Article

Remarkable Classes of Almost 3-Contact Metric Manifolds

Giulia Dileo

Citation: Dileo, G. Remarkable Classes of Almost 3-Contact Metric Manifolds. Axioms 2021, 10, 8. https: / /doi.org/10.3390/axioms 10010008

Received: 9 December 2020
Accepted: 7 January 2021
Published: 11 January 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Department of Mathematics, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; giulia.dileo@uniba.it

Abstract

We introduce a new class of almost 3-contact metric manifolds, called 3-(0, $\delta)$-Sasaki manifolds. We show fundamental geometric properties of these manifolds, analyzing analogies and differences with the known classes of 3- (α, δ)-Sasaki $(\alpha \neq 0)$ and 3- δ-cosymplectic manifolds.

Keywords: almost 3-contact metric manifold; 3-Sasaki; 3-cosymplectic; 3-($\alpha, \delta)$-Sasaki; 3- δ - cosymplectic; metric connection with skew torsion

MSC: 53C15; 53C25; 53B05

1. Introduction

An almost 3-contact metric manifold is a $(4 n+3)$-dimensional differentiable manifold M endowed with three almost contact metric structures $\left(\varphi, \xi_{i}, \eta_{i}, g\right), i=1,2,3$, sharing the same Riemannian metric g and satisfying suitable compatibility conditions, equivalent to the existence of a sphere of almost contact metric structures. In the recent paper [1], new classes of almost 3-contact metric manifolds were introduced and studied. The first remarkable class is given by 3-($\alpha, \delta)$-Sasaki manifolds defined as almost 3-contact metric manifolds $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ such that

$$
\begin{equation*}
d \eta_{i}=2 \alpha \Phi_{i}+2(\alpha-\delta) \eta_{j} \wedge \eta_{k}, \quad \alpha \in \mathbb{R}^{*}, \delta \in \mathbb{R}, \tag{1}
\end{equation*}
$$

for every even permutation (i, j, k) of $(1,2,3)$. This is a generalization of 3-Sasaki manifolds, which correspond to the values $\alpha=\delta=1$. A second class introduced in [1] is given by $3-\delta$-cosymplectic manifolds defined by the conditions

$$
d \eta_{i}=-2 \delta \eta_{j} \wedge \eta_{k}, \quad d \Phi_{i}=0, \quad \delta \in \mathbb{R},
$$

generalizing 3-cosymplectic manifolds which correspond to the value $\delta=0$.
In the present paper we will introduce a third class of almost 3-contact metric manifolds, which is in fact a second (and alternative) generalization of 3-cosymplectic manifolds. We will consider almost 3-contact metric manifolds whose structure tensor fields satisfy

$$
\begin{equation*}
d \eta_{i}=-2 \delta \eta_{j} \wedge \eta_{k}, \quad d \Phi_{i}=-2 \delta\left(\eta_{j} \wedge \Phi_{k}-\eta_{k} \wedge \Phi_{j}\right), \quad \delta \in \mathbb{R} \tag{2}
\end{equation*}
$$

for every even permutation (i, j, k) of $(1,2,3)$. When $\delta=0$ we recover a 3 -cosymplectic manifold. We will call these manifolds 3-($0, \delta$)-Sasaki manifolds. The choice of name is due to the fact that for a $3-(\alpha, \delta)$-Sasaki manifold, Equation (1) implies

$$
\begin{equation*}
d \Phi_{i}=2(\alpha-\delta)\left(\eta_{j} \wedge \Phi_{k}-\eta_{k} \wedge \Phi_{j}\right) \tag{3}
\end{equation*}
$$

so that the two equations in (2) formally correspond to (1) and (3) with $\alpha=0$, although in this case the second equation is no more a consequence of the first one. In fact the two conditions in (2) are not completely independent (see Remark 1). Examples of 3-(0, δ)Sasaki structures can be defined on the semidirect products $\mathrm{SO}(3) \ltimes \mathbb{R}^{4 n}$. The structure on these Lie groups was introduced in [2] as an example of canonical abelian almost 3-contact
metric structure. It is also shown in [2] that the Lie group $\mathrm{SO}(3) \ltimes \mathbb{R}^{4 n}$ admits co-compact discrete subgroups, so that the corresponding compact quotients admit almost 3-contact metric structures of the same type.

One can show that for all the above three classes of manifolds, 3- (α, δ)-Sasaki, 3- δ cosymplectic, and 3-($0, \delta)$-Sasaki manifolds, the structure is hypernormal, the characteristic vector fields $\xi_{i}, i=1,2,3$, are Killing and they span an integrable distribution, called vertical, with totally geodesic leaves. Nevertheless, there are remarkable geometric differences between the three classes. In the 3-($\alpha, \delta)$-Sasaki case the 1 -forms η_{i} are all contact forms, i.e., $\eta_{i} \wedge\left(d \eta_{i}\right)^{n} \neq 0$ everywhere on M, while for the other two classes, the horizontal distribution defined by $\eta_{i}=0, i=1,2,3$, is integrable. Both 3 - δ-cosymplectic manifolds and 3-($0, \delta)$-Sasaki manifolds are locally isometric to the Riemannian product of a 3-dimensional Lie group, tangent to the vertical distribution, and a $4 n$-dimensional manifold tangent to the horizontal distribution. The Lie group is either isomorphic to $\mathrm{SO}(3)$ or flat depending on wether $\delta \neq 0$ or $\delta=0$. Each horizontal leaf is endowed with a hyper-Kähler structure. The difference between $3-\delta$-cosymplectic and $3-(0, \delta)$-Sasaki manifolds lies in the projectability of the structure tensor fields $\varphi_{i}, i=1,2,3$, with respect to the vertical foliation. They are always projectable for $3-\delta$-cosymplectic manifolds, but not for $3-(0, \delta)$-Sasaki manifolds with $\delta \neq 0$. In this case one can project a transverse quaternionic structure, as it happens for 3-($\alpha, \delta)$-Sasaki manifolds. Finally, for the three classes of manifolds, we analyze the existence of a canonical metric connection with totally skew-symmetric torsion.

2. Almost Contact and Almost 3-Contact Metric Manifolds

An almost contact manifold is a smooth manifold M of dimension $2 n+1$, endowed with a structure (φ, ξ, η), where φ is a $(1,1)$-tensor field, ξ a vector field, and η a 1 -form such that

$$
\varphi^{2}=-I+\eta \otimes \xi, \quad \eta(\xi)=1
$$

implying that $\varphi \xi=0, \eta \circ \varphi=0$, and φ has rank $2 n$. The tangent bundle of M splits as $T M=\mathcal{H} \oplus\langle\xi\rangle$, where \mathcal{H} is the $2 n$-dimensional distribution defined by $\mathcal{H}=\operatorname{Im}(\varphi)=$ $\operatorname{Ker}(\eta)$. The vector field ξ is called the characteristic or Reeb vector field.

