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1. Preliminaries

Kannan’s famous generalization of Banach’s contraction principle is as follows.

Theorem 1. [1] If Ψ is a self-map on a complete metric space (MS) (=, ρ) satisfying

ρ(Ψθ, Ψξ) ≤ τ
[
ρ(θ, Ψθ) + ρ(ξ, Ψξ)

]
,

where θ, ξ ∈ = and 0 < τ < 1
2 , then Ψ has a unique fixed point in =.

Such a mapping Ψ is said to be a Kannan map and it is not necessarily continuous.
In [2], Kannan proved the above theorem by omitting the completeness criterion of the
space and by assuming continuity of the map at a point.

Reich [3] generalized Banach and Kannan’s fixed-point results as given below.

Theorem 2. Let (=, ρ) be a complete MS and Ψ : = → = be a self-map. Suppose there exist
nonnegative constants a, b, c satisfying a + b + c < 1 such that

ρ(Ψθ, Ψξ) ≤ aρ(θ, ξ) + bρ(Ψθ, θ) + cρ(Ψξ, ξ)

for all θ, ξ ∈ =. Then Ψ has a unique fixed point.

In Reich’s theorem, b = c = 0 yields Banach’s result, whereas b = c, a = 0 produces
Kannan’s theorem.

Subhramanyam [4] used Kannan’s theorem to characterize metric completeness. Kan-
nan’s theorem was further extended by many authors in different directions over the
decades [5–10]. The concepts of continuity and compactness play significant roles is the
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discussion of Kannan-type results. In this note, we rather try to present our results using
the concepts of boundedly compact an orbitally compact MSs which are weaker properties
than compactness. An MS is said to be boundedly compact if every bounded sequence in it
has a convergent subsequence (see [11]).

Let (=, ρ) be a complete MS and let CB(=) denote the class of all nonempty closed
and bounded subsets of the nonempty set =. For A,B ∈ CB(=), the functionH : CB(=)×
CB(=)→ [0,+∞) defined by

H(A,B) = max{sup
ξ∈B

∆(ξ,A), sup
δ∈A

∆(δ,B)},

where ∆(δ,B) = infξ∈B ρ(δ, ξ), is a metric on CB(=).
υ ∈ = is called a fixed point of the multivalued map Υ : = → CB(=) if υ ∈ Υυ.

For θ0 ∈ =, if the sequence {θn} is constructed in such a way that θn+1 ∈ Υθn, then
O(Υ, θ0) = {θ0, θ1, θ2, . . .} is called an orbit of Υ at θ0. A function ψ : = → R is called
Υ-orbitally lower semi-continuous if for any sequence {ξn} ⊂ O(Υ, θ0) with ξn → ξ implies
ψ(ξ) ≤ lim infn→∞ ψ(ξn) (see [12]).

A multivalued mapping Υ : = → CB(=) is said to be asymptotically regular (AR,
in short) at θ0 ∈ =, if for any sequence {ξn} ⊂ O(Υ, θ0), we have limn→∞ ρ(ξn, ξn+1) = 0
(see e.g., [13]). The mapping Υ : = → CB(=) is said to be orbitally continuous (OC, in short)
at a point θ0 ∈ =, if for any sequence {ξn} ⊂ O(Υ, θ0), we have ξn → ξ (for some ξ ∈ =)
implies that Υξn → Υξ (see [14]). When Υ is OC at all points of its domain, then it is
called OC.

The following lemmas are significant in the present context.

Lemma 1 ([15,16]). Let (=, ρ) be an MS and A,B ∈ CB(=). Then

(i) ∆(θ,B) ≤ ρ(θ, γ) for any γ ∈ B and θ ∈ =;
(ii) ∆(θ,B) ≤ H(A,B) for any θ ∈ A.

Lemma 2 ([17]). Let A,B ∈ CB(=) and let θ ∈ A. If p > 0, then there exists ξ ∈ B such that

ρ(θ, ξ) ≤ H(A,B) + p.

