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Abstract: The algebraic approach to bundles in non-commutative geometry and the
definition of quantum real weighted projective spaces are reviewed. Principal U(1)-bundles
over quantum real weighted projective spaces are constructed. As the spaces in question fall
into two separate classes, the negative or odd class that generalises quantum real projective
planes and the positive or even class that generalises the quantum disc, so do the constructed
principal bundles. In the negative case the principal bundle is proven to be non-trivial and
associated projective modules are described. In the positive case the principal bundles turn
out to be trivial, and so all the associated modules are free. It is also shown that the circle
(co)actions on the quantum Seifert manifold that define quantum real weighted projective
spaces are almost free.
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1. Introduction

In an algebraic setup an action of a circle on a quantum space corresponds to a coaction of a
Hopf algebra of Laurent polynomials in one variable on the noncommutative coordinate algebra of the
quantum space. Such a coaction can equivalently be understood as a Z-grading of this coordinate algebra.
A typical Z-grading assigns degree ±1 to every generator of this algebra (different from the identity).
The degree zero part forms a subalgebra which in particular cases corresponds to quantum complex or
real projective spaces (grading of coordinate algebras of quantum spheres [1] or prolonged quantum
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spheres [2]). Often this grading is strong, meaning that the product of i, j-graded parts is equal to the
i+ j-part of the total algebra. In geometric terms this reflects the freeness of the circle action.

In two recent papers [3,4] circle actions on three-dimensional (and, briefly, higher dimensional)
quantum spaces were revisited. Rather than assigning a uniform grade to each generator, separate
generators were given degree by pairwise coprime integers. The zero part of such a grading of
the coordinate algebra of the quantum odd-dimensional sphere corresponds to the quantum weighted
projective space, while the zero part of such a grading of the algebra of the prolonged even dimensional
quantum sphere leads to quantum real weighted projective spaces.

In this paper we focus on two classes of algebrasO(RP2
q(l;−)) (l a positive integer) andO(RP2

q(l; +))

(l an odd positive integer) identified in [3] as fixed points of weighted circle actions on the coordinate
algebra O(Σ3

q) of a non-orientable quantum Seifert manifold described in [2]. Our aim is to construct
quantum U(1)-principal bundles over the corresponding quantum spaces RP2

q(l;±) and describe
associated line bundles. Recently, the importance of such bundles in non-commutative geometry was
once again brought to the fore in [5], where the non-commutative Thom construction was outlined.
As a further consequence of the principality of U(1)-coactions we also deduce that RP2

q(l;±) can be
understood as quotients of Σ3

q by almost free S1-actions.
We begin in Section 2 by reviewing elements of algebraic approach to classical and quantum bundles.

We then proceed to describe algebras O(RP2
q(l;±)) in Section 3. Section 4 contains main results

including construction of principal comodule algebras overO(RP2
q(l;±)). We observe that constructions

albeit very similar in each case yield significantly different results. The principal comodule algebra over
O(RP2

q(l;−)) is non-trivial while that over O(RP2
q(l; +)) turns out to be trivial (this means that all

associated bundles are trivial, hence we do not mention them in the text). Whether it is a consequence
of our particular construction or there is a deeper (topological or geometric) obstruction to constructing
non-trivial principal circle bundles over RP2

q(l; +) remains an interesting open question.
Throughout we work with involutive algebras over the field of complex numbers (but the algebraic

results remain true for all fields of characteristic 0). All algebras are associative and have identity, we
use the standard Hopf algebra notation and terminology and we always assume that the antipode of a
Hopf algebra is bijective. All topological spaces are assumed to be Hausdorff.

2. Review of Bundles in Non-Commutative Geometry

The aim of this section is to set out the topological concepts in relation to topological bundles, in
particular principal bundles. The classical connection is made for interpreting topological concepts in an
algebraic setting, providing a manageable methodology for performing calculations. In particular, the
connection between principal bundles in topology and the algebraic Hopf–Galois condition is described.
The reader familiar with classical theory of bundles can proceed directly to Definition 2.14.

2.1. Topological Aspects of Bundles

As a natural starting point, bundles are defined and topological properties are described. The principal
map is defined and shown that injectivity is equivalent to the freeness condition. The image of the
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canonical map is deduced and necessary conditions are imposed to ensure the bijectivity of this map.
The detailed account of the material presented in this section can be found in [6].

Definition 2.1 A bundle is a triple (E, π,M) where E and M are topological spaces and π : E →M is
a continuous surjective map. Here M is called the base space, E the total space and π the projection of
the bundle.

For each m ∈ M , the fibre over m is the topological space π−1(m), i.e., the points on the total
space which are projected, under π, onto the point m in the base space. A bundle whose fibres are
homeomorphic which satisfies a condition known as local triviality are known as fibre bundles. This is
formally expressed in the next definition.

Definition 2.2 A fibre bundle is a triple (E, π,M, F ) where (E, π,M) is bundle and F is a topological
space such that π−1(m) are homeomorphic to F for each m ∈ M . Furthermore, π satisfies the local
triviality condition.

The local triviality condition is satisfied if for each x ∈ E, there is an open neighourhood U ⊂ B

such that π−1(U) is homeomorphic to the product space U × F , in such a way that π carries over to the
projection onto the first factor. That is the following diagram commutes:

π−1(U)

π

��

φ // U × F

p1
vvmmmmmmmmmmmmmmm

U.

The map p1 is the natural projection U × F → U and φ : π−1(U)→ U × F is a homeomorphism.

Example 2.3 An example of a fibre bundle which is non-trivial, i.e., not a global product space, is the
Möbius strip. It has a circle that runs lengthwise through the centre of the strip as a base B and a line
segment running vertically for the fibre F. The line segments are in fact copies of the real line, hence
each π−1(m) is homeomorphic to R and the Mobius strip is a fibre bundle.

Let X be a topological space which is compact and satisfies the Hausdorff property and G a compact
topological group. Suppose there is a right action / : X ×G→ X of G on X and write x / g = xg.

Definition 2.4 An action of G on X is said to be free if xg = x for any x ∈ X implies that g = e, the
group identity.

With an eye on algebraic formulation of freeness, the principal map FG : X×G→ X×X is defined
as (x, g) 7→ (x, xg).

Proposition 2.5 G acts freely on X if and only if FG is injective.

Proof. “⇐=” Suppose the action is free, hence xg = x implies that g = e. If (x, xg) = (x′, x′g′), then
x = x′ and xg = xg′. Applying the action of g′−1 to both sides of xg = xg′ we get x(gg′−1) = x, which
implies gg′−1 = e by the freeness property, concluding g = g′ and FG is injective as required.
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“=⇒” Suppose FG is injective, so FG(x, g) = FG(x′, g′) or (x, xg) = (x′, x′g′) implies x = x′ and
g = g′. Since x = xe from the properties of the action, if x = xg then g = e from the injectivity
property. tu

Since G acts on X we can define the quotient space X/G,

Y = X/G := {[x] : x ∈ X}, where [x] = xG = {xg : g ∈ G}

The sets xG are called the orbits of the points x. They are defined as the set of elements in X to which
x can be moved by the action of elements of G. The set of orbits of X under the action of G forms a
partition of X , hence we can define the equivalence relation on X as,

x ∼ y ⇐⇒ ∃g ∈ G such that xg = y

The equivalence relation is the same as saying x and y are in the same orbit, i.e., xG = yG. Given any
quotient space, then there is a canonical surjective map

π : X → Y = X/G, x 7→ xG = [x]

which maps elements in X to their orbits. We define the pull-back along this map π to be the set

X ×Y X := {(x, y) ∈ X ×X : π(x) = π(y)}

As described above, the image of the principal map FG contains elements of X in the first leg and the
action of g ∈ G on x in the second leg. To put it another way, the image records elements of x ∈ X in
the first leg and all the elements in the same orbit as this x in the second leg. Hence we can identify the
image of the canonical map as the pull back along π, namely X ×Y X . This is formally proved as a part
of the following proposition.

Proposition 2.6 G acts freely on X if and only if the map

FG
X : X ×G→ X ×Y X, (x, g) 7→ (x, xg)

is bijective.

