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1. Introduction

An almost 3-contact metric manifold is a (4n + 3)-dimensional differentiable manifold
M endowed with three almost contact metric structures (ϕ,ξi, ηi, g), i = 1, 2, 3, sharing the
same Riemannian metric g and satisfying suitable compatibility conditions, equivalent
to the existence of a sphere of almost contact metric structures. In the recent paper [1],
new classes of almost 3-contact metric manifolds were introduced and studied. The first
remarkable class is given by 3-(α, δ)-Sasaki manifolds defined as almost 3-contact metric
manifolds (M, ϕi, ξi, ηi, g) such that

dηi = 2αΦi + 2(α− δ)ηj ∧ ηk, α ∈ R∗, δ ∈ R, (1)

for every even permutation (i, j, k) of (1, 2, 3). This is a generalization of 3-Sasaki manifolds,
which correspond to the values α = δ = 1. A second class introduced in [1] is given by
3-δ-cosymplectic manifolds defined by the conditions

dηi = −2δηj ∧ ηk, dΦi = 0, δ ∈ R,

generalizing 3-cosymplectic manifolds which correspond to the value δ = 0.
In the present paper we will introduce a third class of almost 3-contact metric mani-

folds, which is in fact a second (and alternative) generalization of 3-cosymplectic manifolds.
We will consider almost 3-contact metric manifolds whose structure tensor fields satisfy

dηi = −2δηj ∧ ηk, dΦi = −2δ(ηj ∧Φk − ηk ∧Φj), δ ∈ R (2)

for every even permutation (i, j, k) of (1, 2, 3). When δ = 0 we recover a 3-cosymplectic
manifold. We will call these manifolds 3-(0, δ)-Sasaki manifolds. The choice of name is due
to the fact that for a 3-(α, δ)-Sasaki manifold, Equation (1) implies

dΦi = 2(α− δ)(ηj ∧Φk − ηk ∧Φj), (3)

so that the two equations in (2) formally correspond to (1) and (3) with α = 0, although
in this case the second equation is no more a consequence of the first one. In fact the two
conditions in (2) are not completely independent (see Remark 1). Examples of 3-(0, δ)-
Sasaki structures can be defined on the semidirect products SO(3)nR4n. The structure on
these Lie groups was introduced in [2] as an example of canonical abelian almost 3-contact
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metric structure. It is also shown in [2] that the Lie group SO(3)nR4n admits co-compact
discrete subgroups, so that the corresponding compact quotients admit almost 3-contact
metric structures of the same type.

One can show that for all the above three classes of manifolds, 3-(α, δ)-Sasaki, 3-δ-
cosymplectic, and 3-(0, δ)-Sasaki manifolds, the structure is hypernormal, the characteristic
vector fields ξi, i = 1, 2, 3, are Killing and they span an integrable distribution, called
vertical, with totally geodesic leaves. Nevertheless, there are remarkable geometric differ-
ences between the three classes. In the 3-(α, δ)-Sasaki case the 1-forms ηi are all contact
forms, i.e., ηi ∧ (dηi)

n 6= 0 everywhere on M, while for the other two classes, the hor-
izontal distribution defined by ηi = 0, i = 1, 2, 3, is integrable. Both 3-δ-cosymplectic
manifolds and 3-(0, δ)-Sasaki manifolds are locally isometric to the Riemannian product
of a 3-dimensional Lie group, tangent to the vertical distribution, and a 4n-dimensional
manifold tangent to the horizontal distribution. The Lie group is either isomorphic to
SO(3) or flat depending on wether δ 6= 0 or δ = 0. Each horizontal leaf is endowed with
a hyper-Kähler structure. The difference between 3-δ-cosymplectic and 3-(0, δ)-Sasaki
manifolds lies in the projectability of the structure tensor fields ϕi, i = 1, 2, 3, with respect
to the vertical foliation. They are always projectable for 3-δ-cosymplectic manifolds, but
not for 3-(0, δ)-Sasaki manifolds with δ 6= 0. In this case one can project a transverse
quaternionic structure, as it happens for 3-(α, δ)-Sasaki manifolds. Finally, for the three
classes of manifolds, we analyze the existence of a canonical metric connection with totally
skew-symmetric torsion.

2. Almost Contact and Almost 3-Contact Metric Manifolds

An almost contact manifold is a smooth manifold M of dimension 2n + 1, endowed
with a structure (ϕ, ξ, η), where ϕ is a (1, 1)-tensor field, ξ a vector field, and η a 1-form
such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1,

implying that ϕξ = 0, η ◦ ϕ = 0, and ϕ has rank 2n. The tangent bundle of M splits as
TM = H⊕ 〈ξ〉, where H is the 2n-dimensional distribution defined by H = Im(ϕ) =
Ker(η). The vector field ξ is called the characteristic or Reeb vector field.

On the product manifold M × R one can define an almost complex structure J by
J
(

X, f d
dt

)
=
(

ϕX− f ξ, η(X) d
dt

)
, where X is a vector field tangent to M, t is the coordinate

of R and f is a C∞ function on M×R. If J is integrable, the almost contact structure is said
to be normal and this is equivalent to the vanishing of the tensor field Nϕ := [ϕ, ϕ] + dη⊗ ξ,
where [ϕ, ϕ] is the Nijenhuis torsion of ϕ [3]. More precisely, for any vector fields X and Y,
Nϕ is given by

Nϕ(X, Y) = [ϕX, ϕY] + ϕ2[X, Y]− ϕ[ϕX, Y]− ϕ[X, ϕY] + dη(X, Y)ξ. (4)

It is known that any almost contact manifold admits a compatible metric, that is a
Riemannian metric g such that g(ϕX, ϕY) = g(X, Y)− η(X)η(Y) for every X, Y ∈ X(M).
Then η = g(·, ξ) and H = 〈ξ〉⊥. The manifold (M, ϕ, ξ, η, g) is called an almost contact
metric manifold. The associated fundamental 2-form is defined by Φ(X, Y) = g(X, ϕY).