In general, we may not obtain a point ξ ∈ B such that

ρ(θ, ξ) ≤ H(A,B).

But when B is compact, then such a point ξ exists, i.e., ρ(θ, ξ) ≤ H(A,B).

Lemma 3 ([17]). Let {Un} be a sequence in CB(=) and limn→∞H(Un, U) = 0 for some
U ∈ CB(=). If µn ∈ Un and limn→∞ ρ(µn, µ) = 0 for some µ ∈ =, then µ ∈ U.

Some significant developments in fixed points results for AR multivalued mappings
may be found in [13,14,18–20].

Reich [21] proved some fixed-point theorems for multivalued maps using the concept
of δ-distance instead of Pompeiu–Hausdorff metric, which is defined as follows: for
A,B ∈ CB(=),

δ(A,B) = sup{ρ(θ, ξ) : θ ∈ A, ξ ∈ B}.

Srivastava et al. [22] presented Krasnosel’skii type hybrid fixed-point theorems.
Xu et al. [23] proved Schwarz lemma related to boundary fixed points. Very recently,
Debnath and Srivastava [24] investigated common best proximity points for multivalued
contractive pairs of mappings in connection with global optimization. Debnath and Sri-
vastava [25] also proved new extensions of Kannan’s and Reich’s theorems in the context
of multivalued mappings using Wardowski’s technique. Furthermore, an important use
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of fixed points of F(ψ, ϕ)-contractions to fractional differential equations was recently
established by Srivastava et al. [26].

In the current paper, we present some fixed-point theorems for AR multivalued maps
satisfying a Kannan-type condition in an MS. We assume that the MS is either boundedly
compact or Υ-orbitally compact. The orbital continuity of the mapping under consideration
or orbital lower semi-continuity of ∆ has been assumed as well. In Section 2, we present
the results considering the Pompeiu–Hausdorff metric. Furthermore, in Section 3, we
present alternate versions of these results considering the δ-distance, where some stronger
conditions from Section 2 can be dropped.

2. Results with Respect to Pompeiu–Hausdorff Metric

First, we present a result where boundedly compactness of the MS is assumed.

Theorem 3. Let (=, ρ) be a boundedly compact MS and the multivalued mapping Υ : = → CB(=)
be AR at a point θ0 ∈ = satisfying

H(Υθ, Υξ) <
1
2
{∆(θ, Υθ) + ∆(ξ, Υξ)}

for all θ, ξ ∈ = with ∆(θ, Υθ) > 0 and ∆(ξ, Υξ) > 0. Also let ρ(u, v) ≤ H(Υθ, Υξ) for all
u ∈ Υθ and v ∈ Υξ.

If Υ is OC or ∆ is Υ-orbitally lower semi-continuous, then Fix(Υ) 6= φ.

Proof. We construct the orbit of Υ at θ0 as O(Υ, θ0) and consider the sequence {ξn} ⊂ O(Υ, θ0).
Let rn = ρ(ξn, ξn+1) > 0.

Since Υ is AR, we have rn → 0. Now we have

ρ(ξn, ξm) ≤ H(Υξn−1, Υξm−1)

<
1
2
{∆(ξn−1, Υξn−1) + ∆(ξm−1, Υξm−1)}

≤ 1
2
{ρ(ξn−1, ξn) + ρ(ξm−1, ξm)}

=
1
2
(rn−1, rm−1)

→ 0 as m, n→ ∞.

Therefore, the sequence {ξn} is Cauchy and hence it is bounded. Since (=, ρ) is
boundedly compact, {ξn} has a convergent subsequence {ξnk} which converges to ξ ∈ =.

Since {ξn} is Cauchy and its subsequence {ξnk} converges to ξ ∈ =, we have that
ξn → ξ as n→ ∞.

Let Υ be OC. Thus, we have that Υξn → Υξ. But ξn+1 ∈ Υξn for all n ∈ N and
ξn+1 → ξ as n→ ∞. Hence, using Lemma 3, we conclude that ξ ∈ Υξ.

