore,
F is a full functor. �

Theorem 3.5 (i) There exists a functor

G : CrgB → YB strB, C 7→ (C, ψC, 0, εC)
where ψC = ∆C ⊗B εC + εC ⊗B ∆C − id⊗B id (13)

A coring morphism is mapped into a (B,B)-bimodule morphism.
(ii) G is a full and faithful embbeding.

Proof. i) The proof that ψC is a generalised YB operator (cf. Proposition 2.3 from [12]) is left to the
reader (ψ−1

C = ψC). Furthermore, for all c ∈ C, ψC(c ⊗B 0) = 0 = 0 ⊗B c, ψC(0 ⊗B c) = 0 = c ⊗B 0.
Moreover, for all c, c′ ∈ C,

(id⊗B εC) ◦ ψC(c⊗B c′) = c(1)ε
C(c(2))ε

C(c′) + εC(c)c′(1)ε
C(c′(2))− cεC(c′) = εC(c)c′

= (εC ⊗B id)(c⊗B c′)
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and

(εC ⊗B id) ◦ ψC(c⊗B c′) = εC(c(1))c(2)ε
C(c′) + εC(c)εC(c′(1))c

′
(2) − εC(c)c′ = cεC(c′)

= (id⊗B εC)(c⊗B c′)

Hence (C, ψC, 0, εC) is an object in YB strB. Let f : C → D be any morphism of B-corings. Then f is
also a (B,B)-bimodule morphism, f(0) = 0, εD ◦ f = εC , and,

ψD ◦ (f ⊗B f) = ∆D ◦ f ⊗B εD ◦ f + εD ◦ f ⊗B ∆D ◦ f − f ⊗B f
= (f ⊗B f) ◦∆C ⊗B εC + εC ⊗B (f ⊗B f) ◦∆C + f ⊗B f = (f ⊗B f) ◦ ψC

Therefore f : (C, ψC, 0, εC)→ (D, ψD, 0, εD) is a morphism in YB strB.
(ii) Suppose that GC = GD for some B-corings C, D. This means that C = D as (B,B)-bimodules,
εC = εD, and the only things which can differ are comultiplications. However, as ψC = ψD, we have

∆C ⊗B εC + εC ⊗B ∆C − I ⊗B I = ∆D ⊗B εC + εC ⊗B ∆D − I ⊗B I

hence
(∆C −∆D)⊗B εC = −εC ⊗B (∆C −∆D)

Composing both sides of the above equation with ∆C yields 2(∆C − ∆D) = 0 hence ∆C = ∆D and
C = D as (B,B)-corings. Hence G is an embedding.

Obviously distinct B-coring morphisms are also distinct as (B,B)-bimodule morphisms, hence G is
a faithful functor.

Let f : (C, ψC, 0, εC) → (D, ψD, 0, εD), where C, D are corings, be a morphism in YB strB. Then
(B,B)-bimodule morphism f : C → D is counital, i.e., εD ◦ f = εC . Furthermore, (f ⊗B f) ◦ ψC =

ψD ◦ (f ⊗B f), and hence (f ⊗B f) ◦ ψC ◦ ∆C = ψD ◦ (f ⊗B f) ◦ ∆C . Observe that ψC ◦ ∆C = ∆C .
Therefore

(f ⊗B f) ◦∆C = (f ⊗B f) ◦ ψC ◦∆C = ψD ◦ (f ⊗B f) ◦∆C

= (∆D ◦ f ⊗B εD ◦ f + εD ◦ f ⊗B ∆D ◦ f − f ⊗B f) ◦∆C

= (∆D ◦ f ⊗B εC + εC ⊗B ∆D ◦ f − f ⊗B f) ◦∆C = 2∆D ◦ f − (f ⊗B f) ◦∆C

i.e., 2(f ⊗B f) ◦∆C = 2∆D ◦ f , hence (f ⊗B f) ◦∆C = ∆D ◦ f , and f is a B-coring map. Therefore
G is full. �

Proposition 3.6 Let (V,R, e, ε) ∈ r.f.g.pYB strB. Then

(V,R, e, ε)∗ := (V ∗, R†, ε, e†) ∈ r.f.g.pYB strBop (14)

where e†(f) = f(e), and
R† = κ−1

V,V ◦R
∗ ◦ κV,V (15)

Moreover,
κ : ()→ ()∗∗, κV : (V,R, e, ε)→ (V ∗∗, R††, e†, ε†) (16)

is a natural isomorphism in r.f.g.pYB strB.
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Proof. R is invertible, hence R†−1 = κ−1
V,V ◦ (R−1)∗ ◦ κV,V . We shall prove that R† satisfies the

Yang–Baxter equation. Observe that

κ−1
V⊗BV,V

◦ (R⊗B I)∗ ◦ κV⊗BV,V = R∗ ⊗Bop I (17)

κ−1
V,V⊗BV

◦ (I ⊗B R)∗ ◦ κV,V⊗BV = I ⊗Bop R∗ (18)

Indeed, let Γ ∈ (V ⊗B V )∗, f ∈ V ∗, and let v̂i ∈ V , f̂i ∈ V ∗, i ∈ I , be a dual basis of V .