Proof. First note that the map FG
X is well-defined since the elements x and xg are in the same orbit

and hence map to the same equivalence class under π. Using Proposition 2.5 we can deduce that the
injectivity of FG

X is equivalent to the freeness of the action. Hence if we can show that FG
X is surjective

the proof is complete.
Take (x, y) ∈ X ×Y X . This means π(x) = π(y), which implies x and y are in the same equivalence

class, which in turn means they are in the same orbit. We can therefore deduce that y = xg for some
g ∈ G. So, (x, y) = (x, xg) = FG

X (x, g) implying (x, y) ∈ ImFG
X . Hence ImFG

X = X ×Y X completing
the proof. tu

Definition 2.7 An action ofG onX is said to be principal if the map FG is both injective and continuous
(and such that the inverse image of a compact subset is compact in a case of locally compact spaces).
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Since the injectivity and freeness condition are equivalent, we can interpret principal actions as both
free and continuous actions. We can also deduce that these types of actions give rise to homeomorphisms
FG
X from X × G onto the space X ×X/G X . Principal actions lead to the concept of topological

principle bundles.

Definition 2.8 A principal bundle is a quadruple (X, π,M,G) such that
(a) (X, π,M) is a bundle and G is a topological group acting continuously on X with action / :

X ×G→ X , x / g = xg;
(b) the action / is principal;
(c) π(x) = π(y)⇐⇒ ∃g ∈ G such that y = xg;
(d) the induced map X/G→M is a homeomorphism.

The first two properties tell us that principal bundles are bundles admitting a principal action
of a group G on the total space X , i.e., principal bundles correspond to principal actions. By
Definition (2.7), principal actions occur when the principal map is both injective and continuous, or
equivalently, when the action is free and continuous. The third property ensures that the fibres of the
bundle correspond to the orbits coming from the action and the final property implies that the quotient
space can topologically be viewed as the base space of the bundle.

Example 2.9 Suppose X is a topological space and G a topological group which acts on X from the
right. The triple (X, π,X/G) where X/G is the orbit space and π the natural projection is a bundle. A
principal action of G on X makes the quadruple (X, π,X/G,G) a principal bundle.

We describe a principal bundle (X, π, Y,G) as a G-principal bundle over (X, π, Y ), or X as a
G-principal bundle over Y .

Definition 2.10 A vector bundle is a bundle (E, π,M) where each fibre π−1(m) is endowed with a
vector space structure such that addition and scalar multiplication are continuous maps.

Any vector bundle can be understood as a bundle associated to a principal bundle in the following way.
Consider a G-principal bundle (X, π, Y,G) and let V be a representation space of G, i.e., a (topological)
vector space with a (continuous) left G-action . : G × V → V , (g, v) 7→ g . v. Then G acts from the
right on X × V by

(x, v) / g := (xg, g−1 . v), for all x ∈ X , v ∈ V and g ∈ G

We can define E = (X × V )/G and a surjective (continuous map) πE : E → Y , (x, v) / G 7→ π(x)

and thus have a fibre bundle (E, πE, Y, V ). In the case where V is a vector space, we assume that G acts
linearly on V .

Definition 2.11 A section of a bundle (E, πE, Y ) is a continuous map s : Y → E such that, for all
y ∈ Y ,

πE(s(y)) = y

i.e., a section is simply a section of the morphism πE . The set of sections of E is denoted by Γ(E).
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Proposition 2.12 Sections in a fibre bundle (E, πE, Y, V ) associated to a principal G-bundle X are in
bijective correspondence with (continuous) maps f : X → V such that

f(xg) = g−1 . f(x)

All such G-equivariant maps are denoted by HomG(X, V ).

Proof. Remember that Y = X/G. Given a map f ∈ HomG(X, V ), define the section sf : Y → E ,
xG 7→ (x, f(x)) / G.

Conversely, given s ∈ Γ(E), define fs : X → V by assigning to x ∈ X a unique v ∈ V such that
s(xG) = (x, v) / G. Note that v is unique, since if (x,w) = (x, v) / g, then xg = x and w = g−1 . v.
Freeness implies that g = e, hence w = v. The map fs has the required equivariance property, since the
element of (X × V )/G corresponding to xg is g−1 . v. tu

2.2. Non-Commutative Principal and Associated Bundles

To make the transition from algebraic formulation of principal and associated bundles to
non-commutative setup more transparent, we assume that X is a complex affine variety with an action
of an affine algebraic group G and set Y = X/G (all with the usual Euclidean topology). Let O(X),
O(Y ) and O(G) be the corresponding coordinate rings. Put A = O(X) and H = O(G) and note the
identification O(G × G) ∼= O(G) ⊗ O(G). Through this identification, O(G × G) is a Hopf algebra
with comultiplication: f 7→ (∆f), (∆f)(g, h) = f(gh), counit ε : O(G) → C, ε(f) = f(e), and the
antipode S : H → H , (Sf)(g) = f(g−1).

Using the fact that G acts on X we can construct a right coaction of H on A by %A : A → A ⊗ H ,
%A(a)(x, g) = a(xg). This coaction is an algebra map due to the commutativity of the algebras of
functions involved.

We have viewed the spaces of polynomial functions on X and G, next we view the space of functions
on Y, B := O(Y ), where Y = X/G. B is a subalgebra of A by

π∗ : B → A, b 7→ b ◦ π

where π is the canonical surjection defined above. The map π∗ is injective, since b 6= b′ in O(X/G)

means there exists at least one orbit xG = [x] such that b([x]) 6= b′([x]), but π(x) = [x], so
b(π(x)) 6= b′(π(x)) which implies π∗(b) 6= π∗(b′). Therefore, we can identify B with π∗(B).
Furthermore, a ∈ π∗(B) if and only if

a(xg) = a(x)

for all x ∈ X , g ∈ G. This is the same as

%A(a)(x, g) = (a⊗ 1)(x, g)

for all x ∈ X , g ∈ G, where 1 : G→ C is the unit function 1(g) = 1 (the identity element of H). Thus
we can identify B with the coinvariants of the coaction %A:

B = AcoH := {a ∈ A | %A(a) = a⊗ 1}
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Since B is a subalgebra of A, it acts on A via the inclusion map (ab)(x) = a(x)b(π(x)),
(ba)(x) = b(π(x))a(x). We can identify O(X ×Y X) with O(X)⊗O(Y ) O(X) = A⊗B A by the map

θ(a⊗B a′)(x, y) = a(x)a′(y), (with π(x) = π(y))

Note that θ is well defined because π(x) = π(y). Proposition 2.6 immediately yields

Proposition 2.13 The action of G on X is free if and only if FG∗
X : O(X ×Y X) → O(X × G),

f 7→ f ◦ FG
X is bijective.

In view of the definition of the coaction of H on A, we can identify FG
X
∗ with the canonical map

can : a⊗B a′ 7→ [(x, g) 7→ a(x)a′(x.g)] = a%A(a′)

Thus the action of G on X is free if and only if this purely algebraic map is bijective. In the classical
geometry case we take A = O(X), H = O(G) and B = O(X/G), but in general there is no need to
restrict oneself to commutative algebras (of functions on topological spaces). In full generality this leads
to the following definition.

Definition 2.14 (Hopf–Galois Extensions) Let H be a Hopf algebra and A a right H-comodule algebra
with coaction %A : A→ A⊗H . Let B = AcoH := {b ∈ A | %A(b) = b⊗ 1}, the coinvariant subalgebra
of A. We say that B ⊆ A is a Hopf–Galois extension if the left A-module, right H-comodule map

can : A⊗B A→ A⊗H, a⊗B a′ 7→ a%A(a′)

is an isomorphism.

Proposition 2.13 tells us that when viewing bundles from an algebraic perspective, the freeness
condition is equivalent to the Hopf–Galois extension property. Hence, the Hopf–Galois extension
condition is a necessary condition to ensure a bundle is principal. Not all information about a topological
space is encoded in a coordinate algebra, so to make a fuller reflection of the richness of the classical
notion of a principal bundle we need to require conditions additional to the Hopf–Galois property.

Definition 2.15 Let H be a Hopf algebra with bijective antipode and let A be a right H-comodule
algebra with coaction %A : A→ A⊗H . Let B denote the coinvariant subalgebra of A. We say that A is
a principal H-comodule algebra if:

(a) B ⊆ A is a Hopf–Galois extension;
(b) the multiplication map B ⊗A→ A, b⊗ a 7→ ba, splits as a left B-module and right H-comodule

map (the equivariant projectivity condition).

As indicated already in [7–9], principal comodule algebras should be understood as principal bundles
in noncommutative geometry. In particular, if H is the Hopf algebra associated to a C∗-algebra of
functions on a quantum group [10], then the existence of the Haar measure together with the results of [8]
mean that condition (a) in Definition 2.15 implies condition (b) (i.e., the freeness of the coaction implies
its principality).