On the product manifold $M \times \mathbb{R}$ one can define an almost complex structure J by $J\left(X, f \frac{d}{d t}\right)=\left(\varphi X-f \xi, \eta(X) \frac{d}{d t}\right)$, where X is a vector field tangent to M, t is the coordinate of \mathbb{R} and f is a \mathcal{C}^{∞} function on $M \times \mathbb{R}$. If J is integrable, the almost contact structure is said to be normal and this is equivalent to the vanishing of the tensor field $N_{\varphi}:=[\varphi, \varphi]+d \eta \otimes \xi$, where $[\varphi, \varphi]$ is the Nijenhuis torsion of φ [3]. More precisely, for any vector fields X and Y, N_{φ} is given by

$$
\begin{equation*}
N_{\varphi}(X, Y)=[\varphi X, \varphi Y]+\varphi^{2}[X, Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]+d \eta(X, Y) \xi \tag{4}
\end{equation*}
$$

It is known that any almost contact manifold admits a compatible metric, that is a Riemannian metric g such that $g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y)$ for every $X, Y \in \mathfrak{X}(M)$. Then $\eta=g(\cdot, \xi)$ and $\mathcal{H}=\langle\xi\rangle^{\perp}$. The manifold $(M, \varphi, \xi, \eta, g)$ is called an almost contact metric manifold. The associated fundamental 2-form is defined by $\Phi(X, Y)=g(X, \varphi Y)$.

We recall some remarkable classes of almost contact metric manifolds.

- An α-contact metric manifold is defined as an almost contact metric manifold such that

$$
d \eta=2 \alpha \Phi, \quad \alpha \in \mathbb{R}^{*}
$$

When $\alpha=1$, it is called a contact metric manifold; the 1 -form η is a contact form, that is $\eta \wedge(d \eta)^{n} \neq 0$ everywhere on M. An α-Sasaki manifold is a normal α-contact metric manifold, and again such a manifold with $\alpha=1$ is called a Sasaki manifold.

- An almost cosymplectic manifold is defined as an almost contact metric manifold such that

$$
d \eta=0, \quad d \Phi=0
$$

if furhermore the structure is normal, M is called a cosymplectic manifold. It is worth remarking that some authors call these manifolds almost coKähler and coKähler, respectively ([4]).

- A quasi-Sasaki manifold is a normal almost contact metric manifold with closed 2-form Φ. This class includes both α-Sasaki and cosymplectic manifolds. The Reeb vector field of a quasi-Sasaki manifold is always Killing.
Both α-Sasaki manifolds and cosymplectic manifolds can be characterized by means of the Levi-Civita connection ∇^{g}. Indeed, one can show that an almost contact metric manifold $(M, \varphi, \xi, \eta, g)$ is α-Sasaki if and only if

$$
\left(\nabla_{X}^{g} \varphi\right) Y=\alpha(g(X, Y) \xi-\eta(X) Y) \quad \forall X, Y \in \mathfrak{X}(M)
$$

An almost contact metric manifold is cosymplectic if and only if $\nabla^{g} \varphi=0$; further, this is equivalent to requiring the manifold to be locally isometric to the Riemannian product of a real line (tangent to the Reeb vector field) and a Kähler manifold.

For a comprehensive introduction to almost contact metric manifolds we refer to [3]. For Sasaki geometry, we also recommend the monograph [5]; the survey [4] covers fundamental properties and recent results on cosymplectic geometry.

An almost 3-contact manifold is a differentiable manifold M of dimension $4 n+3$ endowed with three almost contact structures $\left(\varphi_{i}, \xi_{i}, \eta_{i}\right), i=1,2,3$, satisfying the following relations,

$$
\begin{gathered}
\varphi_{k}=\varphi_{i} \varphi_{j}-\eta_{j} \otimes \xi_{i}=-\varphi_{j} \varphi_{i}+\eta_{i} \otimes \xi_{j} \\
\xi_{k}=\varphi_{i} \xi_{j}=-\varphi_{j} \xi_{i}, \quad \eta_{k}=\eta_{i} \circ \varphi_{j}=-\eta_{j} \circ \varphi_{i}
\end{gathered}
$$

for any even permutation (i, j, k) of $(1,2,3)$ ([3]). The tangent bundle of M splits as $T M=\mathcal{H} \oplus \mathcal{V}$, where

$$
\mathcal{H}:=\bigcap_{i=1}^{3} \operatorname{Ker}\left(\eta_{i}\right), \quad \mathcal{V}:=\left\langle\xi_{1}, \xi_{2}, \xi_{3}\right\rangle
$$

In particular, \mathcal{H} has rank $4 n$. We call any vector belonging to the distribution \mathcal{H} horizontal and any vector belonging to the distribution \mathcal{V} vertical. The manifold is said to be hypernormal if each almost contact structure $\left(\phi_{i}, \xi_{i}, \eta_{i}\right)$ is normal. In [6] it was proved that if two of the almost contact structures are normal, then so is the third.

The existence of an almost 3-contact structure is equivalent to the existence of a sphere $\left\{\left(\varphi_{x}, \xi_{x}, \eta_{x}\right)\right\}_{x \in S^{2}}$ of almost contact structures such that

$$
\varphi_{x} \circ \varphi_{y}-\eta_{y} \otimes \xi_{x}=\varphi_{x \times y}-(x \cdot y) I, \quad \varphi_{x} \xi_{y}=\xi_{x \times y,} \quad \eta_{x} \circ \varphi_{y}=\eta_{x \times y}
$$

for every $x, y \in S^{2}$, where \cdot and \times denote the standard inner product and cross product on \mathbb{R}^{3}. In fact, if the structure is hypernormal, then every structure in the sphere is normal ([7]).

Any almost 3-contact manifold admits a Riemannian metric g which is compatible with each of the three structures. Then M is said to be an almost 3 -contact metric manifold with structure $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right), i=1,2,3$. For ease of notation, we will denote an almost 3 -contact metric manifold by $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$, omitting $i=1,2,3$. The subbundles \mathcal{H} and \mathcal{V} are orthogonal with respect to g and the three Reeb vector fields $\xi_{1}, \xi_{2}, \xi_{3}$ are orthonormal. In fact, the structure group of the tangent bundle is reducible to $\operatorname{Sp}(n) \times\{1\}$ [8].

Given an almost 3-contact metric structure $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$, an \mathcal{H}-homothetic deformation is defined by

$$
\begin{equation*}
\eta_{i}^{\prime}=c \eta_{i}, \quad \xi_{i}^{\prime}=\frac{1}{c} \xi_{i}, \quad \varphi_{i}^{\prime}=\varphi_{i}, \quad g^{\prime}=a g+b \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i} \tag{5}
\end{equation*}
$$

where a, b, c are real numbers such that $a>0, c^{2}=a+b>0$, ensuring that $\left(\varphi_{i}^{\prime}, \xi_{i}^{\prime}, \eta_{i}^{\prime}, g^{\prime}\right)$ is an almost 3-contact metric structure. In particular, the fundamental 2-forms Φ_{i} and Φ_{i}^{\prime} associated to the structures are related by

$$
\begin{equation*}
\Phi_{i}^{\prime}=a \Phi_{i}-b \eta_{j} \wedge \eta_{k} \tag{6}
\end{equation*}
$$

where (i, j, k) is an even permutation of $(1,2,3)$.
An almost 3-contact metric manifold is called

- 3- α-Sasaki, with $\alpha \in \mathbb{R}^{*}$, if $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is α-Sasaki for all $i=1,2,3$, i.e. the structure is hypernormal and

$$
\begin{equation*}
d \eta_{i}=2 \alpha \Phi_{i}, \quad i=1,2,3 ; \tag{7}
\end{equation*}
$$

when $\alpha=1$, it is a 3-Sasaki manifold;

- 3-cosymplectic if $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is cosymplectic for all $i=1,2,3$, i.e. the structure is hypernormal and

$$
\begin{equation*}
d \eta_{i}=0, \quad d \Phi_{i}=0, \quad i=1,2,3 \tag{8}
\end{equation*}
$$

- 3-quasi-Sasaki manifold if each structure $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is quasi-Sasaki; this class includes both 3- α-Sasaki and 3-cosymplectic manifolds.