κ−1
V⊗BV,V

◦ (R⊗B I)∗ ◦ κV⊗BV,V (Γ⊗Bop f)

= κ−1
V⊗BV,V

◦ (R⊗B I)∗(v ⊗B v′ ⊗B v′′ 7→ f(Γ(v ⊗B v′)v′′))
= κ−1

V⊗BV,V
(v ⊗B v′ ⊗B v′′ 7→ f(Γ(R(v ⊗B v′))v′′))

=
∑
i,j∈I

κV,V (f̂i ⊗Bop f̂j)⊗Bop f(Γ(R(v̂i ⊗B v̂j))·)

=
∑
i,j∈I

κV,V (f̂i ⊗Bop f̂j)Γ(R(v̂i ⊗B v̂j))op ⊗Bop f

= (v ⊗B v′ 7→
∑
i,j∈I

Γ(R(v̂i ⊗B v̂j))f̂j(f̂i(v)v′))⊗Bop f

= Γ ◦R⊗Bop f = (R∗ ⊗Bop I)(Γ⊗Bop f)

Similarly we can prove the other equality. By virtue of (17,18), we can write

R† ⊗Bop I = (κ−1
V,V ⊗Bop I) ◦ κ−1

V⊗BV,V
◦ (R⊗B I)∗ ◦ κV⊗BV,V ◦ (κV,V ⊗Bop I) (19)

I ⊗Bop R† = (I ⊗Bop κ−1
V,V ) ◦ κ−1

V,V⊗BV
◦ (I ⊗B R)∗ ◦ κV,V⊗BV ◦ (I ⊗Bop κV,V ) (20)

By (2),

κV⊗BV,V ◦ (κV,V ⊗Bop I) ◦ (I ⊗Bop κ−1
V,V ) = κV,V⊗BV (21)

κV,V⊗BV ◦ (I ⊗Bop κV,V )(κ−1
V,V ⊗Bop I) = κV⊗BV,V (22)

and therefore

R†12R†23R†12 = (κ−1
V,V ⊗Bop I) ◦ κ−1

V⊗BV,V
◦ (R12 ◦R23 ◦R12)∗ ◦ κV⊗BV,V ◦ (κV,V ⊗Bop I)

= (I ⊗Bop κ−1
V,V ) ◦ κ−1

V,V⊗BV
◦ (R23 ◦R12 ◦R23)∗ ◦ κV,V⊗BV ◦ (I ⊗Bop κV,V ) = R†23R†12R†23

Hence R† is a generalised YB operator .
Proofs of bilinearity of e∗ and centrality of ε are the same as proofs of analogues properties of duals

of units and counits in Lemma 2.4. Moreover, for all f ∈ V ∗,

R†(ε⊗Bop f) = κ−1
V,V ◦R

∗ ◦ κV,V (ε⊗Bop f) = κ−1
V,V (f ◦ (ε⊗Bop I) ◦R)

= κ−1
V,V (f ◦ (I ⊗Bop ε)) =

∑
i

f̂i ⊗Bop f(v̂iε(·)) =
∑
i

f̂i ⊗Bop ε(f(v̂i)·)

=
∑
i

f̂i ⊗Bop f(v̂i)
opε = f ⊗Bop ε
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and

R†(f ⊗Bop ε) = κ−1
V,V ◦R

∗ ◦ κV,V (f ⊗Bop ε) = κ−1
V,V (ε ◦ (f ⊗Bop I) ◦R)

= κ−1
V,V (f ◦ (I ⊗Bop ε) ◦R) = κ−1

V,V (f ◦ (ε⊗Bop I)) =
∑
i

f̂i ⊗Bop f(ε(v̂i)·)

=
∑
i

f̂i ⊗Bop ε(v̂i)
opf = ε⊗Bop f

Furthermore, for all x = f ⊗Bop g ∈ V ∗ ⊗Bop V ∗,

(e† ⊗Bop I) ◦R†(x) = (e† ⊗Bop I) ◦ κ−1
V,V ◦R

∗ ◦ κV,V (x) = (e† ⊗Bop I) ◦ κ−1
V,V (κV,V (x) ◦R)