We recall some remarkable classes of almost contact metric manifolds.

• An α-contact metric manifold is defined as an almost contact metric manifold such that

dη = 2αΦ, α ∈ R∗,

When α = 1, it is called a contact metric manifold; the 1-form η is a contact form, that is
η ∧ (dη)n 6= 0 everywhere on M. An α-Sasaki manifold is a normal α-contact metric
manifold, and again such a manifold with α = 1 is called a Sasaki manifold.

• An almost cosymplectic manifold is defined as an almost contact metric manifold
such that

dη = 0, dΦ = 0;
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if furhermore the structure is normal, M is called a cosymplectic manifold. It is worth
remarking that some authors call these manifolds almost coKähler and coKähler, respec-
tively ([4]).

• A quasi-Sasaki manifold is a normal almost contact metric manifold with closed 2-form
Φ. This class includes both α-Sasaki and cosymplectic manifolds. The Reeb vector
field of a quasi-Sasaki manifold is always Killing.

Both α-Sasaki manifolds and cosymplectic manifolds can be characterized by means
of the Levi-Civita connection ∇g. Indeed, one can show that an almost contact metric
manifold (M, ϕ, ξ, η, g) is α-Sasaki if and only if

(∇g
X ϕ)Y = α(g(X, Y)ξ − η(X)Y) ∀X, Y ∈ X(M).

An almost contact metric manifold is cosymplectic if and only if∇g ϕ = 0; further, this
is equivalent to requiring the manifold to be locally isometric to the Riemannian product of
a real line (tangent to the Reeb vector field) and a Kähler manifold.

For a comprehensive introduction to almost contact metric manifolds we refer to [3].
For Sasaki geometry, we also recommend the monograph [5]; the survey [4] covers funda-
mental properties and recent results on cosymplectic geometry.

An almost 3-contact manifold is a differentiable manifold M of dimension 4n + 3 en-
dowed with three almost contact structures (ϕi, ξi, ηi), i = 1, 2, 3, satisfying the following
relations,

ϕk = ϕi ϕj − ηj ⊗ ξi = −ϕj ϕi + ηi ⊗ ξ j,

ξk = ϕiξ j = −ϕjξi, ηk = ηi ◦ ϕj = −ηj ◦ ϕi,

for any even permutation (i, j, k) of (1, 2, 3) ([3]). The tangent bundle of M splits as
TM = H⊕V , where

H :=
3⋂

i=1

Ker(ηi), V := 〈ξ1, ξ2, ξ3〉.

In particular, H has rank 4n. We call any vector belonging to the distribution H
horizontal and any vector belonging to the distribution V vertical. The manifold is said to be
hypernormal if each almost contact structure (φi, ξi, ηi) is normal. In [6] it was proved that if
two of the almost contact structures are normal, then so is the third.

The existence of an almost 3-contact structure is equivalent to the existence of a sphere
{(ϕx, ξx, ηx)}x∈S2 of almost contact structures such that

ϕx ◦ ϕy − ηy ⊗ ξx = ϕx×y − (x · y) I, ϕxξy = ξx×y, ηx ◦ ϕy = ηx×y,

for every x, y ∈ S2, where · and × denote the standard inner product and cross product on
R3. In fact, if the structure is hypernormal, then every structure in the sphere is normal ([7]).

Any almost 3-contact manifold admits a Riemannian metric g which is compatible
with each of the three structures. Then M is said to be an almost 3-contact metric manifold
with structure (ϕi, ξi, ηi, g), i = 1, 2, 3. For ease of notation, we will denote an almost
3-contact metric manifold by (M, ϕi, ξi, ηi, g), omitting i = 1, 2, 3. The subbundlesH and V
are orthogonal with respect to g and the three Reeb vector fields ξ1, ξ2, ξ3 are orthonormal.
In fact, the structure group of the tangent bundle is reducible to Sp(n)× {1} [8].

Given an almost 3-contact metric structure (ϕi, ξi, ηi, g), anH-homothetic deformation is
defined by

η′i = cηi, ξ ′i =
1
c

ξi, ϕ′i = ϕi, g′ = ag + b
3

∑
i=1

ηi ⊗ ηi, (5)
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where a, b, c are real numbers such that a > 0, c2 = a + b > 0, ensuring that (ϕ′i, ξ ′i , η′i , g′)
is an almost 3-contact metric structure. In particular, the fundamental 2-forms Φi and Φ′i
associated to the structures are related by

Φ′i = aΦi − bηj ∧ ηk, (6)

where (i, j, k) is an even permutation of (1, 2, 3).
An almost 3-contact metric manifold is called

• 3-α-Sasaki, with α ∈ R∗, if (ϕi, ξi, ηi, g) is α-Sasaki for all i = 1, 2, 3 , i.e. the structure is
hypernormal and

dηi = 2αΦi, i = 1, 2, 3; (7)

when α = 1, it is a 3-Sasaki manifold;
• 3-cosymplectic if (ϕi, ξi, ηi, g) is cosymplectic for all i = 1, 2, 3, i.e. the structure is

hypernormal and
dηi = 0, dΦi = 0, i = 1, 2, 3; (8)

• 3-quasi-Sasaki manifold if each structure (ϕi, ξi, ηi, g) is quasi-Sasaki; this class includes
both 3-α-Sasaki and 3-cosymplectic manifolds.

These classes were deeply investigated by various authors. See [5,9,10] and refer-
ences therein for 3-Sasakian geometry, the papers [7,11,12] for 3-cosymplectic manifolds,
and [13,14] for 3-quasi-Sasaki manifolds.