These classes were deeply investigated by various authors. See $[5,9,10]$ and references therein for 3-Sasakian geometry, the papers $[7,11,12]$ for 3-cosymplectic manifolds, and $[13,14]$ for 3 -quasi-Sasaki manifolds.

In fact, both for 3-Sasaki and 3-cosymplectic manifolds, the hypernormality is consequence of the structure Equations (7) and (8) respectively. This was proved by Kashiwada in [15] for 3-Sasaki manifolds, and in ([16], Theorem 4.13) for 3-cosymplectic manifolds.

In [1] the new classes of 3-($\alpha, \delta)$-Sasaki manifolds and 3- δ-cosymplectic manifolds were introduced, generalizing the classes of $3-\alpha$-Sasaki and 3 -cosymplectic manifolds, respectively. We will review the definitions and the basic properties of these manifolds in the next section. For both these two classes the hypernormality is a consequence of the defining structure equations for the manifolds, thus generalizing the analogous results for 3-Sasaki and 3-cosymplectic manifolds. This is obtained by using the following Lemma:

Lemma 1 ([1]). Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be an almost 3-contact metric manifold. Then the following formula holds $\forall X, Y, Z \in \mathfrak{X}(M)$:

$$
\begin{align*}
& g\left(N_{\varphi_{i}}(X, Y), Z\right)= \tag{9}\\
& =-d \Phi_{j}\left(X, Y, \varphi_{j} Z\right)+d \Phi_{j}\left(\varphi_{i} X, \varphi_{i} Y, \varphi_{j} Z\right)+d \Phi_{k}\left(X, \varphi_{i} Y, \varphi_{j} Z\right)+d \Phi_{k}\left(\varphi_{i} X, Y, \varphi_{j} Z\right) \\
& \quad-\eta_{i}(X)\left[d \eta_{j}\left(\varphi_{i} Y, \varphi_{j} Z\right)+d \eta_{k}\left(Y, \varphi_{j} Z\right)\right]+\eta_{i}(Y)\left[d \eta_{j}\left(\varphi_{i} X, \varphi_{j} Z\right)+d \eta_{k}\left(X, \varphi_{j} Z\right)\right] \\
& \quad+\eta_{j}(Z)\left[d \eta_{j}(X, Y)-d \eta_{j}\left(\varphi_{i} X, \varphi_{i} Y\right)\right]-\eta_{j}(Z)\left[d \eta_{k}\left(X, \varphi_{i} Y\right)+d \eta_{k}\left(\varphi_{i} X, Y\right)\right] .
\end{align*}
$$

In the following we will be concerned with various classes of almost 3-contact metric manifolds where the three Reeb vector fields are all Killing. In this case one can show that there exists a function $\delta \in \mathcal{C}^{\infty}(M)$ such that

$$
\eta_{r}\left(\left[\xi_{s}, \xi_{t}\right]\right)=2 \delta \epsilon_{r s t}, \quad r, s, t=1,2,3
$$

where $\epsilon_{r s t}$ is the totally skew-symmetric symbol, or equivalently $d \eta_{r}\left(\xi_{s}, \xi_{t}\right)=-2 \delta \epsilon_{r s t}$. We call δ a Reeb commutator function, we refer to [1] for more information on this notion.

3. 3-($\alpha, \delta)$-Sasaki Manifolds and 3- δ-Cosymplectic Manifolds

This section is a short review of 3- (α, δ)-Sasaki manifolds and 3- δ-cosymplectic manifolds. These were discussed in detail in [1,17].

Definition 1. An almost 3-contact metric manifold $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is called a 3- (α, δ)-Sasaki manifold if it satisfies

$$
d \eta_{i}=2 \alpha \Phi_{i}+2(\alpha-\delta) \eta_{j} \wedge \eta_{k}
$$

for every even permutation (i, j, k) of $(1,2,3)$, where $\alpha \neq 0$ and δ are real constants.
When $\alpha=\delta=1$, we have a 3-contact metric manifold, and hence a 3-Sasaki manifold by Kashiwada's theorem [15]. In the following, when considering 3-($\alpha, \delta)$-Sasaki manifolds we will always mean $\alpha \neq 0$. As an immediate consequences of the definition one obtains the following properties:

1. Each ξ_{i} is an infinitesimal automorphism of the distribution \mathcal{H}, i.e.

$$
d \eta_{r}\left(X, \xi_{s}\right)=0 \quad X \in \Gamma(\mathcal{H}), r, s=1,2,3
$$

2. The constant δ is the Reeb commutator function;
3. The differentials $d \Phi_{i}$ are given by

$$
d \Phi_{i}=2(\delta-\alpha)\left(\eta_{k} \wedge \Phi_{j}-\eta_{j} \wedge \Phi_{k}\right)
$$

Applying Lemma 1 one shows the following
Theorem 1 ([1], Theorem 2.2.1). Any 3-($\alpha, \delta)$-Sasaki manifold is hypernormal.
In particular, a 3- (α, δ)-Sasaki manifold with $\alpha=\delta$ is 3- α-Sasaki. It can be also shown that the vertical distribution of any 3- (α, δ)-Sasaki manifold is integrable with totally geodesic leaves and each Reeb vector field ξ_{i} is Killing.

We can distinguish three main classes of 3-($\alpha, \delta)$-Sasaki manifolds. A 3- (α, δ)-Sasaki manifold is called degenerate if $\delta=0$ and non-degenerate otherwise. Quaternionic Heisenberg groups are examples of degenerate 3-(α, δ)-Sasaki manifolds (see ([1], Example 2.3.2)). Considering an \mathcal{H}-homothetic deformation of a 3-($\alpha, \delta)$-Sasaki structure, as in (5), one can verify that the obtained structure $\left(\varphi^{\prime}, \xi^{\prime}, \eta^{\prime}, g^{\prime}\right)$ is a $3-\left(\alpha^{\prime}, \delta^{\prime}\right)$-Sasaki with

$$
\alpha^{\prime}=\alpha \frac{c}{a}, \quad \delta^{\prime}=\frac{\delta}{c}
$$

In particular, \mathcal{H}-homothetic deformations preserve the class of degenerate manifolds. In the nondegenerate case, one sees immediately that $\alpha^{\prime} \delta^{\prime}$ has the same sign as $\alpha \delta$. This justifies the distinction between positive 3-($\alpha, \delta)$-Sasaki manifolds, with $\alpha \delta>0$, and negative 3- (α, δ)-Sasaki manifolds, with $\alpha \delta<0$. In fact, it can be shown that a 3- (α, δ)-Sasaki manifold is positive if and only if it is \mathcal{H}-homothetic to a 3-Sasaki manifold, and negative if and only if it is \mathcal{H}-homothetic to a $3-\left(\alpha^{\prime}, \delta^{\prime}\right)$-Sasaki manifold with $\alpha^{\prime}=-1, \delta^{\prime}=1$.