= (e† ⊗Bop I)(
∑
i

f̂i ⊗Bop κV,V (x) ◦R(v̂i ⊗B ·) =
∑
i

f̂i(e)
opκV,V (x) ◦R(v̂i ⊗B ·)

=
∑
i

κV,V (x) ◦R(v̂i ⊗B f̂i·) = κV,V (x) ◦R(e⊗B ·) = κV,V (· ⊗B e) = g(f(·)e) = g(e)f(·)

= fg(e)op = (I ⊗Bop e†)(f ⊗Bop g) = (I ⊗Bop e†)(x)

and

(I ⊗Bop e†) ◦R†(x) = (I ⊗Bop e†) ◦ κ−1
V,V ◦R

∗ ◦ κV,V (x) = (I ⊗Bop e†) ◦ κ−1
V,V (κV,V (x) ◦R)

= (I ⊗Bop e†)(
∑
i

f̂i ⊗Bop κV,V (x) ◦R(v̂i ⊗B ·)) =
∑
i

f̂iκV,V (x) ◦R(v̂i ⊗B e)op

=
∑
i

κV,V (x) ◦R(v̂i ⊗B e)f̂i(·) =
∑
i

κV,V (x) ◦R(v̂i ⊗B f̂i(·)e) = κV,V (x) ◦R(· ⊗B e)

= κV,V (x)(e⊗B ·) = g(f(e)·) = f(e)opg = (e† ⊗Bop I)(x)

Hence (V ∗, R†, ε, e†) ∈ r.f.g.pYB strBop .
Morphism κ : ()→ ()∗∗ is natural in BMB, and as V is finitely generated projective, κV is invertible.

Therefore it suffices to prove that κV is a morphism in r.f.g.pYB strB. To this end, observe first that

κV (e) = f 7→ f(e)op = e†

and, for all v ∈ V ,
ε† ◦ κV (v) = κV (v)(ε)op = ε(v)opop = ε(v)

Note that f̂i ∈ V ∗, κV (v̂i) ∈ V ∗∗, i ∈ I is a dual basis of V ∗. Therefore, for all Γ ∈ (V ∗ ⊗Bop V ∗)∗,

κV ∗,V ∗(Γ) =
∑
i

κV (v̂i)⊗B Γ(f̂i ⊗Bop ·)
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and so, for all v, v′ ∈ V ,

R†† ◦ (κV ⊗B κV )(v ⊗B v′) = κ−1
V ∗,V ∗ ◦R

†∗ ◦ κV ∗,V ∗(κV (v)⊗B κV (v′))

= κ−1
V ∗,V ∗(κV ∗,V ∗(κV (v)⊗B κV (v′)) ◦ κ−1

V,V ◦R
∗ ◦ κV,V )

= κ−1
V ∗,V ∗(κV ∗,V ∗(κV (v)⊗B κV (v′)) ◦ κ−1

V,V ◦ (x 7→ κV,V (x) ◦R)

= κ−1
V ∗,V ∗(κV ∗,V ∗(κV (v)⊗B κV (v′)) ◦ (x 7→

∑
i

f̂i ⊗Bop κV,V (x) ◦R(v̂i ⊗B ·))

= κ−1
V ∗,V ∗(x 7→

∑
i

κV (v′)(κV (v)(f̂i)κV,V (x) ◦R(v̂i ⊗B ·)))

= κ−1
V ∗,V ∗(x 7→

∑
i

κV (v′)(f̂i(v)opκV,V (x) ◦R(v̂i ⊗B ·)))

= κ−1
V ∗,V ∗(x 7→ κV (v′)(κV,V (x) ◦R(v ⊗B ·))

= κ−1
V ∗,V ∗(x 7→ κV,V (x) ◦R(v ⊗B v′)op)

=
∑
i

κV (v̂i)⊗B κV,V (f̂i ⊗Bop ·) ◦R(v ⊗B v′)op

=
∑
i

κV (v̂i)⊗B κV ((f̂i ⊗Bop I) ◦R(v ⊗B v′))

= (κV ⊗B κV )(
∑
i

v̂i ⊗B (f̂i ⊗Bop I) ◦R(v ⊗B v′))

= (κV ⊗B κV ) ◦R(v ⊗B v′)