In fact, both for 3-Sasaki and 3-cosymplectic manifolds, the hypernormality is conse-
quence of the structure Equations (7) and (8) respectively. This was proved by Kashiwada
in [15] for 3-Sasaki manifolds, and in ([16], Theorem 4.13) for 3-cosymplectic manifolds.

In [1] the new classes of 3-(α, δ)-Sasaki manifolds and 3-δ-cosymplectic manifolds
were introduced, generalizing the classes of 3-α-Sasaki and 3-cosymplectic manifolds,
respectively. We will review the definitions and the basic properties of these manifolds in
the next section. For both these two classes the hypernormality is a consequence of the
defining structure equations for the manifolds, thus generalizing the analogous results for
3-Sasaki and 3-cosymplectic manifolds. This is obtained by using the following Lemma:

Lemma 1 ([1]). Let (M, ϕi, ξi, ηi, g) be an almost 3-contact metric manifold. Then the following
formula holds ∀X, Y, Z ∈ X(M):

g(Nϕi (X, Y), Z) = (9)

= −dΦj(X, Y, ϕjZ) + dΦj(ϕiX, ϕiY, ϕjZ) + dΦk(X, ϕiY, ϕjZ) + dΦk(ϕiX, Y, ϕjZ)

− ηi(X)[dηj(ϕiY, ϕjZ) + dηk(Y, ϕjZ)] + ηi(Y)[dηj(ϕiX, ϕjZ) + dηk(X, ϕjZ)]

+ ηj(Z)[dηj(X, Y)− dηj(ϕiX, ϕiY)]− ηj(Z)[dηk(X, ϕiY) + dηk(ϕiX, Y)].

In the following we will be concerned with various classes of almost 3-contact metric
manifolds where the three Reeb vector fields are all Killing. In this case one can show that
there exists a function δ ∈ C∞(M) such that

ηr([ξs, ξt]) = 2δεrst, r, s, t = 1, 2, 3

where εrst is the totally skew-symmetric symbol, or equivalently dηr(ξs, ξt) = −2δεrst. We
call δ a Reeb commutator function, we refer to [1] for more information on this notion.

3. 3-(α, δ)-Sasaki Manifolds and 3-δ-Cosymplectic Manifolds

This section is a short review of 3-(α, δ)-Sasaki manifolds and 3-δ-cosymplectic mani-
folds. These were discussed in detail in [1,17].
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Definition 1. An almost 3-contact metric manifold (M, ϕi, ξi, ηi, g) is called a 3-(α, δ)-Sasaki
manifold if it satisfies

dηi = 2αΦi + 2(α− δ)ηj ∧ ηk

for every even permutation (i, j, k) of (1, 2, 3), where α 6= 0 and δ are real constants.

When α = δ = 1, we have a 3-contact metric manifold, and hence a 3-Sasaki manifold
by Kashiwada’s theorem [15]. In the following, when considering 3-(α, δ)-Sasaki manifolds
we will always mean α 6= 0. As an immediate consequences of the definition one obtains
the following properties:

1. Each ξi is an infinitesimal automorphism of the distributionH, i. e.

dηr(X, ξs) = 0 X ∈ Γ(H), r, s = 1, 2, 3;

2. The constant δ is the Reeb commutator function;
3. The differentials dΦi are given by

dΦi = 2(δ− α)(ηk ∧Φj − ηj ∧Φk).

Applying Lemma 1 one shows the following

Theorem 1 ([1], Theorem 2.2.1). Any 3-(α, δ)-Sasaki manifold is hypernormal.

In particular, a 3-(α, δ)-Sasaki manifold with α = δ is 3-α-Sasaki. It can be also shown
that the vertical distribution of any 3-(α, δ)-Sasaki manifold is integrable with totally
geodesic leaves and each Reeb vector field ξi is Killing.

We can distinguish three main classes of 3-(α, δ)-Sasaki manifolds. A 3-(α, δ)-Sasaki
manifold is called degenerate if δ = 0 and non-degenerate otherwise. Quaternionic Heisenberg
groups are examples of degenerate 3-(α, δ)-Sasaki manifolds (see ([1], Example 2.3.2)).
Considering anH-homothetic deformation of a 3-(α, δ)-Sasaki structure, as in (5), one can
verify that the obtained structure (ϕ′, ξ ′, η′, g′) is a 3-(α′, δ′)-Sasaki with

α′ = α
c
a

, δ′ =
δ

c
.

In particular,H-homothetic deformations preserve the class of degenerate manifolds.
In the nondegenerate case, one sees immediately that α′δ′ has the same sign as αδ. This
justifies the distinction between positive 3-(α, δ)-Sasaki manifolds, with αδ > 0, and negative
3-(α, δ)-Sasaki manifolds, with αδ < 0. In fact, it can be shown that a 3-(α, δ)-Sasaki
manifold is positive if and only if it isH-homothetic to a 3-Sasaki manifold, and negative if
and only if it isH-homothetic to a 3-(α′, δ′)-Sasaki manifold with α′ = −1, δ′ = 1.