The following characterisation of principal comodule algebras [11,12] gives an effective method for
proving the principality of coaction.
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Proposition 2.16 A right H-comodule algebra A with coaction %A : A → A ⊗ H is principal if and
only if it admits a strong connection form, that is if there exists a map ω : H −→ A⊗ A, such that

ω(1) = 1⊗ 1 (1a)

µ ◦ ω = η ◦ ε (1b)

(ω ⊗ id) ◦∆ = (id⊗ %) ◦ ω (1c)

(S ⊗ ω) ◦∆ = (σ ⊗ id) ◦ (%⊗ id) ◦ ω (1d)

Here µ : A ⊗ A → A denotes the multiplication map, η : C → A is the unit map, ∆ : H → H ⊗H is
the comultiplication, ε : H → C counit and S : H → H the (bijective) antipode of the Hopf algebra H ,
and σ : A⊗H → H ⊗ A is the flip.

Proof. If a strong connection form ω exists, then the inverse of the canonical map can (see
Definition 2.14 ) is the composite

A⊗H id⊗ω // A⊗ A⊗ A µ⊗id // A⊗ A // A⊗B A

while the splitting of the multiplication map (see Definition 2.15 (b)) is given by

A
%A

// A⊗H id⊗ω // A⊗ A⊗ A µ⊗id // B ⊗ A

Conversely, if B ⊆ A is a principal comodule algebra, then ω is the composite

H
η⊗id // A⊗H can−1

// A⊗B A
id⊗s // A⊗B B ⊗ A

∼= // A⊗ A

where s is the left B-linear right H-colinear splitting of the multiplication B ⊗ A→ A. tu

Example 2.17 Let A be a right H-comodule algebra. The space of C-linear maps Hom(H,A) is an
algebra with the convolution product

f ⊗ g 7→ µ ◦ (f ⊗ g) ◦∆

and unit η ◦ε. A is said to be cleft if there exists a right H-colinear map j : H → A that has an inverse in
the convolution algebra Hom(H,A) and is normalised so that j(1) = 1. Writing j−1 for the convolution
inverse of j, one easily observes that

ω : H → A⊗ A, h 7→ (j−1 ⊗ j)(∆(h))

is a strong connection form. Hence a cleft comodule algebra is an example of a principal comodule
algebra. The map j is called a cleaving map or a normalised total integral.

In particular, if j : H → A is an H-colinear algebra map, then it is automatically convolution
invertible (as j−1 = j ◦ S) and normalised. A comodule algebra A admitting such a map is termed a
trivial principal comodule algebra.
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Example 2.18 Let H be a Hopf algebra of the compact quantum group. By the Woronowicz
theorem [10], H admits an invariant Haar measure, i.e., a linear map Λ : H → C such that, for all
h ∈ H , ∑

h(1)Λ(h(2)) = ε(h), Λ(1) = 1

where ∆(h) =
∑
h(1) ⊗ h(2) is the Sweedler notation for the comultiplication. Next, assume that the

lifted canonical map:
can : A⊗ A→ A⊗H, a⊗ a′ 7→ a%(a′) (2)

is surjective, and write

` : H → A⊗ A, `(h) =
∑

`(h)[1] ⊗ `(h)[2]

for the C-linear map such that can(`(h)) = 1 ⊗ h, for all h ∈ H . Then, by the Schneider theorem [8],
A is a principal H-comodule algebra. Explicitly, a strong connection form is

ω(h) =
∑

Λ
(
h(1)`

(
h(2)

)
[1]

(1)

)
Λ
(
`
(
h(2)

)
[2]

(1)S
(
h(3)

))
`(h(2))

[1]
(0) ⊗ `(h(2))

[2]
(0)

where the coaction is denoted by the Sweedler notation %A(a) =
∑
a(0) ⊗ a(1); see [13].

Having described non-commutative principal bundles, we can look at the associated vector bundles.
First we look at the classical case and try to understand it purely algebraically. Start with a vector bundle
(E, πE, Y, V ) associated to a principal G-bundle X . Since V is a vector representation space of G, also
the set HomG(X, V ) is a vector space. Consequently Γ(E) is a vector space. Furthermore, HomG(X, V )

is a left module of B = O(Y ) with the action (bf)(x) = b(πE(x))f(x). To understand better the way in
which B-module Γ(E) is associated to the principal comodule algebra O(X) we recall the notion of the
cotensor product.

Definition 2.19 Given a Hopf algebra H , right H-comodule A with coaction %A and left H-comodule
V with coaction V%, the cotensor product is defined as an equaliser:

A�HV // A⊗ V
%A⊗id //

id⊗V%
// A⊗H ⊗ V

If A is an H-comodule algebra, and B = AcoH , then A�HV is a left B-module with the action
b(a�v) = ba�v. In particular, in the case of a principal G-bundle X over Y = X/G, for any left
O(G)-comodule V the cotensor product O(X)�O(G)V is a left O(Y )-module.

The following proposition indicates the way in which cotensor products enter description of
associated bundles.

Proposition 2.20 Assume that the fibre V of a vector bundle (E, πE, Y, V ) associated to a principal
G-bundle X is finite dimensional. View V as a left comodule of O(G) with the coaction V% : v 7→∑
v(−1)⊗v(0) (summation implicit) determined by

∑
v(−1)(g)v(0) = g−1.v. Then the leftO(Y )-module

of sections Γ(E) is isomorphic to the left O(Y )-module O(X)�O(G)V .
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Proof. First identify Γ(E) with HomG(X, V ). Let {vi ∈ V ∗, vi ∈ V } be a (finite) dual basis. Take
f ∈ HomG(X, V ), and define θ : HomG(X, V )→ O(X)�O(G)V by θ(f) =

∑
i vi ◦ f ⊗ vi.

In the converse direction, define a left O(Y )-module map

θ−1 : O(X)�O(G)V → HomG(X, V ), a�v 7→ a(−)v

One easily checks that the constructed map are mutual inverses. tu

Moving away from commutative algebras of functions on topological spaces one uses
Proposition 2.20 as the motivation for the following definition.

Definition 2.21 Let A be a principal H-comodule algebra. Set B = AcoH and let V be a left
H-comodule. The left B-module Γ = A�HV is called a module associated to the principal comodule
algebra A.

Γ is a projective left B-module, and if V is a finite dimensional vector space, then Γ is a finitely
generated projective left B-module. In this case it has the meaning of a module of sections over a
non-commutative vector bundle. Furthermore, its class gives an element in the K0-group of B. If A is
a cleft principal comodule algebra, then every associated module is free, since A ∼= B ⊗ H as a left
B-module and right H-comodule, so that

Γ = A�HV ∼= (B ⊗H)�HV ∼= B ⊗ (H�HV ) ∼= B ⊗ V

3. Weighted Circle Actions on Prolonged Spheres.

In this section we recall the definitions of algebras we study in the sequel.

3.1. Circle Actions and Z-Gradings.

The coordinate algebra of the circle or the group U(1), O(S1) = O(U(1)) can be identified with the
∗-algebra C[u, u∗] of Laurent polynomials in a unitary variable u (unitary means u−1 = u∗). As a Hopf
∗-algebra C[u, u∗], is generated by the grouplike element u, i.e.,

∆(u) = u⊗ u, ε(u) = 1, S(u) = u∗

and thus it can be understood as the group algebra CZ. As a consequence of this interpretation of
C[u, u∗], an algebra A is a C[u, u∗]-comodule algebra if and only if A is a Z-graded algebra,

A =
⊕
n∈Z

An, An := {a ∈ A | %A(a) = a⊗ un}, AmAn ⊆ Am+n

A0 is the coinvariant subalgebra of A. Since C[u, u∗] is spanned by grouplike elements, any convolution
invertible map j : C[u, u∗]→ Amust assign a unit (invertible element) ofA to un. Furthermore, colinear
maps are simply the Z-degree preserving maps, where deg(u) = 1. Put together, convolution invertible
colinear maps j : C[u, u∗]→ A are in one-to-one correspondence with sequences

(an : n ∈ Z, an is a unit in A, deg(an) = n)
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3.2. The O(Σ2n+1
q ) and O(RPq(l0, ..., ln)) Coordinate Algebras