Therefore, κV is a morphism in r.f.g.pYB strB as required. �

Proposition 3.7 LetR ∈ r.f.g.pRgeB, C ∈ r.f.g.pCrgB. Then (FR)∗ = G(R∗), (GC)∗ = F (C∗), i.e.,

(R∗, φR†, 0, 1R†) = (R∗, ψR∗ , 0, εR
∗
) (23)

(C∗, ψC†, εC, 0) = (C∗, φC∗ , 1C∗ , 0) (24)

Proof. From Lemma 2.4 we know that 1R
† = εR

∗ and 1C∗ = εC . Furthermore, for all c, c′ ∈ R∗,

φR
†(c⊗Bop c′) = κ−1

R,R ◦ φR
∗ ◦ κR,R(c⊗Bop c′)

= κ−1
R,R(r ⊗B r′ 7→ κR,R(c⊗Bop c′)(rr′ ⊗B 1R + 1R ⊗B rr′ − r ⊗B r′)

= κ−1
R,R(r ⊗B r′ 7→ c′(c(rr′)1R) + c′(c(1R)rr′))− c⊗Bop c′

= κ−1
R,R(r ⊗B r′ 7→ c′(1R)c(rr′) + c′(c(1R)rr′))− c⊗Bop c′

= κ−1
R,R(r ⊗B r′ 7→ c(rr′))c′(1R) + c(1R)opκ−1

R,R(r ⊗B r′ 7→ c′(rr′))− c⊗Bop c′

= (∆R
∗ ⊗Bop εR

∗
+ εR

∗ ⊗Bop ∆R
∗ − I ⊗Bop I)(c⊗Bop c′)

= ψR∗(c⊗Bop c′)
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Similarly, for all r, r′ ∈ C∗, rr′ = κC,C(r ⊗Bop r′) ◦∆C , therefore for all r, r′ ∈ C∗,

ψC
†(r ⊗Bop r′) = κ−1

C,C ◦ ψC
∗ ◦ κC,C(r ⊗Bop r′)

= κ−1
C,C(κC,C(r ⊗Bop r′) ◦ (∆C ⊗B εC + εC ⊗B ∆C − I ⊗B I))

= κ−1
C,C(c⊗B c

′ 7→ κC,C(r ⊗Bop r′) ◦∆C(c)εC(c′) + κC,C(r ⊗Bop r′)(εC(c)∆C(c′)))− r ⊗Bop r′

= κ−1
C,C(c⊗B c

′ 7→ (rr′)(c)εC(c′) + (εC(c)opκC,C(r ⊗Bop r′))(∆C(c′)))− r ⊗Bop r′

= κ−1
C,C(c⊗B c

′ 7→ εC((rr′)(c)c′) + κC,C(ε
C(c)opr ⊗Bop r′) ◦∆C(c′))− r ⊗Bop r′

= κ−1
C,C(c⊗B c

′ 7→ εC((rr′)(c)c′) + (εC(c)oprr′)(c′))− r ⊗Bop r′

= κ−1
C,C(c⊗B c

′ 7→ εC((rr′)(c)c′) + (rr′)(εC(c′)))− r ⊗Bop r′

= rr′ ⊗Bop εC + εC ⊗Bop rr′ − r ⊗Bop r′

= φC∗(r ⊗Bop r′)

This completes the proof. �

Remark 3.8 Put together the statements of Theorem 3.6, Theorem 3.5, Proposition 3.6 and Proposition
3.7, can be summarized in the following diagram:

r.f.g.pYB strB
oo ()∗

()∗
// r.f.g.pYB strBop

r.f.g.pRgeB oo ()∗

()∗
//

F

OO

r.f.g.pCrgBop .

G

OO

This means that the duality between right finitely generated projective ring extensions ofB andB corings
extends to the category r.f.g.pYB strB.

4. Conclusions

We extended the duality between right finitely generated projective ring extensions and right
finitely generated projective corings to the category of right finitely generated projective generalized
Yang–Baxter structures. This duality and its extension could be seen as a more general construction. For
example, at the epistemologic level, the extension of the duality of (co)algebra structures seems to be a
model for the relation between interdisciplinarity, pluridisciplinarity and transdisciplinarity (see [4]). It
would be interesting to interpret this construction in terms of particle interactions.

The relationships between sub(co)algebras and (co)ideals are well-known, and the term of YB ideal
was proposed for the first time in [11]. The following question arises: What are the relationships between
sub(co)rings, (co)ideals and generalized Yang–Baxter structures?

We think that there are more connections between the Pontryagin–van Kampen duality and the above
extension of the duality of (co)algebra structures.
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