Examples of negative 3-($\alpha, \delta)$-Sasaki manifolds can be obtained in the following way. It is known that quaternionic Kähler (not hyper-Kähler) manifolds with negative scalar curvature admit a canonically associated principal SO(3)-bundle $P(M)$ which is endowed with a negative 3-Sasaki structure $[18,19]$. This is a 3-structure $\left(\varphi_{i}, \xi_{i}, \eta_{i}, \tilde{g}\right), i=1,2,3$, where $\left(\varphi_{i}, \xi_{i}, \eta_{i}\right)$ is a normal almost 3-contact structure, and \tilde{g} is a compatible semi-Riemannian metric, with signature $(3,4 n)$, where $4 n$ is the dimension of the base space, and $d \eta_{i}(X, Y)=$ $2 \tilde{g}\left(X, \varphi_{i} Y\right)$. Then, one can define the Riemannian metric

$$
g=-\tilde{g}+2 \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i}
$$

which is compatible with the structure $\left(\varphi_{i}, \xi_{i}, \eta_{i}\right)$, and satisfies $d \eta_{i}=-2 \Phi_{i}-4 \eta_{j} \wedge \eta_{k}$, where $\Phi_{i}(X, Y)=g\left(X, \varphi_{i} Y\right)$ (see also [19]). Therefore $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is a 3-($\left.\alpha, \delta\right)$-Sasaki structure with $\alpha=-1$ and $\delta=1$.

The following Theorem regarding the transverse geometry with respect to the vertical foliation of a 3- (α, δ)-Sasaki manifold is proved in [17]:

Theorem 2. Any 3-(α, δ)-Sasaki manifold M admits a locally defined Riemannian submersion $\pi: M \rightarrow N$ along its horizontal distribution \mathcal{H} such that N carries a quaternionic Kähler structure given by

$$
\check{\varphi}_{i}=\pi_{*} \circ \varphi_{i} \circ s_{*} \quad i=1,2,3,
$$

where s: $U \rightarrow M$ is any local smooth section of the Riemannian submersion. The covariant derivatives of the almost complex structures $\check{\varphi}_{i}$ are given by

$$
\nabla_{X}^{g_{N}} \check{\varphi}_{i}=2 \delta\left(\check{\eta}_{k}(X) \check{\varphi}_{j}-\check{\eta}_{j}(X) \check{\varphi}_{k}\right)
$$

where $\check{\eta}_{i}(X)=\eta_{i}\left(s_{*} X\right)$ os for $i=1,2,3$. The scalar curvature of the base space N is $16 n(n+2) \alpha \delta$.
The Riemannian Ricci tensor of any 3-($\alpha, \delta)$-Sasaki manifold is computed in [1]:

$$
\begin{equation*}
\operatorname{Ric}^{g}=2 \alpha(2 \delta(n+2)-3 \alpha) g+2(\alpha-\delta)((2 n+3) \alpha-\delta) \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i} \tag{10}
\end{equation*}
$$

In particular, a 3- (α, δ)-Sasaki manifold is Riemannian Einstein if and only if $\delta=\alpha$, in which case the structure is $3-\alpha$-Sasaki, or $\delta=(2 n+3) \alpha$.

Notice that, by Theorem 2, a non-degenerate 3-($\alpha, \delta)$-Sasaki manifold locally fibers over a quaternionic Kähler space of positive or negative scalar curvature, according to $\alpha \delta>0$ or $\alpha \delta<0$, respectively. In [17] a systematic study of homogeneous non-degenerate 3 - (α, δ)-Sasaki manifolds has been carried out, obtaining a complete classification in the positive case, where the base space of the homogeneous fibration turns out to be a symmetric Wolf space. In the case $\alpha \delta<0$, one can provide a general construction of homogeneous 3-($\alpha, \delta)$-Sasaki manifolds fibering over nonsymmetric Alekseevsky spaces.

We recall now the definition and some basic facts on $3-\delta$-cosymplectic manifolds.
Definition 2. A 3- δ-cosymplectic manifold is an almost 3-contact metric manifold satisfying

$$
d \eta_{i}=-2 \delta \eta_{j} \wedge \eta_{k}, \quad d \Phi_{i}=0
$$

for some $\delta \in \mathbb{R}$ and for every even permutation (i, j, k) of $(1,2,3)$.
When $\delta=0$, the fact that the forms η_{i} and Φ_{i} are all closed implies that the structure is hypernormal ([16], Theorem 4.13). In fact this immediately follows from (9). Therefore, a $3-\delta$-cosymplectic manifold with $\delta=0$ is 3-cosymplectic. In particular, it is 3-quasi-Sasaki and the Reeb vector fields are all Killing. The local structure of these manifolds is described by the following:

Proposition 1 ([12]). Any 3-cosymplectic manifold of dimension $4 n+3$ is locally the Riemannian product of a hyper-Kähler manifold of dimension $4 n$ and a 3-dimensional flat abelian Lie group.

As a consequence, since every hyper-Kähler manifold is Ricci flat, even the Riemannian Ricci tensor of any 3-cosymplectic manifold vanishes.

As regards $3-\delta$-cosymplectic manifolds with $\delta \neq 0$, even in this case one can show that the structure is hypernormal, the Reeb vector fields are Killing, and the manifold locally decomposes as a Riemannian product [1]. In particular,

Proposition 2. Any 3- δ-cosymplectic manifold with $\delta \neq 0$ is locally the Riemannian product of a hyper-Kähler manifold and a 3-dimensional Lie group isomorphic to $\mathrm{SO}(3)$, with constant curvature δ^{2}. Consequently, the Riemannian Riccitensor is $\operatorname{Ric}^{g}=2 \delta^{2} \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i}$.

In both cases, i.e., $\delta=0$ or $\delta \neq 0$, the hyper-Kähler manifold is tangent to the horizontal distribution, while the 3-dimensional Lie group is tangent to the vertical distribution. In fact, examples of these manifolds can be obtained taking Riemannian products $N \times G$, where $\left(N, J_{i}, h\right), i=1,2,3$, is a hyper-Kähler manifold, and G is a 3-dimensional Lie group, which is either abelian, or isomorphic to $\mathrm{SO}(3)$. If $\xi_{1}, \xi_{2}, \xi_{3}$ are generators of the Lie algebra \mathfrak{g} of G, satisfying $\left[\xi_{i}, \xi_{j}\right]=2 \delta \xi_{k}, \delta \in \mathbb{R}$, then one can define in a natural manner an almost 3 -contact metric structure $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ on the product $N \times G$, setting

$$
\begin{gathered}
\left.\varphi_{i}\right|_{T N}=J_{i}, \quad \varphi_{i} \xi_{i}=0, \quad \varphi_{i} \xi_{j}=\xi_{k}, \quad \varphi_{i} \xi_{k}=-\xi_{j}, \\
\left.\eta_{i}\right|_{T N}=0, \quad \eta_{i}\left(\xi_{i}\right)=1, \quad \eta_{i}\left(\xi_{j}\right)=\eta_{i}\left(\xi_{k}\right)=0,
\end{gathered}
$$

and g the product metric of h and the left invariant Riemannian metric on G with respect to which $\xi_{1}, \xi_{2}, \xi_{3}$ are an orthonormal basis of \mathfrak{g}.