Examples of negative 3-(α, δ)-Sasaki manifolds can be obtained in the following way.
It is known that quaternionic Kähler (not hyper-Kähler) manifolds with negative scalar
curvature admit a canonically associated principal SO(3)-bundle P(M) which is endowed
with a negative 3-Sasaki structure [18,19]. This is a 3-structure (ϕi, ξi, ηi, g̃), i = 1, 2, 3, where
(ϕi, ξi, ηi) is a normal almost 3-contact structure, and g̃ is a compatible semi-Riemannian
metric, with signature (3, 4n), where 4n is the dimension of the base space, and dηi(X, Y) =
2g̃(X, ϕiY). Then, one can define the Riemannian metric

g = −g̃ + 2
3

∑
i=1

ηi ⊗ ηi,

which is compatible with the structure (ϕi, ξi, ηi), and satisfies dηi = −2Φi − 4ηj ∧ ηk,
where Φi(X, Y) = g(X, ϕiY) (see also [19]). Therefore (ϕi, ξi, ηi, g) is a 3-(α, δ)-Sasaki
structure with α = −1 and δ = 1.
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The following Theorem regarding the transverse geometry with respect to the vertical
foliation of a 3-(α, δ)-Sasaki manifold is proved in [17]:

Theorem 2. Any 3-(α, δ)-Sasaki manifold M admits a locally defined Riemannian submersion
π : M→ N along its horizontal distributionH such that N carries a quaternionic Kähler structure
given by

ϕ̌i = π∗ ◦ ϕi ◦ s∗, i = 1, 2, 3,

where s : U → M is any local smooth section of the Riemannian submersion. The covariant
derivatives of the almost complex structures ϕ̌i are given by

∇gN
X ϕ̌i = 2δ(η̌k(X)ϕ̌j − η̌j(X)ϕ̌k)

where η̌i(X) = ηi(s∗X) ◦ s for i = 1, 2, 3. The scalar curvature of the base space N is 16n(n+ 2)αδ.

The Riemannian Ricci tensor of any 3-(α, δ)-Sasaki manifold is computed in [1]:

Ricg = 2α
(
2δ(n + 2)− 3α

)
g + 2(α− δ)

(
(2n + 3)α− δ

) 3

∑
i=1

ηi ⊗ ηi. (10)

In particular, a 3-(α, δ)-Sasaki manifold is Riemannian Einstein if and only if δ = α, in
which case the structure is 3-α-Sasaki, or δ = (2n + 3)α.

Notice that, by Theorem 2, a non-degenerate 3-(α, δ)-Sasaki manifold locally fibers
over a quaternionic Kähler space of positive or negative scalar curvature, according to
αδ > 0 or αδ < 0, respectively. In [17] a systematic study of homogeneous non-degenerate
3-(α, δ)-Sasaki manifolds has been carried out, obtaining a complete classification in the
positive case, where the base space of the homogeneous fibration turns out to be a symmet-
ric Wolf space. In the case αδ < 0, one can provide a general construction of homogeneous
3-(α, δ)-Sasaki manifolds fibering over nonsymmetric Alekseevsky spaces.

We recall now the definition and some basic facts on 3-δ-cosymplectic manifolds.

Definition 2. A 3-δ-cosymplectic manifold is an almost 3-contact metric manifold satisfying

dηi = −2δηj ∧ ηk, dΦi = 0,

for some δ ∈ R and for every even permutation (i, j, k) of (1, 2, 3).

When δ = 0, the fact that the forms ηi and Φi are all closed implies that the structure
is hypernormal ([16], Theorem 4.13). In fact this immediately follows from (9). Therefore, a
3-δ-cosymplectic manifold with δ = 0 is 3-cosymplectic. In particular, it is 3-quasi-Sasaki
and the Reeb vector fields are all Killing. The local structure of these manifolds is described
by the following:

Proposition 1 ([12]). Any 3-cosymplectic manifold of dimension 4n + 3 is locally the Riemannian
product of a hyper-Kähler manifold of dimension 4n and a 3-dimensional flat abelian Lie group.

As a consequence, since every hyper-Kähler manifold is Ricci flat, even the Riemannian
Ricci tensor of any 3-cosymplectic manifold vanishes.

As regards 3-δ-cosymplectic manifolds with δ 6= 0, even in this case one can show that
the structure is hypernormal, the Reeb vector fields are Killing, and the manifold locally
decomposes as a Riemannian product [1]. In particular,

Proposition 2. Any 3-δ-cosymplectic manifold with δ 6= 0 is locally the Riemannian product
of a hyper-Kähler manifold and a 3-dimensional Lie group isomorphic to SO(3), with constant
curvature δ2. Consequently, the Riemannian Ricci tensor is Ricg = 2δ2 ∑3

i=1 ηi ⊗ ηi.



Axioms 2021, 10, 8 7 of 14

In both cases, i.e., δ = 0 or δ 6= 0, the hyper-Kähler manifold is tangent to the horizontal
distribution, while the 3-dimensional Lie group is tangent to the vertical distribution. In
fact, examples of these manifolds can be obtained taking Riemannian products N × G,
where (N, Ji, h), i = 1, 2, 3, is a hyper-Kähler manifold, and G is a 3-dimensional Lie group,
which is either abelian, or isomorphic to SO(3). If ξ1, ξ2, ξ3 are generators of the Lie algebra
g of G, satisfying [ξi, ξ j] = 2δξk, δ ∈ R, then one can define in a natural manner an almost
3-contact metric structure (ϕi, ξi, ηi, g) on the product N × G, setting

ϕi|TN = Ji, ϕiξi = 0, ϕiξ j = ξk, ϕiξk = −ξ j,

ηi|TN = 0, ηi(ξi) = 1, ηi(ξ j) = ηi(ξk) = 0,

and g the product metric of h and the left invariant Riemannian metric on G with respect
to which ξ1, ξ2, ξ3 are an orthonormal basis of g.