Let q be a real number, 0 < q < 1. The coordinate algebra O(S2n
q ) of the even-dimensional quantum

sphere is the unital complex ∗-algebra with generators z0, z1, . . . , zn, subject to the following relations:

zizj = qzjzi for i < j, ziz
∗
j = qz∗j zi for i 6= j (3a)

ziz
∗
i = z∗i zi + (q−2 − 1)

n∑
m=i+1

zmz
∗
m,

n∑
m=0

zmz
∗
m = 1, z∗n = zn (3b)

O(S2n
q ) is a Z2-graded algebra with deg(zi) = 1 and so is C[u, u∗] (with deg(u) = 1). In other words,

O(S2n
q ) is a right CZ2-comodule algebra and C[u, u∗] is a left CZ2-comodule algebra, hence one can

consider the cotensor product algebra O(Σ2n+1
q ) := O(S2n

q )�CZ2C[u, u∗]. It was shown in [2] that, as
a unital ∗-algebra, O(Σ2n+1

q ) has generators ζ0, ..., ζn and a central unitary ξ which are related in the
following way:

ζiζj = qζjζi for i < j, ζiζ
∗
j = qζ∗j ζi for i 6= j (4a)

ζiζ
∗
i = ζ∗i ζi + (q−2 − 1)

n∑
m=i+1

ζmζ
∗
m,

n∑
m=0

ζmζ
∗
m = 1, ζ∗n = ζnξ (4b)

For any choice of n + 1 pairwise coprime numbers l0, ..., ln one can define the coaction of the Hopf
algebra O(U(1)) = C[u, u∗] on O(Σ2n+1

q ) as

%l0,...,ln : O(Σ2n+1
q )→ O(Σ2n+1

q )⊗ C[u, u∗], ζi 7→ ζi ⊗ uli , ξ 7→ ξ ⊗ u−2ln (5)

for i = 0, 1, ..., n. This coaction is then extended to the whole of O(Σ2n+1
q ) so that O(Σ2n+1

q ) is a right
C[u, u∗]-comodule algebra.

The algebra of coordinate functions on the quantum real weighted projective space is now defined as
the subalgebra of O(Σ2n+1

q ) containing all coinvariant elements, i.e.,

O(RPq(l0, ..., ln)) = O(Σ2n+1
q )O(U(1)) := {x ∈ O(Σ2n+1

q ) : %l0,...,ln(x) = x⊗ 1}

3.3. The 2D Quantum Real Projective Space O(RPq(k, l)) ⊂ O(Σ3
q)

In this paper we consider two-dimensional quantum real weighted projective spaces, i.e., the algebras
obtained from the coordinate algebraO(Σ3

q) which is generated by ζ0, ζ1 and central unitary ξ such that

ζ0ζ1 = qζ1ζ0, ζ0ζ
∗
1 = qζ∗1ζ0 (6a)

ζ0ζ
∗
0 = ζ∗0ζ0 + (q−2 − 1)ζ2

1ξ, ζ0ζ
∗
0 + ζ2

1ξ = 1, ζ∗1 = ζ1ξ (6b)

The linear basis of O(Σ3
q) is

{ζr0ζs1ξt, ζ∗r0 ζ
s
1ξ
t, | r, s,∈ N, t ∈ Z} (7)

For a pair k, l of coprime positive integers, the coaction %k,l is given on generators by

ζ0 7→ ζ0 ⊗ uk, ζ1 7→ ζ1 ⊗ ul, ξ 7→ ξ ⊗ u−2l (8)
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and extended to the whole of O(Σ3
q) so that the coaction is a ∗-algebra map. We denote the comodule

algebra O(Σ3
q) with coaction %k,l by O(Σ3

q(k, l)).
It turns out that the two dimensional quantum real projective spaces split into two cases depending on

not wholly the parameter k but instead whether k is either even or odd, and hence only cases k = 1 and
k = 2 need to be considered [3]. We describe these cases presently.

3.3.1. The Odd or Negative Case

For k = 1, O(RP2
q(l;−)) is a polynomial ∗-algebra generated by a, b, c− which satisfy the relations:

a = a∗, ab = q−2lba, ac− = q−4lc−a, b2 = q3lac−, bc− = q−2lc−b (9a)

bb∗ = q2la
l−1∏
m=0

(1− q2ma), b∗b = a
l∏

m=1

(1− q−2ma) (9b)

b∗c− = q−l
l∏

m=1

(1− q−2ma)b, c−b
∗ = qlb

l−1∏
m=0

(1− q2ma) (9c)

c−c
∗
− =

2l−1∏
m=0

(1− q2ma), c∗−c− =
2l∏

m=1

(1− q−2ma) (9d)

The embedding of generators ofO(RP2
q(l;−)) intoO(Σ3

q) or the isomorphism ofO(RP2
q(l;−)) with the

coinvariants of O(Σ3
q(1, l)) is provided by

a 7→ ζ2
1ξ, b 7→ ζ l0ζ1ξ, c− 7→ ζ2l

0 ξ (10)

Up to equivalence O(RP2
q(l;−)) has the following irreducible ∗-representations. There is a family of

one-dimensional representations labelled by θ ∈ [0, 1) and given by

πθ(a) = 0, πθ(b) = 0, πθ(c−) = e2πiθ (11)

All other representations are infinite dimensional, labelled by r = 1, . . . , l, and given by

πr(a)ern = q2(ln+r)ern, πr(b)e
r
n = qln+r

l∏
m=1

(
1− q2(ln+r−m)

)1/2
ern−1, πr(b)e

r
0 = 0 (12a)

πr(c−)ern =
2l∏

m=1

(
1− q2(ln+r−m)

)1/2
ern−2, πr(c−)er0 = πr(c−)er1 = 0 (12b)

where ern, n ∈ N, is an orthonormal basis for the representation spaceHr
∼= l2(N).

The C∗-algebra of continuous functions on RP2
q(l;−), obtained as the completion of these bounded

representations, can be identified with the pullback of l-copies of the quantum real projective plane RP2
q

introduced in [14].
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3.3.2. The Even or Positive Case

For k = 2 and hence l odd, O(RP2
q(l; +)) is a polynomial ∗-algebra generated by a, c+ which satisfy

the relations:
a∗ = a, ac+ = q−2lc+a (13a)

c+c
∗
+ =

l−1∏
m=0

(1− q2ma), c∗+c+ =
l∏

m=1

(1− q−2ma) (13b)

The embedding of generators ofO(RP2
q(l; +)) intoO(Σ3

q) or the isomorphism ofO(RP2
q(l; +)) with the

coinvariants of O(Σ3
q(2, l)) is provided by

a 7→ ζ2
1ξ, c+ 7→ ζ l0ξ (14)

Similarly to the odd k case, there is a family of one-dimensional representations of O(RP2
q(l; +))

labelled by θ ∈ [0, 1) and given by

πθ(a) = 0, πθ(c+) = e2πiθ (15)

All other representations are infinite dimensional, labelled by r = 1, . . . , l, and given by

πr(a)ern = q2(ln+r)ern, πr(c+)ern =
l∏

m=1

(
1− q2(ln+r−m)

)1/2
ern−1, πr(c+)er0 = 0 (16)

where ern, n ∈ N is an orthonormal basis for the representation spaceHr
∼= l2(N).

The C∗-algebra C(RP2
q(l; +)) of continuous functions on RP2

q(l; +), obtained as the completion of
these bounded representations, can be identified with the pullback of l-copies of the quantum disk Dq

introduced in [15]. Furthermore,C(RP2
q(l; +)) can also be understood as the quantum double suspension

of l points in the sense of [16, Definition 6.1].

4. Quantum Real Weighted Projective Spaces and Quantum Principal Bundles

The general aim of this paper is to construct quantum principal bundles with base spaces given by
O(RP2

q(l;±)) and fibre structures given by the circle Hopf algebra O(S1) ∼= C[u, u∗]. The question
arises as to which quantum space (i.e., a C[u, u∗]-comodule algebra with coinvariants isomorphic to
O(RP2

q(l;±))) we should consider as the total space within this construction. We look first at the
coactions of C[u, u∗] on O(Σ3

q) that define O(RPq(k, l)), i.e., at the comodule algebras O(Σ3
q(k, l)).

4.1. The (Non-)Principality of O(Σ3
q(k, l))

Theorem 4.1 A = O(Σ3
q(k, l)) is a principal comodule algebra if and only if (k, l) = (1, 1).