For a comparison with the class of 3-($0, \delta)$-Sasaki manifolds, which will be introduced in the next section, it is worth remarking that for a $3-\delta$-cosymplectic manifold $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ the Lie derivatives of the structure tensor fields $\varphi_{i}, i=1,2,3$ with respect to the Reeb vector fields are given by

$$
\begin{equation*}
\mathcal{L}_{\tilde{\xi}_{i}} \varphi_{i}=0, \quad \mathcal{L}_{\xi_{i}} \varphi_{j}=2 \delta\left(\eta_{i} \otimes \xi_{j}-\eta_{j} \otimes \xi_{i}\right)=-\mathcal{L}_{\xi_{j}} \varphi_{i} \tag{11}
\end{equation*}
$$

for every $i, j=1,2,3$. Indeed, in a $3-\delta$-cosymplectic manifold the Levi-Civita connection satisfies ([1], Proposition 2.1.1):

$$
\begin{gathered}
\nabla_{\xi_{i}}^{g} \varphi_{i}=0 \\
\left(\nabla_{\xi_{i}}^{g} \varphi_{j}\right) X=\delta\left(\eta_{i}(X) \xi_{j}-\eta_{j}(X) \xi_{i}\right)=-\left(\nabla_{\xi_{j}}^{g} \varphi_{i}\right) X \\
\nabla_{X}^{g} \xi_{i}=\delta\left(\eta_{k}(X) \xi_{j}-\eta_{j}(X) \xi_{k}\right)
\end{gathered}
$$

where (i, j, k) is an even permutation of $(1,2,3)$ and $X \in \mathfrak{X}(M)$. Therefore,

$$
\begin{aligned}
\left(\mathcal{L}_{\xi_{i}} \varphi_{i}\right) X & =\left[\xi_{i}, \varphi_{i} X\right]-\varphi_{i}\left[\xi_{i}, X\right] \\
& =\nabla_{\tilde{\zeta}_{i}}^{g}\left(\varphi_{i} X\right)-\nabla_{\varphi_{i} X}^{g} \xi_{i}-\varphi_{i}\left(\nabla_{\tilde{\zeta}_{i}}^{g} X\right)+\varphi_{i}\left(\nabla_{X}^{g} \xi_{i}\right) \\
& =\left(\nabla_{\xi_{i}}^{g} \varphi_{i}\right) X-\nabla_{\varphi_{i} X}^{g} \xi_{i}+\varphi_{i}\left(\nabla_{X}^{g} \xi_{i}\right) \\
& =-\delta\left(\eta_{k}\left(\varphi_{i} X\right) \xi_{j}-\eta_{j}\left(\varphi_{i} X\right) \xi_{k}\right)+\delta\left(\eta_{k}(X) \varphi_{i} \xi_{j}-\eta_{j}(X) \varphi_{i} \xi_{k}\right)=0
\end{aligned}
$$

In the same way,

$$
\begin{aligned}
\left(\mathcal{L}_{\xi_{i}} \varphi_{j}\right) X & =\left(\nabla_{\xi_{i}}^{g} \varphi_{j}\right) X-\nabla_{\varphi_{j} X}^{g} \xi_{i}+\varphi_{j}\left(\nabla_{X}^{g} \xi_{i}\right) \\
& =\delta\left(\eta_{i}(X) \xi_{j}-\eta_{j}(X) \xi_{i}\right)-\delta \eta_{k}\left(\varphi_{j} X\right) \xi_{j}-\delta \eta_{j}(X) \varphi_{j} \xi_{k} \\
& =2 \delta\left(\eta_{i}(X) \xi_{j}-\eta_{j}(X) \xi_{i}\right)=-\left(\mathcal{L}_{\xi_{j}} \varphi_{i}\right) X .
\end{aligned}
$$

4. 3-(0, $\delta)$-Sasaki Manifolds

In this section we introduce the class of 3-($0, \delta)$-Sasaki manifolds.
Definition 3. An almost 3-contact metric manifold $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ will be called 3-($0, \delta$)-Sasaki manifold if

$$
\begin{equation*}
d \eta_{i}=-2 \delta \eta_{j} \wedge \eta_{k,} \quad d \Phi_{i}=-2 \delta\left(\eta_{j} \wedge \Phi_{k}-\eta_{k} \wedge \Phi_{j}\right) \tag{12}
\end{equation*}
$$

for every even permutation (i, j, k) of $(1,2,3)$, and for some real constant $\delta \in \mathbb{R}$.
In particular, the structure is not 3-quasi-Sasaki when $\delta \neq 0$, and we have the following basic properties for a $3-(0, \delta)$-Sasaki manifold:

1. The horizontal distribution \mathcal{H} is integrable;
2. Each ξ_{i} is an infinitesimal automorphism of the distribution \mathcal{H}, i.e.

$$
d \eta_{r}\left(X, \xi_{s}\right)=0 \quad X \in \Gamma(\mathcal{H}), r, s=1,2,3 ;
$$

3. The constant δ is the Reeb commutator function.

Remark 1. In case $\delta \neq 0$, the two equations in (12) are not completely independent. Indeed, if one assumes $d \Phi_{i}=-2 \gamma\left(\eta_{j} \wedge \Phi_{k}-\eta_{k} \wedge \Phi_{j}\right), \gamma \in \mathbb{R}^{*}$, differentiating this equation, and combining with $d \eta_{i}=-2 \delta \eta_{j} \wedge \eta_{k}$, a straightforward computation gives $\gamma=\delta$. Thus, there is no freedom for the choice of constant in the second equation.

If $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is a $3-(0, \delta)$-Sasaki structure, applying an \mathcal{H}-homothetic deformation as in (5), an easy computation using (6) shows that the new structure ($\varphi_{i}^{\prime}, \eta_{i}^{\prime}, \xi_{i}^{\prime}, g^{\prime}$) is again 3- $\left(0, \delta^{\prime}\right)$-Sasaki, with $\delta^{\prime}=\frac{\delta}{c}$.

Example 1. Consider the abelian Lie algebra $\mathbb{R}^{4 n}$ spanned by vectors $v_{r}, v_{n+r}, v_{2 n+r}, v_{3 n+r}$, $r=1, \ldots, n$, and endowed with the hypercomplex structure $\left\{J_{1}, J_{2}, J_{3}\right\}$ defined by

$$
J_{i}\left(v_{r}\right)=v_{i n+r}, \quad J_{i}\left(v_{i n+r}\right)=-v_{r}, \quad J_{i}\left(v_{j n+r}\right)=v_{k n+r}, \quad J_{i}\left(v_{k n+r}\right)=-v_{j n+r}
$$

for every even permutation (i, j, k) of $(1,2,3)$. Let us consider also the Lie algebra $\mathfrak{s o}(3)$ spanned by $\xi_{1}, \xi_{2}, \xi_{3}$ with Lie brackets given by $\left[\xi_{i}, \xi_{j}\right]=2 \delta \xi_{k}, \delta \neq 0$. Let ρ be the representation of $\mathfrak{s o}(3)$ on $\mathbb{R}^{4 n}$ given by

$$
\rho: \mathfrak{s o}(3) \rightarrow \mathfrak{g l}(4 n, \mathbb{R}), \quad \rho\left(\xi_{i}\right)=\delta J_{i}, \quad i=1,2,3 .
$$

On the Lie algebra $\mathfrak{g}=\mathfrak{s o}(3) \ltimes_{\rho} \mathbb{R}^{4 n}$ on can define in a natural way an almost 3-contact metric structure $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$, with

$$
\begin{gathered}
\left.\varphi_{i}\right|_{\mathbb{R}^{4 n}}=J_{i}, \quad \varphi\left(\xi_{i}\right)=0, \quad \varphi_{i}\left(\xi_{j}\right)=\xi_{k}=-\varphi_{j}\left(\xi_{k}\right), \\
\left.\eta_{i}\right|_{\mathbb{R}^{4 n}}=0, \quad \eta_{i}\left(\xi_{i}\right)=1, \quad \eta_{i}\left(\xi_{j}\right)=\eta_{i}\left(\xi_{k}\right)=0,
\end{gathered}
$$

and where g is the inner product such that the vectors $\xi_{i}, v_{l}, i=1,2,3, l=1, \ldots, 4 n$ are orthonormal. In particular, the non zero brackets on \mathfrak{g} are given by

$$
\left[\xi_{i}, \xi_{j}\right]=2 \delta \xi_{k}, \quad\left[\xi_{i}, X\right]=\delta \varphi_{i}(X), X \in \mathbb{R}^{4 n}
$$