For a comparison with the class of 3-(0, δ)-Sasaki manifolds, which will be intro-
duced in the next section, it is worth remarking that for a 3-δ-cosymplectic manifold
(M, ϕi, ξi, ηi, g) the Lie derivatives of the structure tensor fields ϕi, i = 1, 2, 3 with respect
to the Reeb vector fields are given by

Lξi ϕi = 0, Lξi ϕj = 2δ(ηi ⊗ ξ j − ηj ⊗ ξi) = −Lξ j ϕi (11)

for every i, j = 1, 2, 3. Indeed, in a 3-δ-cosymplectic manifold the Levi-Civita connection
satisfies ([1], Proposition 2.1.1):

∇g
ξi

ϕi = 0,

(∇g
ξi

ϕj)X = δ(ηi(X)ξ j − ηj(X)ξi) = −(∇
g
ξ j

ϕi)X,

∇g
Xξi = δ(ηk(X)ξ j − ηj(X)ξk),

where (i, j, k) is an even permutation of (1, 2, 3) and X ∈ X(M). Therefore,

(Lξi ϕi)X = [ξi, ϕiX]− ϕi[ξi, X]

= ∇g
ξi
(ϕiX)−∇g

ϕiX
ξi − ϕi(∇

g
ξi

X) + ϕi(∇
g
Xξi)

= (∇g
ξi

ϕi)X−∇g
ϕiX

ξi + ϕi(∇
g
Xξi)

= −δ(ηk(ϕiX)ξ j − ηj(ϕiX)ξk) + δ(ηk(X)ϕiξ j − ηj(X)ϕiξk) = 0.

In the same way,

(Lξi ϕj)X = (∇g
ξi

ϕj)X−∇g
ϕjX

ξi + ϕj(∇
g
Xξi)

= δ(ηi(X)ξ j − ηj(X)ξi)− δ ηk(ϕjX)ξ j − δ ηj(X)ϕjξk

= 2δ(ηi(X)ξ j − ηj(X)ξi) = −(Lξ j ϕi)X.

4. 3-(0, δ)-Sasaki Manifolds

In this section we introduce the class of 3-(0, δ)-Sasaki manifolds.

Definition 3. An almost 3-contact metric manifold (M, ϕi, ξi, ηi, g) will be called 3-(0, δ)-Sasaki
manifold if

dηi = −2δηj ∧ ηk, dΦi = −2δ(ηj ∧Φk − ηk ∧Φj) (12)

for every even permutation (i, j, k) of (1, 2, 3), and for some real constant δ ∈ R.

In particular, the structure is not 3-quasi-Sasaki when δ 6= 0, and we have the following
basic properties for a 3-(0, δ)-Sasaki manifold:

1. The horizontal distributionH is integrable;
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2. Each ξi is an infinitesimal automorphism of the distributionH, i. e.

dηr(X, ξs) = 0 X ∈ Γ(H), r, s = 1, 2, 3;

3. The constant δ is the Reeb commutator function.

Remark 1. In case δ 6= 0, the two equations in (12) are not completely independent. Indeed, if one
assumes dΦi = −2γ(ηj ∧Φk − ηk ∧Φj), γ ∈ R∗, differentiating this equation, and combining
with dηi = −2δηj ∧ ηk, a straightforward computation gives γ = δ. Thus, there is no freedom for
the choice of constant in the second equation.

If (ϕi, ξi, ηi, g) is a 3-(0, δ)-Sasaki structure, applying anH-homothetic deformation as
in (5), an easy computation using (6) shows that the new structure (ϕ′i, η′i , ξ ′i , g′) is again
3-(0, δ′)-Sasaki, with δ′ = δ

c .

Example 1. Consider the abelian Lie algebra R4n spanned by vectors vr, vn+r, v2n+r, v3n+r,
r = 1, . . . , n, and endowed with the hypercomplex structure {J1, J2, J3} defined by

Ji(vr) = vin+r, Ji(vin+r) = −vr, Ji(vjn+r) = vkn+r, Ji(vkn+r) = −vjn+r,

for every even permutation (i, j, k) of (1, 2, 3). Let us consider also the Lie algebra so(3) spanned
by ξ1, ξ2, ξ3 with Lie brackets given by [ξi, ξ j] = 2δξk, δ 6= 0. Let ρ be the representation of so(3)
on R4n given by

ρ : so(3)→ gl(4n,R), ρ(ξi) = δJi, i = 1, 2, 3.

On the Lie algebra g = so(3)nρ R4n on can define in a natural way an almost 3-contact metric
structure (ϕi, ξi, ηi, g), with

ϕi|R4n = Ji, ϕ(ξi) = 0, ϕi(ξ j) = ξk = −ϕj(ξk),

ηi|R4n = 0, ηi(ξi) = 1, ηi(ξ j) = ηi(ξk) = 0,

and where g is the inner product such that the vectors ξi, vl , i = 1, 2, 3, l = 1, . . . , 4n are
orthonormal. In particular, the non zero brackets on g are given by

[ξi, ξ j] = 2δξk, [ξi, X] = δϕi(X), X ∈ R4n.

The representation ρ : so(3)→ gl(4n,R) can be integrated to a representation ρ̃ : SO(3)→
GL(4n,R). Therefore, identifying R4n with Hn in a natural way, the simply connected Lie group
G = SO(3)nρ̃ Hn, with Lie algebra g, admits a left invariant almost 3-contact metric structure
(ϕi, ξi, ηi, g). One can easily verify that this structure satisfies (12).

Remark 2. For more details on the above example we refer to [2], where g is described as a
remarkable example of a Lie algebra endowed with an abelian almost 3-contact metric structure.
In fact, the structure defined on g belongs to the class of canonical abelian structures, so that the
Lie group G admits a unique metric connection with totally skew symmetric torsion ∇ such that

∇X ϕi = 2δ(ηk(X)ϕj − ηj(X)ϕk)

for every vector field X and for every even permutation (i, j, k) of (1, 2, 3). The torsion of the
canonical connection ∇ is T = 2δη1 ∧ η2 ∧ η3, which satisfies ∇T = 0.

It is also shown in [2] that the Lie group G admits co-compact discrete subgroups, so that the
corresponding compact quotients admit almost 3-contact metric structures of the same type.

Proposition 3. Let (M, ϕi, ξi, ηi, g) be a 3-(0, δ)-Sasaki manifold. Then the structure is hypernormal.
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Proof. In order to compute the tensor fields Nϕi , we apply Lemma 1. We always denote by
X, Y, Z horizontal vector fields and by (i, j, k) an even permutation of (1, 2, 3).