Proof. As explained in [2] O(Σ3
q(1, 1)) is a prolongation of the CZ2-comodule algebra O(S2

q ). The
latter is a principal comodule algebra (over the quantum real projective plane O(RP2

q) [14]) and since
a prolongation of a principal comodule algebra is a principal comodule algebra [8, Remark 3.11], the
coaction %1,1 is principal as stated.
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In the converse direction, we aim to show that the canonical map is not an isomorphism by showing
that the image does not contain 1⊗u, i.e., it cannot be surjective since we know 1⊗u is in the codomain.
We begin by identifying a basis for the algebraO(Σ3

q)⊗O(Σ3
q); observing the relations in Equations (6a)

and (6b) it is clear that a basis for O(Σ3
q(k, l)) is given by elements of the form

b1 = b1(p1, p2, p3) = ζp10 ζ
p2
1 ξ

p3 , b2 = b2(p̄1, p̄2, p̄3) = ζ p̄10 ζ
p̄2
1 ξ

¯∗p3

b3 = b3(q1, q2, q3) = ζ∗q10 ζq21 ξ
q3 , b4 = b4(q̄1, q̄2, q̄3) = ζ∗q̄10 ζ q̄21 ξ

∗q̄3

noting that all powers are non-negative. Hence a basis for O(Σ3
q) ⊗ O(Σ3

q) is given by elements of the
form bi ⊗ bj , where i, j ∈ {1, 2, 3, 4}. Applying the canonial map gives

can(bi ⊗ bj) = bi%(bj) = bibj ⊗ udeg(bj), where i, j ∈ {1, 2, 3, 4} (17)

where % means %k,l for simplicity of notation. The next stage is to construct all possible elements in
O(Σ3

q) ⊗ O(Σ3
q) which map to 1 ⊗ u. To obtain the identity in the first leg we must use one of the

following relations:

ζm0 ζ
∗
0
n =


∏m−1

p=0 (1− q2pζ2
1ξ) when m = n

ζm−n0

∏n−1
p=0 (1− q2pζ2

1ξ) when m > n∏m−1
p=0 (1− q2pζ2

1ξ)ζ
∗
0
n−m when n > m

(18a)

ζ∗0
nζm0 =


∏m

p=1 (1− q−2pζ2
1ξ) when m = n

ζ∗0
n−m∏m

p=1 (1− q−2pζ2
1ξ) when n > m∏n

p=1 (1− q−2pζ2
1ξ)ζ

m−n when n < m

(18b)

or
ξξ∗ = ξ∗ξ = 1

We see that to obtain identity in the first leg we require the powers of ζ0 and ζ∗0 to be equal. We now
construct all possible elements of the domain which map to 1⊗ u after applying the canonical map.

Case 1: use the first relation to obtain ζm0 ζ
∗m
0 (m > 0); this can be done in fours ways. First, using

b1%(b3), b1%(b4), b2%(b3) and b2%(b4). Now,

b1%(b3) ∼ ζp10 ζ
∗q1
0 ζp2+q2

1 ξp3+q3 ⊗ u−kq1+lq2−2lq3 =⇒ p1 = q1 = m, p2 = q2 = 0, p3 = q3 = 0

and
−kq1 + lq2 − 2lq3 = 1 =⇒ −mk = 1

hence no possible terms. A similar calculation for the three other cases shows that 1 ⊗ u cannot be
obtained as an element of the image of the canonical map in this case.

Case 2: use the second relation to obtain ζ∗n0 ζn0 (n > 0); this can be done in four ways b3%(b1), b3%(b2),
b3%(b2) and b4%(b2). Now,

b3%(b1) ∼ ζ∗q10 ζp10 ζ
p2+q2
1 ξp3+q3 ⊗ ukp1+lp2−2lp3 =⇒ p1 = q1 = n, p2 = q2 = 0, p3 = q3 = 0
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and
nk = 1 =⇒ n = 1 and k = 1

Note that k = 1 is not a problem provided l is not equal to 1. This is reviewed at the next stage of the
proof. The same conclusion is reached in all four cases.

In all possibilities ζ∗n0 ζn0 appears only when n = 1, in which case the relation simplifies to
ζ∗0ζ0 = 1 − q−2ζ2

1ξ, so the next stage involves constructing elements in the domain which map to ζ2
1ξ.

There are eight possibilities altogether to be checked: b1%(b1), b1%(b2), b1%(b3), b1%(b4), b3%(b1), b3%(b2),
b3%(b3) and b3%(b4). The first case gives:

b1%(b1) ∼ ζ2p1
0 ζ2p2

1 ξ2p3 ⊗ ukp1+lp2−2lp3 =⇒ 2p1 = 0, 2p2 = 2, 2p3 = 1

and
kp1 + lp2 − 2lp3 = 1 =⇒ p1 = 0, p2 = 1, p3 has no possible values and l = 1.

Hence 1 ⊗ u cannot be obtained as an element in the image in this case. Similar calculations for the
remaining possibilities show that either 1⊗ u is not in the image of the canonical map, or that if 1⊗ u is
in the image then k = l = 1.

Case 3: finally, it seems possible that 1 ⊗ u, using the third relation, could be in the image of the
canonical map. All possible elements in the domain which could potentially map to this element are
constructed and investigated. There are eight possibilities: b1%(b2), b1%(b4), b2%(b1), b2%(b3), b3%(b2),
b3%(b4), b4%(b1) and b4%(b3). The first possibility comes out as

b1%(b2) ∼ ζp1+p̄1
0 ζp2+p̄2

1 ξp3ξ∗p̄3 ⊗ ukp̄1+lp̄2+2lp̄3 =⇒ p1 = p̄1 = 0, p2 = p̄2 = 0, p3 = p̄3 = 1

Also
kp̄1 + lp̄2 + 2lp̄3 = 1 =⇒ 2l = 1

which implies there are no terms. The same conclusion can be reached for the remaining relations.
This concludes that 1 ⊗ u, which is contained in O(Σ3

q) ⊗ ⊗C[u, u∗], is not in the image of the
canonical map, proving that this map is not surjective and ultimately not an isomorphism when k and l
are both not simultaneously equal to 1, completing the proof thatO(Σ3

q(k, l)) is not a principal comodule
algebra in this case. tu

Theorem 4.1 tells us that if we use O(Σ3
q(k, l)) as our total space, then we are forced to put

(k, l) = (1, 1) to ensure that the required Hopf–Galois condition does not fail. A consequence of this
would be the generators ζ0 and ζ1 would have Z-degree 1. This suggests that the comodule algebra
O(Σ3

q(k, l)) is too restrictive as there is no freedom with the weights k or l, and that we should in
fact consider a subalgebra of O(Σ3

q) which admits a O(S1)-coaction that would offer some choice.
Theorem 4.1 indicates that the desired subalgebra should have generators with grades 1 to ensure the
Hopf–Galois condition is satisfied. This process is similar to that followed in [4], where the bundles
over the quantum teardrops WPq(1, l) have the total spaces provided by the quantum lens spaces and
structure groups provided by the circle group U(1). We follow a similar approach in the sense that we
viewO(Σ3

q(k, l)) as a rightH-comodule algebra, whereH is the Hopf algebra of a suitable cyclic group.
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4.2. The Negative Case O(RP2
q(l;−))

4.2.1. The Principal O(U(1))-Comodule Algebra over O(RP2
q(l;−))

Take the group Hopf ∗-algebra H = CZl which is generated by unitary grouplike element w and
satisfies the relation wl = 1. The algebra O(Σ3

q) is a right CZl-comodule ∗-algebra with coaction

O(Σ3
q)→ O(Σ3

q)⊗ CZl, ζ0 7→ ζ0 ⊗ w, ζ1 7→ ζ1 ⊗ 1, ξ 7→ ξ ⊗ 1 (19)

Note that the Zl-degree of the generator ξ is determined by the degree of ζ1: the relation ζ∗1 = ζ1ξ and
that the coaction must be compatible with all relations imply that deg(ζ∗1 ) = deg(ζ1) + deg(ξ). Since ζ1

has degree zero, ξ must also have degree zero.
The next stage of the process is to find the coinvariant elements of O(Σ3

q) given the coaction
defined above.