Furthermore, if ∆ is Υ-orbitally lower semi-continuous, we have that

∆(ξ, Υξ) ≤ lim inf
k→∞

∆(ξnk , Υξnk ) = 0.

Finally, the closedness of Υξ implies that ξ ∈ Υξ.

The next result is in connection with Υ-orbitally compactness.

Definition 1. Let (=, ρ) be an MS and Υ : = → CB(=) be a multivalued mapping. = is said to
be Υ-orbitally compact if every sequence in the orbit O(Υ, θ) has a convergent subsequence for all
θ ∈ =.
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Theorem 4. Let (=, ρ) be a Υ-orbitally compact MS and the multivalued mapping Υ : = →
CB(=) be AR at a point θ0 ∈ = satisfying

H(Υθ, Υξ) <
1
2
{∆(θ, Υθ) + ∆(ξ, Υξ)}

for all θ, ξ ∈ = with ∆(θ, Υθ) > 0 and ∆(ξ, Υξ) > 0. Also let ρ(u, v) ≤ H(Υθ, Υξ) for all
u ∈ Υθ and v ∈ Υξ.

If Υ is orbitally continuous or ∆ is Υ-orbitally lower semi-continuous, then Fix(Υ) 6= φ.

Proof. Like earlier, we construct the orbit of Υ at θ0 as O(Υ, θ0) and consider the sequence
{ξn} ⊂ O(Υ, θ0).

Since = is Υ-orbitally compact, {ξn} has a convergent subsequence {ξnk} which
converges to α ∈ =.

Now, for all m, n ∈ N we have

ρ(ξn, ξm) ≤ H(Υξn−1, Υξm−1)

<
1
2
{∆(ξn−1, Υξn−1) + ∆(ξm−1, Υξm−1)}

≤ 1
2
{ρ(ξn−1, ξn) + ρ(ξm−1, ξm)}

→ 0 as m, n→ ∞ (since Υ is AR).

Therefore, the sequence {ξn} is Cauchy and since its subsequence {ξnk} converges to
ξ ∈ =, we have that ξn → ξ as n→ ∞.

Let Υ be OC. Thus, we have that Υξn → Υξ. But ξn+1 ∈ Υξn for all n ∈ N and
ξn+1 → ξ as n→ ∞. Hence, using Lemma 3, we conclude that ξ ∈ Υξ.

Next, we assume that ∆ is Υ-orbitally lower semi-continuous. Since ξn → ξ as n→ ∞,
we have

∆(ξ, Υξ) ≤ lim inf
k→∞

∆(ξn, Υξn) = 0,

because Υ is AR implies that limn→∞ ρ(ξn, ξn+1) = 0 and limn→∞ ∆(ξn, Υξn) = 0. Finally,
since Υξ is closed, we have ξ ∈ Υξ.

3. Multivalued Versions with Respect to δ-Distance

In this section, we present multivalued versions of the results presented in the previous
section with respect to δ-distance instead of Pompeiu–Hausdorff metric. We observe that
here we can drop the additional condition ρ(u, v) ≤ H(Υθ, Υξ) for all u ∈ Υθ and v ∈ Υξ.

Theorem 5. Let (=, ρ) be a boundedly compact MS and the multivalued mapping Υ : = → CB(=)
be AR at a point θ0 ∈ = satisfying

δ(Υθ, Υξ) <
1
2
{∆(θ, Υθ) + ∆(ξ, Υξ)}

for all θ, ξ ∈ = with ∆(θ, Υθ) > 0 and ∆(ξ, Υξ) > 0.
If ∆ is Υ-orbitally lower semi-continuous, then Fix(Υ) 6= φ.

Proof. We construct the orbit of Υ at θ0 as O(Υ, θ0) and consider the sequence {ξn} ⊂
O(Υ, θ0). Let rn = ρ(ξn, ξn+1) > 0.