Being dΦi(X, Y, Z) = 0, then Nϕi (X, Y, Z) = 0 for every i = 1, 2, 3. Furthermore, since
the horizontal distribution is integrable, by the definition of the tensor field Nϕi (see (4)),
one has Nϕi (X, Y, ξr) = 0 for all r = 1, 2, 3. Notice that, since

ξiyΦi = 0, ξ jyΦi = −ηk, ξkyΦi = ηj,

from the second equation in (12), we have,

ξiy dΦi = 0, ξ jy dΦi = −2δ(Φk + ηij), ξky dΦi = 2δ(Φj + ηki). (13)

Therefore, form Lemma 1, applying (12) and (13), we have

Nϕi (X, ξi, Z) = −dΦj(X, ξi, ϕjZ) + dΦk(ϕiX, ξi, ϕjZ) + dηj(ϕiX, ϕjZ) + dηk(X, ϕjZ)

= −2δΦk(ϕjZ, X)− 2δΦj(ϕjZ, ϕiX)

= 2δΦj(ϕiX, ϕjZ) + 2δΦk(X, ϕjZ) = −2δg(ϕiX, Z)− 2δg(X, ϕiZ) = 0,

Nϕi (X, ξ j, Z) = dΦj(ϕiX, ξk, ϕjZ) + dΦk(ϕiX, ξ j, ϕjZ)

= −2δΦi(ϕjZ, ϕiX) + 2δΦi(ϕjZ, ϕiX) = 0,

Nϕi (X, ξk, Z) = −dΦj(X, ξk, ϕjZ)− dΦk(X, ξ j, ϕjZ)

= 2δΦi(ϕjZ, X)− 2δΦi(ϕjZ, X) = 0.

Equations (13) implies dΦr(X, ξs, ξt) = 0 for every r, s, t = 1, 2, 3 and X ∈ Γ(H).
Taking also into account that dηr(X, ξs) = 0, we deduce from (9) that

Nϕr (X, ξs, ξt) = Nϕr (ξs, ξt, X) = 0.

Finally, (9) implies together with dηr(ξs, ξt) = −2δεrst that

Nϕi (ξi, ξ j, ξk) = Nϕi (ξi, ξk, ξ j) = Nϕi (ξ j, ξk, ξi) = 0,

completing the proof that M is hypernormal.

Proposition 4. Let (M, ϕi, ξi, ηi, g) be a 3-(0, δ)-Sasaki manifold. Then the Levi-Civita connection
satisfies for all X, Y ∈ X(M) and any cyclic permutation (i, j, k) of (1, 2, 3):

(∇g
X ϕi)Y = 2δ

[
ηk(X)ϕjY− ηj(X)ϕkY

]
− δ

[
ηj(X)ηj(Y) + ηk(X)ηk(Y)

]
ξi + δ ηi(Y)

[
ηj(X)ξ j + ηk(X)ξk

] (14)

and
∇g

Xξi = δ (ηk(X)ξ j − ηj(X)ξk), (15)

∇g
ξi

ξi = 0, ∇g
ξi

ξ j = −∇
g
ξ j

ξi = δξk. (16)

In particular, each ξi is a Killing vector field.

Proof. Since the structure is hypernormal, by ([3], Lemma 6.1), the Levi-Civita connec-
tion satisfies

2g((∇g
X ϕi)Y, Z) = dΦi(X, ϕiY, ϕiZ)− dΦi(X, Y, Z)

+ dηi(ϕiY, X)ηi(Z)− dηi(ϕiZ, X)ηi(Y).
(17)

Further, an easy computation (see [1]) shows that for every cyclic permutation (i, j, k)
of (1, 2, 3),
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Φj(ϕiX, ϕiY) = −Φj(X, Y)− (ηk ∧ ηi)(X, Y),

Φk(ϕiX, ϕiY) = −Φk(X, Y)− (ηi ∧ ηj)(X, Y),

Φj(ϕiX, Y) = −Φk(X, Y)− ηi(X)ηj(Y),

Φk(ϕiX, Y) = Φj(X, Y)− ηi(X)ηk(Y).

Then, using the second equation in (12) and the above equations, we have

dΦi(X, ϕiY, ϕiZ) =

= −2δ [ηj(X)Φk(ϕiY, ϕiZ) + ηj(ϕiY)Φk(ϕiZ, X) + ηj(ϕiZ)Φk(X, ϕiY)

− ηk(X)Φj(ϕiY, ϕiZ)− ηk(ϕiY)Φj(ϕiZ, X)− ηk(ϕiZ)Φj(X, ϕiY)]

= −2δ [−ηj(X)Φk(Y, Z)− ηj(X)(ηi ∧ ηj)(Y, Z)

− ηk(Y)Φj(Z, X) + ηk(Y)ηi(Z)ηk(X) + ηk(Z)Φj(Y, X)− ηk(Z)ηi(Y)ηk(X)

+ ηk(X)Φj(Y, Z) + ηk(X)(ηk ∧ ηi)(Y, Z)

+ ηj(Y)Φk(Z, X) + ηj(Y)ηi(Z)ηj(X)− ηj(Z)Φk(Y, X)− ηj(Z)ηi(Y)ηj(X)]

= dΦi(X, Y, Z) + 4δ [ηj(X)Φk(Y, Z)− ηk(X)Φj(Y, Z)]

+ 4δ ηj(X)[ηi(Y)ηj(Z)− ηj(Y)ηi(Z)]

+ 4δ ηk(X)[ηi(Y)ηk(Z)− ηk(Y)ηi(Z)].