Proposition 4.2 The fixed point subalgebra of the above coaction is isomorphic to the algebra
O(Σ3

q(l;−)), generated by x, y and z subject to the following relations

y∗ = yz, xy = qlyx, xx∗ =
l−1∏
p=0

(1− q2py2z), x∗x =
l∏

p=1

(1− q−2py2z) (20)

and z is central unitary. The embedding of O(Σ3
q(l;−)) into O(Σ3

q) is given by x 7→ ζ l0, y 7→ ζ1 and
z 7→ ξ

Proof. Clearly ζ1, ξ, ζ l0 and ζ∗l0 are coinvariant elements of O(Σ3
q). Apply the coaction to the basis (7)

to obtain
ζr0ζ

s
1ξ
t 7→ ζr0ζ

s
1ξ
t ⊗ wr, ζ∗r0 ζ

s
1ξ
t 7→ ζ∗r0 ζ

s
1ξ
t ⊗ w−r

These elements are coinvariant, provided r = r′l. Hence every coinvariant element is a polynomial in
ζ1, ξ, ζ l0 and ζ∗l0 . Equations (20) are now easily derived from Equations (6) and (18). tu

The algebra O(Σ3
q(l;−)) is a right O(U(1))-comodule coalgebra with coaction defined as

ϕ : O(Σ3
q(l;−))→ O(Σ3

q(l;−))⊗O(U(1)), x 7→ x⊗ u, y 7→ y⊗ u, z 7→ z⊗ u−2 (21)

Note in passing that the second and third relations in Equations (20) tell us that the grade of z must be
double the grade of y∗ since xx∗ and x∗x have degree zero, and so

deg(y2z) = deg(y2) + deg(z) = 2 deg(y) + deg(z) = 0 =⇒ deg(z) = −2 deg(y) = 2 deg(y∗)

Proposition 4.3 The algebra O(Σ3
q(l;−))coO(U(1)) of invariant elements under the coaction ϕ is

isomorphic to the O((RPq(l;−)).

Proof. We aim to show that the ∗-subalgebra of O(Σ3
q(l;−)) of elements which are invariant

under the coaction is generated by x2z, xyz and y2z. The isomorphism of O(Σ3
q(l;−))coO(U(1))

with O((RPq(l;−)) is then obtained by using the embedding of O(Σ3
q(l;−)) in O(Σ3

q) described in
Proposition 4.2, i.e., y2z 7→ ζ1ξ 7→ a, xyz 7→ ζ l0ζ1ξ 7→ b and x2z 7→ ζ2l

0 ξ 7→ c−.
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The algebra O(Σ3
q(l;−)) is spanned by elements of the type xryszt, x∗ryszt, where r, s ∈ N and

t ∈ Z. Applying the coaction ϕ to these basis elements gives xryszt 7→ xryszt ⊗ ur+s−2t. Hence xryszt

is ϕ-invariant if and only if 2t = r + s. If r is even, then s is even and

xryszt = xrysz(r+s)/2 = (x2z)r/2(y2z)s/2

If r is odd, then so is s and

xryszt = xrysz(r+s)/2 ∼ (x2z)(r−1)/2(y2z)(s−1)/2(xyz)

The case of x∗ryszt is dealt with similarly, thus proving that all coinvariants of ϕ are polynomials in x2z,
xyz, y2z and their ∗-conjugates. tu

The main result of this section is contained in the following theorem.

Theorem 4.4 O(Σ3
q(l;−)) is a non-cleft principal O(U(1))-comodule algebra over O(RPq(l; +)) via

the coaction ϕ.

Proof. To prove that O(Σ3
q(l;−)) is a principal O(U(1))-comodule algebra over O(RPq(l; +)) we

employ Proposition 2.16 and construct a strong connection form as follows.
Define ω : O(U(1))→ O(Σ3

q(l;−))⊗O(Σ3
q(l;−)) recursively as follows.

ω(1) = 1⊗ 1 (22a)

ω(un) = x∗ω(un−1)x−
l∑

m=1

(−1)mq−m(m+1)

(
l

m

)
q−2

y2m−1zmω(un−1)y (22b)

ω(u−n) = xω(u−n+1)x∗ −
l∑

m=1

(−1)mqm(m−1)

(
l

m

)
q2
y2m−1zm−1ω(u−n+1)yz (22c)

where n ∈ N and, for all s ∈ R, the deformed or q-binomial coefficients
(
l
m

)
s

are defined by the following
polynomial equality in indeterminate t

l∏
m=1

(1 + sm−1t) =
l∑

m=0

sm(m−1)/2

(
l

m

)
s

tm (23)

The map ω has been designed such that normalisation property, Equation (1a), is automatically satisfied.
To check Equation (1b) for ω given by Equation (22b) and (22c) takes a bit more work. We use proof by
induction, but first have to derive an identity to assist with the calculation. Set s = q−2, t = −q−2y∗y in
Equation (23) to arrive at

l∑
m=1

(−1)mq−m(m+1)

(
l

m

)
q−2

y∗mym =
l∏

m=1

(1 + q−2(m−1)(−q−2y∗y))− 1

which, using Equations (20), simplifies to

l∑
m=1

(−1)mq−m(m+1)

(
l

m

)
q−2

y2mzm =
l∏

m=1

(1− q−2my2z)− 1 = x∗x− 1 (24)
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Now to start the induction process we consider the case n = 1. By Equation (24) (µ ◦ ω)(u) = 1

providing the basis. Next, we assume that the relation holds for n = N , that is (µ ◦ ω)(uN) = 1, and
consider the case n = N + 1,

ω(uN+1) = x∗ω(uN)x−
l∑

m=1

(−1)mq−m(m+1)

(
l

m

)
q−2

y2m−1zmω(uN)y

applying the multiplication map to both sides and using the induction hypothesis,

(m ◦ ω)(uN+1) = x∗x−
l∑

m=1

(−1)mq−m(m+1)

(
l

m

)
q−2

y2mzm = x∗x− (x∗x− 1) = 1

showing Equation (1b) holds for all un ∈ O(U(1)), where n ∈ N. To show this property holds for
each u∗n = u−n we adopt the same strategy; this is omitted from the proof as it does not provide further
insight, instead repetition of similar arguments.

Equation (1c): this is again proven by induction. Applying (id⊗ ϕ) to ω(u) gives

x∗ ⊗ x⊗ u −
l∑

m=1

(−1)mq−m(m−1)

(
l

m

)
q2
y2m−1zm ⊗ y ⊗ u

= (x∗ ⊗ x−
l∑

m=1

(−1)mq−m(m−1)

(
l

m

)
q2
y2m−1zm ⊗ y)⊗ u

= ω(u)⊗ u = (ω ⊗ id) ◦∆(u)

This shows that Equation (1c) holds for ω given by Equation (22b) when n = 1. We now assume the
property holds for n = N − 1, hence (id ⊗ ϕ) ◦ w(uN−1) = (ω ⊗ id) ◦∆(uN−1) = ω(uN−1) ⊗ uN−1,
and consider the case n = N .

(id⊗ ϕ)(w(uN)) = (id⊗ ϕ)(x∗ω(uN−1)x−
l∑

m=1

(−1)mq−m(m−1)

(
l

m

)
q−2

y2m−1zmω(uN−1)y)

= x∗((id⊗ ϕ)(ω(uN−1)x))

−
l∑

m=1

(−1)mq−m(m−1)

(
l

m

)
q−2

y2m−1zm((id⊗ ϕ)(ω(uN−1)y)

= x∗ω(uN−1)x⊗ uN −
l∑

m=1

(−1)mq−m(m−1)

(
l

m

)
q−2

y2m−1zmω(uN−1)y ⊗ uN

= ω(uN)⊗ uN = (ω ⊗ id) ◦∆(uN)

hence Equation (1c) is satisfied for all un ∈ O(U(1)) where n ∈ N. The case for u∗n is proved in
a similar manner, as is Equation (1d). Again, the details are omitted as the process is identical. This
completes the proof that ω is a strong connection form, hence O(Σ3

q(l,−)) is a principal comodule
algebra.

Following the discussion of Section 3.1, to determine whether the constructed comodule algebra is
cleft we need to identify invertible elements in O(Σ3

q(l,−)). Since

O(Σ3
q(l,−)) ⊂ O(Σ3

q)
∼= O(S2

q )�CZ2O(U(1)) ⊂ O(S2
q )⊗O(U(1))
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and the only invertible elements in the algebraic tensor O(S2
q )⊗O(U(1)) are scalar multiples of 1⊗ un

for n ∈ N, we can conclude that the only invertible elements in O(S2
q )�CZ2O(U(1)) are the elements of

the form 1 ⊗ un. These elements correspond to the elements ξn in O(Σ3
q), which in turn correspond to

zn in O(Σ3
q(l,−)).