The representation $\rho: \mathfrak{s o}(3) \rightarrow \mathfrak{g l}(4 n, \mathbb{R})$ can be integrated to a representation $\tilde{\rho}: \mathrm{SO}(3) \rightarrow$ $\mathrm{GL}(4 n, \mathbb{R})$. Therefore, identifying $\mathbb{R}^{4 n}$ with \mathbb{H}^{n} in a natural way, the simply connected Lie group $G=\mathrm{SO}(3) \ltimes_{\tilde{\rho}} \mathbb{H}^{n}$, with Lie algebra \mathfrak{g}, admits a left invariant almost 3-contact metric structure $\left(\varphi_{i}, \xi_{i}, \eta_{i}, g\right)$. One can easily verify that this structure satisfies (12).

Remark 2. For more details on the above example we refer to [2], where \mathfrak{g} is described as a remarkable example of a Lie algebra endowed with an abelian almost 3-contact metric structure. In fact, the structure defined on \mathfrak{g} belongs to the class of canonical abelian structures, so that the Lie group G admits a unique metric connection with totally skew symmetric torsion ∇ such that

$$
\nabla_{X} \varphi_{i}=2 \delta\left(\eta_{k}(X) \varphi_{j}-\eta_{j}(X) \varphi_{k}\right)
$$

for every vector field X and for every even permutation (i, j, k) of $(1,2,3)$. The torsion of the canonical connection ∇ is $T=2 \delta \eta_{1} \wedge \eta_{2} \wedge \eta_{3}$, which satisfies $\nabla T=0$.

It is also shown in [2] that the Lie group G admits co-compact discrete subgroups, so that the corresponding compact quotients admit almost 3-contact metric structures of the same type.

Proposition 3. Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a 3-($\left.0, \delta\right)$-Sasaki manifold. Then the structure is hypernormal.

Proof. In order to compute the tensor fields $N_{\varphi_{i}}$, we apply Lemma 1. We always denote by X, Y, Z horizontal vector fields and by (i, j, k) an even permutation of $(1,2,3)$.

Being $d \Phi_{i}(X, Y, Z)=0$, then $N_{\varphi_{i}}(X, Y, Z)=0$ for every $i=1,2,3$. Furthermore, since the horizontal distribution is integrable, by the definition of the tensor field $N_{\varphi_{i}}$ (see (4)), one has $N_{\varphi_{i}}\left(X, Y, \xi_{r}\right)=0$ for all $r=1,2,3$. Notice that, since

$$
\left.\left.\left.\xi_{i}\right\lrcorner \Phi_{i}=0, \quad \xi_{j}\right\lrcorner \Phi_{i}=-\eta_{k}, \quad \xi_{k}\right\lrcorner \Phi_{i}=\eta_{j}
$$

from the second equation in (12), we have,

$$
\begin{equation*}
\left.\left.\left.\xi_{i}\right\lrcorner d \Phi_{i}=0, \quad \xi_{j}\right\lrcorner d \Phi_{i}=-2 \delta\left(\Phi_{k}+\eta_{i j}\right), \quad \xi_{k}\right\lrcorner d \Phi_{i}=2 \delta\left(\Phi_{j}+\eta_{k i}\right) . \tag{13}
\end{equation*}
$$

Therefore, form Lemma 1, applying (12) and (13), we have

$$
\begin{aligned}
N_{\varphi_{i}}\left(X, \xi_{i}, Z\right) & =-d \Phi_{j}\left(X, \xi_{i}, \varphi_{j} Z\right)+d \Phi_{k}\left(\varphi_{i} X, \xi_{i}, \varphi_{j} Z\right)+d \eta_{j}\left(\varphi_{i} X, \varphi_{j} Z\right)+d \eta_{k}\left(X, \varphi_{j} Z\right) \\
& =-2 \delta \Phi_{k}\left(\varphi_{j} Z, X\right)-2 \delta \Phi_{j}\left(\varphi_{j} Z, \varphi_{i} X\right) \\
& =2 \delta \Phi_{j}\left(\varphi_{i} X, \varphi_{j} Z\right)+2 \delta \Phi_{k}\left(X, \varphi_{j} Z\right)=-2 \delta g\left(\varphi_{i} X, Z\right)-2 \delta g\left(X, \varphi_{i} Z\right)=0, \\
N_{\varphi_{i}}\left(X, \xi_{j}, Z\right) & =d \Phi_{j}\left(\varphi_{i} X, \xi_{k}, \varphi_{j} Z\right)+d \Phi_{k}\left(\varphi_{i} X, \xi_{j}, \varphi_{j} Z\right) \\
& =-2 \delta \Phi_{i}\left(\varphi_{j} Z, \varphi_{i} X\right)+2 \delta \Phi_{i}\left(\varphi_{j} Z, \varphi_{i} X\right)=0, \\
N_{\varphi_{i}}\left(X, \xi_{k}, Z\right) & =-d \Phi_{j}\left(X, \xi_{k}, \varphi_{j} Z\right)-d \Phi_{k}\left(X, \xi_{j}, \varphi_{j} Z\right) \\
& =2 \delta \Phi_{i}\left(\varphi_{j} Z, X\right)-2 \delta \Phi_{i}\left(\varphi_{j} Z, X\right)=0 .
\end{aligned}
$$

Equations (13) implies $d \Phi_{r}\left(X, \xi_{s}, \xi_{t}\right)=0$ for every $r, s, t=1,2,3$ and $X \in \Gamma(\mathcal{H})$. Taking also into account that $d \eta_{r}\left(X, \xi_{s}\right)=0$, we deduce from (9) that

$$
N_{\varphi_{r}}\left(X, \xi_{s}, \xi_{t}\right)=N_{\varphi_{r}}\left(\xi_{s}, \xi_{t}, X\right)=0
$$

Finally, (9) implies together with $d \eta_{r}\left(\xi_{s}, \xi_{t}\right)=-2 \delta \epsilon_{r s t}$ that

$$
N_{\varphi_{i}}\left(\xi_{i}, \xi_{j}, \xi_{k}\right)=N_{\varphi_{i}}\left(\xi_{i}, \xi_{k}, \xi_{j}\right)=N_{\varphi_{i}}\left(\xi_{j}, \xi_{k}, \xi_{i}\right)=0,
$$

completing the proof that M is hypernormal.
Proposition 4. Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a 3-($\left.0, \delta\right)$-Sasaki manifold. Then the Levi-Civita connection satisfies for all $X, Y \in \mathfrak{X}(M)$ and any cyclic permutation (i, j, k) of $(1,2,3)$:

$$
\begin{align*}
\left(\nabla_{X}^{g} \varphi_{i}\right) Y= & 2 \delta\left[\eta_{k}(X) \varphi_{j} Y-\eta_{j}(X) \varphi_{k} Y\right] \tag{14}\\
& -\delta\left[\eta_{j}(X) \eta_{j}(Y)+\eta_{k}(X) \eta_{k}(Y)\right] \xi_{i}+\delta \eta_{i}(Y)\left[\eta_{j}(X) \xi_{j}+\eta_{k}(X) \xi_{k}\right]
\end{align*}
$$

and

$$
\begin{gather*}
\nabla_{X}^{g} \xi_{i}=\delta\left(\eta_{k}(X) \xi_{j}-\eta_{j}(X) \xi_{k}\right), \tag{15}\\
\nabla_{\xi_{i}}^{g} \xi_{i}=0, \quad \nabla_{\xi_{i}}^{g} \xi_{j}=-\nabla_{\xi_{j}}^{g} \xi_{i}=\delta \xi_{k} . \tag{16}
\end{gather*}
$$