On the other hand, again using the first equation in (12), we obtain

dηi(ϕiY, X)ηi(Z)− dηi(ϕiZ, X)ηi(Y) =

= −2δ(ηj ∧ ηk)(ϕiY, X)ηi(Z) + 2δ(ηj ∧ ηk)(ϕiZ, X)ηi(Y)

= −2δ ηi(Z)[−ηk(Y)ηk(X)− ηj(X)ηj(Y)] + 2δ ηi(Y)[−ηk(Z)ηk(X)− ηj(X)ηj(Z)].

Inserting the above computations in (17), we conclude that

g((∇g
X ϕi)Y, Z) = 2δ[ηk(X)g(ϕjY, Z)− ηj(X)g(ϕkY, Z)]

− δηi(Z)[ηk(Y)ηk(X) + ηj(X)ηj(Y)] + δηi(Y)[ηk(Z)ηk(X) + ηj(X)ηj(Z)]

which implies (14). As regards the proof (15), applying (14) for Y = ξi, we get

(∇g
X ϕi)ξi = −δ(ηj(X)ξ j + ηk(X)ξk).

Applying ϕi on both hand-sides, we obtain (15). Equations (16) are immediate conse-
quences of (15). Furthermore, we also get

g(∇g
Xξi, Y) = −δ(ηj ∧ ηk)(X, Y)

for every X, Y ∈ X(M). Since ∇gξi is skew-symmetric, ξi is Killing.

Corollary 1. Let (M, ϕi, ξi, ηi, g) be a 3-(0, δ)-Sasaki manifold. Then for every even permutation
(i, j, k) of (1, 2, 3) we have

Lξi ϕi = 0, Lξi ϕj = −Lξ j ϕi = 2δϕk. (18)

Proof. For the first Lie derivative, notice that by (14) we have ∇g
ξi

ϕi = 0. Then, applying
also (15), for every vector field X we have

(Lξi ϕi)X = (∇g
ξi

ϕi)X−∇g
ϕiX

ξi + ϕi(∇
g
Xξi)

= −δ(ηk(ϕiX)ξ j − ηj(ϕiX)ξk) + δ(ηk(X)ϕiξ j − ηj(X)ϕiξk) = 0.
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Now, using (14) for the covariant derivative ∇g ϕj, for every vector field Y, we have

(∇g
ξi

ϕj)Y = 2δ ϕkY− δ
(
ηi(Y)ξ j − ηj(Y)ξi

)
.

Therefore, applying also (15), we get

(Lξi ϕj)X = (∇g
ξi

ϕj)X−∇g
ϕjX

ξi + ϕj(∇
g
Xξi)

= 2δ ϕkX− δ
(
ηi(X)ξ j − ηj(X)ξi

)
− δ ηk(ϕjX)ξ j − δ ηj(X)ϕjξk

= 2δϕkX.

Analogously, Lξ j ϕi = −2δϕk.

Theorem 3. Let (M, ϕi, ξi, ηi, g) be a 3-(0, δ)-Sasaki manifold. Then both the horizontal and the
vertical distribution are integrable with totally geodesic leaves. Each leaf of the vertical distribution
is locally isomorphic to the Lie group SO(3), with constant sectional curvature δ2; each leaf of the
horizontal distribution is endowed with a hyper-Kähler structure. Consequently, the Riemannian
Ricci tensor of M is given by

Ricg = 2δ2
3

∑
i=1

ηi ⊗ ηi. (19)

Proof. We already know that the horizontal distribution H is integrable. From (15), for
every X, Y ∈ Γ(H) and i = 1, 2, 3, we have

g(∇g
XY, ξi) = −g(∇g

Xξi, Y) = 0,

so that the distributionH has totally geodesic leaves. Furthermore, Equation (16) implies
that the vertical distribution V is also integrable with totally geodesic leaves. In particular
[ξi, ξ j] = 2δξk for an even permutation (i, j, k) of (1, 2, 3), so that the leaves of V are locally
isomorphic to the Lie group SO(3) and have constant sectional curvature δ2. On each leaf
of the horizontal distribution H one can consider the almost hyper-Hermitian structure
defined by (Ji := ϕi|H , g), which turns out to be hyper-Kähler due to (14). Consequently,
M is locally the Riemannnian product of 3-dimensional sphere of curvature δ2 and a 4n-
dimensional manifold M′, which is endowed with a hyper-Kähler structure. Since any
hyper-Kähler manifold is Ricci flat, we obtain that the Riemannian Ricci tensor of M is
given by (19).

Remark 3. From Theorem 3 it follows that any 3-(0, δ)-Sasaki manifold is locally isometric to
the Riemannnian product of 3-dimensional sphere and a 4n-dimensional manifold M′, which is
endowed with a hyper-Kähler structure. We recall that 3-δ-cosymplectic manifolds are also locally
isometric to the Riemannian product of a 3-dimensional sphere of constant curvature δ2 and a
hyper-Kähler manifold. Nevertheless, there is a difference between the two geometries. Looking
at the transverse geometry of the foliation defined by the vertical distribution V , in both cases the
Riemannian metric g is projectable, being the vector fields ξi, i = 1, 2, 3, all Killing. In the case of
3-δ-cosymplectic manifolds, each tensor field ϕi is also projectable, as by (11), the Lie derivatives
with respect to the Reeb vector fields satisfy (Lξi ϕj)X = 0 for every i, j = 1, 2, 3 and for every
horizontal vector field X. In the case of 3-(0, δ)-Sasaki manifolds, owing to (18), the tensor fields
are not projectable. Nevertheless, taking into account the horizontal parts ΦHi := Φi + ηj ∧ ηk of
the fundamental 2-forms Φi, one can verify that horizontal 4-form

ΦH1 ∧ΦH1 + ΦH2 ∧ΦH2 + ΦH3 ∧ΦH3

is projectable and defines a transversal quaternionic structure, which turns out to be locally hyper-Kähler.
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5. Connections with Totally Skew-Symmetric Torsion

In this section we will show that every 3-(0, δ)-Sasaki manifold is canonical in the
sense of the definition given in [1], thus admitting a special metric connection with totally
skew-symmetric torsion, called canonical. Recall that a metric connection ∇ with torsion
T on a Riemannian manifold (M, g) is said to have totally skew-symmetric torsion, or skew
torsion for short, if the (0, 3)-tensor field T defined by T(X, Y, Z) := g(T(X, Y), Z) is a
3-form. The relation between ∇ and the Levi-Civita connection ∇g is then given by

∇XY = ∇g
XY +

1
2

T(X, Y).