Since Υ is AR, we have rn → 0. Now we have

ρ(ξn, ξm) ≤ δ(Υξn−1, Υξm−1), (using the definition of δ)

<
1
2
{∆(ξn−1, Υξn−1) + ∆(ξm−1, Υξm−1)}

≤ 1
2
{ρ(ξn−1, ξn) + ρ(ξm−1, ξm)}
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=
1
2
(rn−1, rm−1)

→ 0 as m, n→ ∞.

Therefore, the sequence {ξn} is Cauchy and hence it is bounded. Since (=, ρ) is
boundedly compact, {ξn} has a convergent subsequence {ξnk} which converges to ξ ∈ =.

Now, since ∆ is Υ-orbitally lower semi-continuous, we have that

∆(ξ, Υξ) ≤ lim inf
k→∞

∆(ξnk , Υξnk ) = 0 (for Υ is AR).

Finally, the closedness of Υξ implies that ξ ∈ Υξ.

Theorem 6. Let (=, ρ) be a Υ-orbitally compact MS and the multivalued mapping Υ : = →
CB(=) be AR at a point θ0 ∈ = satisfying

δ(Υθ, Υξ) <
1
2
{∆(θ, Υθ) + ∆(ξ, Υξ)}

for all θ, ξ ∈ = with ∆(θ, Υθ) > 0 and ∆(ξ, Υξ) > 0.
If ∆ is Υ-orbitally lower semi-continuous, then Fix(Υ) 6= φ.

Proof. Consider the orbit of Υ at θ0 as O(Υ, θ0) and let {ξn} ⊂ O(Υ, θ0).
Since = is Υ-orbitally compact, {ξn} has a convergent subsequence {ξnk} which

converges to α ∈ =.
Now, for all m, n ∈ N we have

ρ(ξn, ξm) ≤ δ(Υξn−1, Υξm−1), (using the definition of δ)

<
1
2
{∆(ξn−1, Υξn−1) + ∆(ξm−1, Υξm−1)}

≤ 1
2
{ρ(ξn−1, ξn) + ρ(ξm−1, ξm)}

→ 0 as m, n→ ∞ (since Υ is AR).

Therefore, the sequence {ξn} is Cauchy and since its subsequence {ξnk} converges to
ξ ∈ =, we have that ξn → ξ as n→ ∞.

Since ∆ is Υ-orbitally lower semi-continuous, we have

∆(ξ, Υξ) ≤ lim inf
k→∞

∆(ξn, Υξn) = 0,

because Υ is AR implies that limn→∞ ρ(ξn, ξn+1) = 0 and limn→∞ ∆(ξn, Υξn) = 0. Finally,
since Υξ is closed, we have ξ ∈ Υξ.

Finally, we provide an example to validate Theorem 6. All other results may be
validated in a similar manner.

Example 1. Consider = = (0, ∞) with the usual metric ρ(θ, ξ) = |θ− ξ|, for all θ, ξ ∈ =. Define
Υ : = → CB(=) by

Υθ =

{
{0}, if θ ∈ (0, 7)
{θ, θ + 1}, if θ ≥ 7.

Let θ, ξ ∈ = with ∆(θ, Υθ) > 0 and ∆(ξ, Υξ) > 0. Then δ(Υθ, Υξ) = δ({0}, {0}) = 0.
Also, it is easy to check that Υ is AR and ∆ is Υ-orbitally lower semi-continuous.

Here (=, ρ) is not complete but it is Υ-orbitally compact. Thus, all conditions of Theorem 6
are satisfied and hence Fix(Υ) 6= φ. In fact, Fix(Υ) = {n ∈ N : n ≥ 7}.
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4. Conclusions

Some fixed-point theorems have been established for AR multivalued maps satisfying
a Kannan-type condition in an MS. Boundedly compactness or Υ-orbitally compactness
of the MS has been assumed. The results have been established considering the Pom-
peiu–Hausdorff metric as well as the δ-distance. In the latter case, some stronger conditions
from Pompeiu–Hausdorff metric (such as ρ(u, v) ≤ H(Υθ, Υξ) for all u ∈ Υθ and v ∈ Υξ)
have been dropped. Proof of the results of Section 2 without assuming this condition would
be an interesting future study.
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