In particular, each ξ_{i} is a Killing vector field.
Proof. Since the structure is hypernormal, by ([3], Lemma 6.1), the Levi-Civita connection satisfies

$$
\begin{align*}
2 g\left(\left(\nabla_{X}^{g} \varphi_{i}\right) Y, Z\right)= & d \Phi_{i}\left(X, \varphi_{i} Y, \varphi_{i} Z\right)-d \Phi_{i}(X, Y, Z) \\
& +d \eta_{i}\left(\varphi_{i} Y, X\right) \eta_{i}(Z)-d \eta_{i}\left(\varphi_{i} Z, X\right) \eta_{i}(Y) \tag{17}
\end{align*}
$$

Further, an easy computation (see [1]) shows that for every cyclic permutation (i, j, k) of $(1,2,3)$,

$$
\begin{aligned}
\Phi_{j}\left(\varphi_{i} X, \varphi_{i} Y\right) & =-\Phi_{j}(X, Y)-\left(\eta_{k} \wedge \eta_{i}\right)(X, Y) \\
\Phi_{k}\left(\varphi_{i} X, \varphi_{i} Y\right) & =-\Phi_{k}(X, Y)-\left(\eta_{i} \wedge \eta_{j}\right)(X, Y) \\
\Phi_{j}\left(\varphi_{i} X, Y\right) & =-\Phi_{k}(X, Y)-\eta_{i}(X) \eta_{j}(Y) \\
\Phi_{k}\left(\varphi_{i} X, Y\right) & =\Phi_{j}(X, Y)-\eta_{i}(X) \eta_{k}(Y)
\end{aligned}
$$

Then, using the second equation in (12) and the above equations, we have

$$
\begin{aligned}
& d \Phi_{i}\left(X, \varphi_{i} Y, \varphi_{i} Z\right)= \\
&=-2 \delta\left[\eta_{j}(X) \Phi_{k}\left(\varphi_{i} Y, \varphi_{i} Z\right)+\eta_{j}\left(\varphi_{i} Y\right) \Phi_{k}\left(\varphi_{i} Z, X\right)+\eta_{j}\left(\varphi_{i} Z\right) \Phi_{k}\left(X, \varphi_{i} Y\right)\right. \\
&\left.-\eta_{k}(X) \Phi_{j}\left(\varphi_{i} Y, \varphi_{i} Z\right)-\eta_{k}\left(\varphi_{i} Y\right) \Phi_{j}\left(\varphi_{i} Z, X\right)-\eta_{k}\left(\varphi_{i} Z\right) \Phi_{j}\left(X, \varphi_{i} Y\right)\right] \\
&=-2 \delta\left[-\eta_{j}(X) \Phi_{k}(Y, Z)-\eta_{j}(X)\left(\eta_{i} \wedge \eta_{j}\right)(Y, Z)\right. \\
&-\eta_{k}(Y) \Phi_{j}(Z, X)+\eta_{k}(Y) \eta_{i}(Z) \eta_{k}(X)+\eta_{k}(Z) \Phi_{j}(Y, X)-\eta_{k}(Z) \eta_{i}(Y) \eta_{k}(X) \\
&+\eta_{k}(X) \Phi_{j}(Y, Z)+\eta_{k}(X)\left(\eta_{k} \wedge \eta_{i}\right)(Y, Z) \\
&\left.+\eta_{j}(Y) \Phi_{k}(Z, X)+\eta_{j}(Y) \eta_{i}(Z) \eta_{j}(X)-\eta_{j}(Z) \Phi_{k}(Y, X)-\eta_{j}(Z) \eta_{i}(Y) \eta_{j}(X)\right] \\
&= d \Phi_{i}(X, Y, Z)+4 \delta\left[\eta_{j}(X) \Phi_{k}(Y, Z)-\eta_{k}(X) \Phi_{j}(Y, Z)\right] \\
&+4 \delta \eta_{j}(X)\left[\eta_{i}(Y) \eta_{j}(Z)-\eta_{j}(Y) \eta_{i}(Z)\right] \\
&+4 \delta \eta_{k}(X)\left[\eta_{i}(Y) \eta_{k}(Z)-\eta_{k}(Y) \eta_{i}(Z)\right] .
\end{aligned}
$$

On the other hand, again using the first equation in (12), we obtain

$$
\begin{aligned}
& d \eta_{i}\left(\varphi_{i} Y, X\right) \eta_{i}(Z)-d \eta_{i}\left(\varphi_{i} Z, X\right) \eta_{i}(Y)= \\
& =-2 \delta\left(\eta_{j} \wedge \eta_{k}\right)\left(\varphi_{i} Y, X\right) \eta_{i}(Z)+2 \delta\left(\eta_{j} \wedge \eta_{k}\right)\left(\varphi_{i} Z, X\right) \eta_{i}(Y) \\
& =-2 \delta \eta_{i}(Z)\left[-\eta_{k}(Y) \eta_{k}(X)-\eta_{j}(X) \eta_{j}(Y)\right]+2 \delta \eta_{i}(Y)\left[-\eta_{k}(Z) \eta_{k}(X)-\eta_{j}(X) \eta_{j}(Z)\right]
\end{aligned}
$$

Inserting the above computations in (17), we conclude that

$$
\begin{aligned}
g\left(\left(\nabla_{X}^{g} \varphi_{i}\right) Y, Z\right) & =2 \delta\left[\eta_{k}(X) g\left(\varphi_{j} Y, Z\right)-\eta_{j}(X) g\left(\varphi_{k} Y, Z\right)\right] \\
& -\delta \eta_{i}(Z)\left[\eta_{k}(Y) \eta_{k}(X)+\eta_{j}(X) \eta_{j}(Y)\right]+\delta \eta_{i}(Y)\left[\eta_{k}(Z) \eta_{k}(X)+\eta_{j}(X) \eta_{j}(Z)\right]
\end{aligned}
$$

which implies (14). As regards the proof (15), applying (14) for $Y=\xi_{i}$, we get

$$
\left(\nabla_{X}^{g} \varphi_{i}\right) \xi_{i}=-\delta\left(\eta_{j}(X) \xi_{j}+\eta_{k}(X) \xi_{k}\right)
$$

Applying φ_{i} on both hand-sides, we obtain (15). Equations (16) are immediate consequences of (15). Furthermore, we also get

$$
g\left(\nabla_{X}^{g} \xi_{i}, Y\right)=-\delta\left(\eta_{j} \wedge \eta_{k}\right)(X, Y)
$$

for every $X, Y \in \mathfrak{X}(M)$. Since $\nabla^{g} \xi_{i}$ is skew-symmetric, ξ_{i} is Killing.
Corollary 1. Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a 3-($\left.0, \delta\right)$-Sasaki manifold. Then for every even permutation (i, j, k) of $(1,2,3)$ we have

$$
\begin{equation*}
\mathcal{L}_{\tilde{\xi}_{i}} \varphi_{i}=0, \quad \mathcal{L}_{\tilde{\zeta}_{i}} \varphi_{j}=-\mathcal{L}_{\tilde{\xi}_{j}} \varphi_{i}=2 \delta \varphi_{k} . \tag{18}
\end{equation*}
$$