Suppose j : H → A is the cleaving map; to ensure the map is convolution invertible we are forced
to put u 7→ zn. Since u has degree 1 in H = O(U(1)) and z has degree −2 in O(Σ3

q(l,−)), the map
j fails to preserve the degrees, hence it is not colinear. Therefore, O(Σ3

q(l,−)) is a non-cleft principal
comodule algebra. tu

4.2.2. Almost Freeness of the Coaction %1,l

At the classical limit, q → 1, the algebras O(RPq(l;−)) represent singular manifolds or orbifolds.
It is known that every orbifold can be obtained as a quotient of a manifold by an almost free action.
The latter means that the action has finite (rather than trivial as in the free case) stabiliser groups. As
explained in Section 2, on the algebraic level, freeness is encoded in the bijectivity of the canonical
map can, or, more precisely, in the surjectivity of the lifted canonical map can (Equation (2)). The
surjectivity of can means the triviality of the cokernel of can, thus the size of the cokernel of can can
be treated as a measure of the size of the stabiliser groups. This leads to the following notion proposed
in [4].

Definition 4.5 Let H be a Hopf algebra and let A be a right H-comodule algebra with coaction %A :

A→ A⊗H . We say that the coaction is almost free if the cokernel of the (lifted) canonical map

can : A⊗ A→ A⊗H, a⊗ a′ 7→ a%A(a′)

is finitely generated as a left A-module.

Although the coaction ϕ defined in the preceding section is free, at the classical limit q → 1

O(Σ3
q(l,−)) represents a singular manifold or an orbifold. On the other hand, at the same limit, O(Σ3

q)

corresponds to a genuine manifold, one of the Seifert three-dimensional non-orientable manifolds;
see [17]. It is therefore natural to ask, whether the coaction %1,l of O(U(1)) on O(Σ3

q) which has
O(RPq(l;−)) as fixed points is almost free in the sense of Definition 4.5.

Proposition 4.6 The coaction %1,l is almost free.

Proof. Denote by ι− : O(Σ3
q(l,−)) ↪→ O(Σ3

q), the ∗-algebra embedding described in Proposition 4.2.
One easily checks that the following diagram

O(Σ3
q(l,−))

ι− //

ϕ

��

O(Σ3
q)

%1,l

��
O(Σ3

q(l,−))⊗O(U(1))
ι−⊗(−)l

// O(Σ3
q)⊗O(U(1))

where (−)l : u → ul, is commutative. The principality or freeness of ϕ proven in Theorem 4.4 implies
that 1 ⊗ uml ∈ Im(can), m ∈ Z, where can is the (lifted) canonical map corresponding to coaction
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%1,l. This means that O(Σ3
q) ⊗ C[ul, u−l] ⊆ Im(can). Therefore, there is a short exact sequence of left

O(Σ3
q)-modules

(O(Σ3
q)⊗ C[u, u−1])/(O(Σ3

q)⊗ C[ul, u−l]) // coker(can) // 0

The left O(Σ3
q)-module (O(Σ3

q)) ⊗ C[u, u−1])/(O(Σ3
q) ⊗ C[ul, u−l]) is finitely generated, hence so is

coker(can). tu

4.2.3. Associated Modules or Sections of Line Bundles

One can construct modules associated to the principal comodule algebra O(Σ3
q(l,−)) following the

procedure outlined at the end of Section 2.2; see Definition 2.21.
Every one-dimensional comodule of O(U(1)) = C[u, u∗] is determined by the grading of a basis

element of C, say 1. More precisely, for any integer n, C is a left O(U(1))-comodule with the coaction

%n : C→ C[u, u∗]⊗ C, 1 7→ un ⊗ 1

Identifying O(Σ3
q(l,−))⊗ C with O(Σ3

q(l,−)) we thus obtain, for each coaction %n

Γ[n] := O(Σ3
q(l,−))�O(U(1))C ∼= {f ∈ Σ3

q(l,−) | ϕ(f) = f ⊗ un} ⊂ O(Σ3
q(l,−))

In other words, Γ[n] consists of all elements of O(Σ3
q(l,−)) of Z-degree n. In particular

Γ[0] = O(RPq(l;−)). Each of the Γ[n] is a finitely generated projective left O(RPq(l;−))-module,
i.e., it represents the module of sections of the non-commutative line bundle over RPq(l;−). The
idempotent matrix E[n] defining Γ[n] can be computed explicitly from a strong connection form ω

(see Equations (22) in the proof of Theorem 4.4) following the procedure described in [11]. Write
ω(un) =

∑
i ω(un)[1]

i ⊗ ω(un)[2]
i. Then

E[n]ij = ω(un)[2]
iω(un)[1]

j ∈ O(RP2
q(l;−)) (25)

For example, for l = 2 and n = 1, using Equations (22b) and (22a) as well as redistributing numerical
coefficients we obtain

E[1] =

(1− a)(1− q2a) q−1
√

1 + q−2 b iq−3ba

q−1
√

1 + q−2 b∗ q−2(1 + q−2) a iq−4
√

1 + q−2 a2

iq−3b∗ iq−4
√

1 + q−2 a −q−6a2

 (26)

Although the matrixE[1] is not hermitian, the left-upper 2×2 block is hermitian. On the other hand, once
O(RPq(2;−)) is completed to the C∗-algebra C(RPq(2;−)) of continuous functions on RPq(2;−) (and
then identified with the suitable pullback of two algebras of continuous functions over the quantum real
projective space; see [3]), then a hermitian projector can be produced out of E[1] by using the Kaplansky
formula; see [18, page 88].

The traces of tensor powers of each of the E[n] make up a cycle in the cyclic complex of
O(RPq(l;−)), whose corresponding class in the cyclic homology HC•(O(RPq(l;−))) is known as the
Chern character of Γ[n]. Again, as an illustration of the usage of an explicit form of a strong connection
form, we compute the traces of E[n] for general l.



Axioms 2012, 1 221

Lemma 4.7 The zero-component of the Chern character of Γ[n] is the class of the polynomial cn in
generator a of O(RPq(l;−)), given by the following recursive formula. First, c0(a) = 1, and then, for
all positive n,

cn(a) = cn−1

(
q2la

) l−1∏
p=0

(
1− q2pa

)
+ cn−1(a)

(
1−

l∏
p=1

(
1− q−2pa

))
(27a)

c−n(a) = c−n+1

(
q−2la

) l∏
p=1

(
1− q−2pa

)
+ c−n+1(a)

(
1−

l−1∏
p=0

(
1− q2pa

))
(27b)

Proof. We will prove the formula (27a) as (27b) is proven by similar arguments. Recall that cn =

Tr E[n]. By normalisation (22a) of the strong connection ω, obviously c0 = 1. In view of Equation
(22b) we obtain the following recursive formula

cn = xcn−1x
∗ −

l∑
m=1

(−1)mq−m(m+1)

(
l

m

)
q−2

ycn−1y
2m−1zm (28)

In principle, cn could be a polynomial in a, b and c−. However, the third of Equations (20) together with
Equation (24) and identification of a as y2z yield

c1 =
l−1∏
p=0

(
1− q2pa

)
+

(
1−

l∏
p=1

(
1− q−2pa

))
(29)

that is a polynomial in a only. As commuting x and y through a polynomial in a in Equation (28) will
produce a polynomial in a again, we conclude that each of the cn is a polynomial in a. The second of
Equations (20), the centrality of z and the identification of a as y2z imply that

xcn−1(a) = cn−1(q2la), ycn−1(a) = cn−1(a)y

and in view of Equations (28) and (29) yield Equation (27a). tu

4.3. The Positive Case O(RPq(l; +))

4.3.1. The Principal O(U(1))-Comodule Algebra over O(RP2
q(l; +))

In the same light as the negative case we aim to construct quantum principal bundles with base
spaces O(RPq(l; +)), and proceed by viewing O(Σ3

q) as a right H ′-comodule algebra, where H ′ is a
Hopf-algebra of a finite cyclic group. The aim is to construct the total space O(Σ3

q(l,+)) of the bundle
over O(RPq(l; +)) as the coinvariant subalgebra of O(Σ3

q). O(Σ3
q(l,+)) must contain generators ζ2

1ξ

and ζ l0ξ of O(RPq(l; +)). Suppose H ′ = CZm and Φ : O(Σ3
q)→ O(Σ3

q)⊗H ′ is a coaction. We require
Φ to be compatible with the algebraic relations and to give zero Zm-degree to ζ2

1ξ and ζ l0ξ are zero. These
requirements yield

2 deg(ζ1) + deg(ξ) = 0 modm, l deg(ζ0) + deg(ξ) = 0 modm
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Bearing in mind that l is odd, the simplest solution to these requirements is provided by m = 2l,
deg(ξ) = 0, deg(ζ0) = 2, deg(ζ1) = l. This yields the coaction

Φ : O(Σ3
q)→ O(Σ3

q)⊗ CZ2l ζ0 7→ ζ0 ⊗ v2, ζ1 7→ ζ1 ⊗ vl, ξ 7→ ξ ⊗ 1

where v (v2l = 1) is the unitary generator of CZ2l. Φ is extended to the whole of O(Σ3
q) so that Φ is an

algebra map, making O(Σ3
q) a right CZ2l-comodule algebra.