For more details we refer to [20]. We recall now the definition and the characterization
of canonical almost 3-contact metric manifolds.

Definition 4 ([1]). An almost 3-contact metric manifold (M, ϕi, ξi, ηi, g) is called canonical if
the following conditions are satisfied:

(i) each Nϕi is totally skew-symmetric onH,
(ii) each ξi is a Killing vector field,
(iii) for any X, Y, Z ∈ Γ(H) and any i, j = 1, 2, 3,

Nϕi (X, Y, Z)− dΦi(ϕiX, ϕiY, ϕiZ) = Nϕj(X, Y, Z)− dΦj(ϕjX, ϕjY, ϕjZ),

(iv) M admits a Reeb Killing function β ∈ C∞(M), that is the tensor fields Aij defined onH by

Aij(X, Y) := g((Lξ j ϕi)X, Y) + dηj(X, ϕiY) + dηj(ϕiX, Y),

satisfy
Aii(X, Y) = 0, Aij(X, Y) = −Aji(X, Y) = βΦk(X, Y),

for every X, Y ∈ Γ(H) and every even permutation (i, j, k) of (1, 2, 3).

Here Nϕi also denotes the (0, 3)-tensor field defined by Nϕi (X, Y, Z) := g(Nϕi (X, Y), Z)
and we say that Nϕi is totally skew-symmetric onH if the (0, 3)-tensor is a 3-form onH.

Theorem 4 ([1]). An almost 3-contact metric manifold (M, ϕi, ξi, ηi, g) is canonical, with Reeb
Killing function β, if and only if it admits a metric connection ∇ with skew torsion such that

∇X ϕi = β(ηk(X)ϕj − ηj(X)ϕk)

for every vector field X on M and for every even permutation (i, j, k) of (1, 2, 3). If such a connection
∇ exists, it is unique and its torsion is given by

T(X, Y, Z) = Nϕi (X, Y, Z)− dΦi(ϕiX, ϕiY, ϕiZ),

T(X, Y, ξi) = dηi(X, Y),

T(X, ξi, ξ j) = −g([ξi, ξ j], X),

T(ξ1, ξ2, ξ3) = 2(β− δ),

for every X, Y, Z ∈ Γ(H), and i, j = 1, 2, 3, and where δ is the Reeb commutator function.

The connection ∇ is called the canonical connection of M, and also satisfies

∇Xξi = β(ηk(X)ξ j − ηj(X)ξk), ∇Xηi = β(ηk(X)ηj − ηj(X)ηk) (20)

for every vector field X on M. Therefore, when β = 0 the canonical connection parallelizes
all the structure tensor fields, in which case we call the almost 3-contact metric manifold
parallel.
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Both 3-(α, δ)-Sasaki manifolds and 3-δ-cosymplectic manifolds turn out to be canonical.
In particular,

Theorem 5 ([1]). Every 3-(α, δ)-Sasaki manifold is a canonical almost 3-contact metric manifold,
with constant Reeb Killing function β = 2(δ− 2α). The torsion T of the canonical connection∇ is
given by

T =
3

∑
i=1

ηi ∧ dηi + 8(δ− α) η123 = 2α
3

∑
i=1

ηi ∧ΦHi + 2(δ− 4α) η123

and satisfies ∇T = 0.

We denote by η123 the 3-form η1 ∧ η2 ∧ η3. From the above theorem, it follows that
any 3-(α, δ)-Sasaki manifold is a parallel canonical manifold if and only if δ = 2α, in which
case the 3-(α, δ)-Sasaki structure is positive (αδ > 0).

Regarding 3-δ-cosymplectic manifolds, we have:

Proposition 5 ([1]). Any 3-δ-cosymplectic manifold is a parallel canonical almost 3-contact metric
manifold. The torsion of the canonical connection is given by

T = −2δ η123.

For the class of 3-(0, δ)-Sasaki manifolds, we have the following

Proposition 6. Every 3-(0, δ)-Sasaki manifold is a canonical almost 3-contact metric manifold,
with constant Reeb Killing function β = 2δ. The torsion T of the canonical connection ∇ is
given by

T = 2δ η123,

which satisfies ∇T = 0.

Proof. Let (M, ϕi, ξi, ηi, g) be a 3-(0, δ)-Sasaki manifold. We showed that the structure is
hypernormal and the Reeb vector fields are Killing. Furthermore, by the second equation
in (12), dΦi(X, Y, Z) = 0 for every X, Y, Z ∈ Γ(H). Therefore, conditions (i), (ii) and (iii) in
Definition 4 are easily verified. As regards condition (iv), applying the first equation in (4)
and Corollary 1, for every X, Y ∈ Γ(H) we have

Aii(X, Y) = 0, Aij(X, Y) = −Aji(X, Y) = 2δΦk(X, Y).

Hence, the structure is canonical with Reeb commutator function β = 2δ. Now, by
Theorem 4, taking also into account the fact that the vertical distribution is integrable,
the only non-vanishing term of the canonical connection is T(ξ1, ξ2, ξ3) = 2δ, so that
T = 2δ η123. Although the structure is not parallel when δ 6= 0, the torsion satisfies∇T = 0,
as by (20), the 3-form η123 is parallel with respect to ∇.

The above result generalizes the result obtained in [2] for the Lie group described in
Example 1 (see also Remark 2).
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