Proposition 4.8 The fixed point subalgebra of the coaction Φ is isomorphic to the ∗-algebra
O(Σ3

q(l,+)) generated by x′, y′ and central unitary z′ subject to the following relations:

x′y′ = q2ly′x′, y′∗ = y′z′2 (30a)

x′x′∗ =
l−1∏
p=0

(1− q2py′z′), x′∗x′ =
l∏

p=1

(1− q−2py′z′) (30b)

The isomorphism between O(Σ3
q(l,+)) and the coinvariant subalgebra of O(Σ3

q) is given by x′ 7→ ζ l0,
y′ 7→ ζ2

1 and z′ 7→ ξ.

Proof. Clearly ζ2
1 , ξ, ζ l0 and ζ∗l0 are coinvariant elements ofO(Σ3

q). Apply the coaction Φ to the basis (7)
to obtain

ζr0ζ
s
1ξ
t 7→ ζr0ζ

s
1ξ
t ⊗ v2r+ls, ζ∗r0 ζ

s
1ξ
t 7→ ζ∗r0 ζ

s
1ξ
t ⊗ v−2r+ls

These elements are coinvariant, provided 2r + ls = 2ml in the first case or −2r + ls = 2ml in the
second. Since l is odd, s must be even and then r = r′l, hence the invariant elements must be of the form

(ζ l0)r
′
(ζ2

1 )s/2ξt, (ζ∗l0 )r
′
(ζ2

1 )s/2ξt

as required. Equations (30) are now easily derived from Equations (6) and (18). tu

The algebra O(Σ3
q(l,+)) is a right O(U(1))-comodule with coaction defined as,

Ω : O(Σ3
q(l,+))→ O(Σ3

q(l,+))⊗O(U(1)), x′ 7→ x′ ⊗ u, y′ 7→ y′ ⊗ u, z′ 7→ z′ ⊗ u−1 (31)

The first relation in Equations (30a) bears no information on the possible gradings of the generators of
O(Σ3

q(l,+)), however the second relation in Equations (30a) tells us that the grade of y′∗ must be the
same as that of z′ since,

deg(y′∗) = − deg(y′) = deg(y′) + 2 deg(z′)

hence,
2 deg(y′∗) = 2 deg(z′), or, deg(y′∗) = deg(z′)

This is consistent with Equations (30b) since the left hand sides, x′x′∗ and x′∗x′, have degree zero, as do
the right had sides,

deg(y′z′) = deg(y′) + deg(y′∗) = deg(y′) + (− deg(y′)) = 0

The coaction Ω is defined setting the grades of x′ and y′ as 1, and putting the grade of z′ as −1 to ensure
the coaction is compatible with the relations of the algebra O(Σ3

q(l,+)).
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Proposition 4.9 The rightO(U(1))-comodule algebraO(Σ3
q(l,+)) hasO(RPq(l; +)) as its subalgebra

of coinvariant elements under the coaction Ω.

Proof. The fixed points of the algebra O(Σ3
q(l,+)) under the coaction Ω are found using the same

method as in the odd k case. A basis for the algebra O(Σ3
q(l,+)) is given by x′ry′sz′t, x′∗ry′sz′t, where

r, s ∈ N and t ∈ Z.
Applying the coaction Ω to the first of these basis elements gives,

x′ry′sz′t 7→ x′ry′sz′t ⊗ ur+s−t

Hence the invariance of x′ry′sz′t is equivalent to t = r + s. Simple substitution and re-arranging gives,

x′ry′sz′t = x′ry′sz′r+s = (x′z′)
r
(y′z′)

s

i.e., x′ry′sz′t is a polynomial in x′z′ and y′z′. Repeating the process for the second type of basis element
gives the ∗-conjugates of x′z′ and y′z′. Using Proposition 4.8 we can see that a = ζ2

1ξ = y′z′ and
c+ = ζ l0ξ = x′z′. tu

In contrast to the odd k case, although O(Σ3
q(l,+)) is a principal comodule algebra it yields trivial

principal bundle over O(RPq(l; +)).

Proposition 4.10 The right O(U(1))-comodule algebra O(Σ3
q(l,+)) is trivial.

Proof. The cleaving map is given by,

j : O(U(1))→ O(Σ3
q(l,+)), j(u) = z

′∗

which is an algebra map since z′∗ is central unitary inO(Σ3
q(l,+)), hence must be convolution invertible.

Also, j is a right O(U(1))-comodule map since,

(Ω ◦ j)(u) = Ω(z
′∗) = z

′∗ ⊗ u = j(u)⊗ u = (j ⊗ id) ◦∆(u)

completing the proof. tu

Since O(Σ3
q(l,+)) is a trivial principal comodule algebra, all associated O(RP2

q(l; +))-modules
are free.

4.3.2. Almost Freeness of the Coaction %2,l

As was the case for O(Σ3
q(l,−)), the principality of O(Σ3

q(l,+)) can be used to determine that the
O(U(1))-coaction %2,l on O(Σ3

q) that defines O(RP2
q(l; +)) is almost free.

Proposition 4.11 The coaction %2,l is almost free.

Proof. Denote by ι+ : O(Σ3
q(l,+)) ↪→ O(Σ3

q), the ∗-algebra embedding described in Proposition 4.8.
One easily checks that the following diagram

O(Σ3
q(l,+))

ι+ //

Ω
��

O(Σ3
q)

%2,l

��
O(Σ3

q(l,+))⊗O(U(1))
ι+⊗(−)2l

// O(Σ3
q)⊗O(U(1))
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where (−)2l : u → u2l is commutative. By the arguments analogous to those in the proof of
Proposition 4.6 one concludes that there is a short exact sequence of left O(Σ3

q)-modules

(O(Σ3
q)⊗ C[u, u−1])/(O(Σ3

q)⊗ C[u2l, u−2l]) // coker(can) // 0

where can is the lifted canonical map corresponding to coaction %2,l. The left O(Σ3
q)-module (O(Σ3

q)⊗
C[u, u−1])/(O(Σ3

q)⊗ C[u2l, u−2l]) is finitely generated, hence so is coker(can). tu

5. Conclusions

In this paper we discussed the principality of the O(U(1))-coactions on the coordinate algebra of
the quantum Seifert manifold O(Σ3

q) weighted by coprime integers k and l. We concluded that the
coaction is principal if and only if k = l = 1, which corresponds to the case of a U(1)-bundle over the
quantum real projective plane. In all other cases the coactions are almost free. We identified subalgebras
of O(Σ3

q)) which admit principal O(U(1))-coactions, whose invariants are isomorphic to coordinate
algebras O(RP2

q(l;±)) of quantum real weighted projective spaces. The structure of these subalgebras
depends on the parity of k. For the odd k case, the constructed principal comodule algebraO(Σ3

q(l,−)) is
non-trivial, while for the even case, the corresponding principal comodule algebraO(Σ3

q(l,+)) turns out
to be trivial. The triviality of O(Σ3

q(l,+)) is a disappointment. Whether a different nontrivial principal
O(U(1))-comodule algebra over O(RP2

q(l; +)) can be constructed or whether such a possibility is ruled
out by deeper geometric, topological or algebraic reasons remains to be seen.
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5. Beggs, E.J.; Brzeziński, T. Line bundles and the Thom construction in noncommutative geometry.

J. Noncommut. Geom., in press.
6. Baum, P.F.; Hajac, P.M.; Matthes, R.; Szymański, W. Noncommutative geometry
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