Proof. For the first Lie derivative, notice that by (14) we have $\nabla_{\zeta_{i}}^{g} \varphi_{i}=0$. Then, applying also (15), for every vector field X we have

$$
\begin{aligned}
\left(\mathcal{L}_{\tilde{\xi}_{i}} \varphi_{i}\right) X & =\left(\nabla_{\xi_{i}}^{g} \varphi_{i}\right) X-\nabla_{\varphi_{i} X}^{g} \xi_{i}+\varphi_{i}\left(\nabla_{X}^{g} \xi_{i}\right) \\
& =-\delta\left(\eta_{k}\left(\varphi_{i} X\right) \xi_{j}-\eta_{j}\left(\varphi_{i} X\right) \xi_{k}\right)+\delta\left(\eta_{k}(X) \varphi_{i} \xi_{j}-\eta_{j}(X) \varphi_{i} \xi_{k}\right)=0
\end{aligned}
$$

Now, using (14) for the covariant derivative $\nabla^{g} \varphi_{j}$, for every vector field Y, we have

$$
\left(\nabla_{\xi_{i}}^{g} \varphi_{j}\right) Y=2 \delta \varphi_{k} Y-\delta\left(\eta_{i}(Y) \xi_{j}-\eta_{j}(Y) \xi_{i}\right)
$$

Therefore, applying also (15), we get

$$
\begin{aligned}
\left(\mathcal{L}_{\tilde{\zeta}_{i}} \varphi_{j}\right) X & =\left(\nabla_{\tilde{\xi}_{i}}^{g} \varphi_{j}\right) X-\nabla_{\varphi_{j} X}^{g} \xi_{i}+\varphi_{j}\left(\nabla_{X}^{g} \xi_{i}\right) \\
& =2 \delta \varphi_{k} X-\delta\left(\eta_{i}(X) \xi_{j}-\eta_{j}(X) \xi_{i}\right)-\delta \eta_{k}\left(\varphi_{j} X\right) \xi_{j}-\delta \eta_{j}(X) \varphi_{j} \xi_{k} \\
& =2 \delta \varphi_{k} X .
\end{aligned}
$$

Analogously, $\mathcal{L}_{\xi_{j}} \varphi_{i}=-2 \delta \varphi_{k}$.
Theorem 3. Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a 3- $(0, \delta)$-Sasaki manifold. Then both the horizontal and the vertical distribution are integrable with totally geodesic leaves. Each leaf of the vertical distribution is locally isomorphic to the Lie group $\mathrm{SO}(3)$, with constant sectional curvature δ^{2}; each leaf of the horizontal distribution is endowed with a hyper-Kähler structure. Consequently, the Riemannian Ricci tensor of M is given by

$$
\begin{equation*}
\operatorname{Ric}^{g}=2 \delta^{2} \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i} \tag{19}
\end{equation*}
$$

Proof. We already know that the horizontal distribution \mathcal{H} is integrable. From (15), for every $X, Y \in \Gamma(\mathcal{H})$ and $i=1,2,3$, we have

$$
g\left(\nabla_{X}^{g} Y, \xi_{i}\right)=-g\left(\nabla_{X}^{g} \xi_{i}, Y\right)=0
$$

so that the distribution \mathcal{H} has totally geodesic leaves. Furthermore, Equation (16) implies that the vertical distribution \mathcal{V} is also integrable with totally geodesic leaves. In particular $\left[\xi_{i}, \xi_{j}\right]=2 \delta \xi_{k}$ for an even permutation (i, j, k) of $(1,2,3)$, so that the leaves of \mathcal{V} are locally isomorphic to the Lie group $\mathrm{SO}(3)$ and have constant sectional curvature δ^{2}. On each leaf of the horizontal distribution \mathcal{H} one can consider the almost hyper-Hermitian structure defined by $\left(J_{i}:=\left.\varphi_{i}\right|_{H}, g\right)$, which turns out to be hyper-Kähler due to (14). Consequently, M is locally the Riemannnian product of 3-dimensional sphere of curvature δ^{2} and a $4 n-$ dimensional manifold M^{\prime}, which is endowed with a hyper-Kähler structure. Since any hyper-Kähler manifold is Ricci flat, we obtain that the Riemannian Ricci tensor of M is given by (19).

Remark 3. From Theorem 3 it follows that any 3-($0, \delta)$-Sasaki manifold is locally isometric to the Riemannnian product of 3-dimensional sphere and a $4 n$-dimensional manifold M^{\prime}, which is endowed with a hyper-Kähler structure. We recall that 3- δ-cosymplectic manifolds are also locally isometric to the Riemannian product of a 3-dimensional sphere of constant curvature δ^{2} and a hyper-Kähler manifold. Nevertheless, there is a difference between the two geometries. Looking at the transverse geometry of the foliation defined by the vertical distribution \mathcal{V}, in both cases the Riemannian metric g is projectable, being the vector fields $\xi_{i}, i=1,2,3$, all Killing. In the case of 3- δ-cosymplectic manifolds, each tensor field φ_{i} is also projectable, as by (11), the Lie derivatives with respect to the Reeb vector fields satisfy $\left(\mathcal{L}_{\tilde{\xi}_{i}} \varphi_{j}\right) X=0$ for every $i, j=1,2,3$ and for every horizontal vector field X. In the case of 3-($0, \delta)$-Sasaki manifolds, owing to (18), the tensor fields are not projectable. Nevertheless, taking into account the horizontal parts $\Phi_{i}^{\mathcal{H}}:=\Phi_{i}+\eta_{j} \wedge \eta_{k}$ of the fundamental 2-forms Φ_{i}, one can verify that horizontal 4-form

$$
\Phi_{1}^{\mathcal{H}} \wedge \Phi_{1}^{\mathcal{H}}+\Phi_{2}^{\mathcal{H}} \wedge \Phi_{2}^{\mathcal{H}}+\Phi_{3}^{\mathcal{H}} \wedge \Phi_{3}^{\mathcal{H}}
$$

is projectable and defines a transversal quaternionic structure, which turns out to be locally hyper-Kähler.

5. Connections with Totally Skew-Symmetric Torsion

In this section we will show that every $3-(0, \delta)$-Sasaki manifold is canonical in the sense of the definition given in [1], thus admitting a special metric connection with totally skew-symmetric torsion, called canonical. Recall that a metric connection ∇ with torsion T on a Riemannian manifold (M, g) is said to have totally skew-symmetric torsion, or skew torsion for short, if the (0,3)-tensor field T defined by $T(X, Y, Z):=g(T(X, Y), Z)$ is a 3-form. The relation between ∇ and the Levi-Civita connection ∇^{g} is then given by

$$
\nabla_{X} Y=\nabla_{X}^{g} Y+\frac{1}{2} T(X, Y)
$$

For more details we refer to [20]. We recall now the definition and the characterization of canonical almost 3-contact metric manifolds.

Definition 4 ([1]). An almost 3-contact metric manifold ($M, \varphi_{i}, \xi_{i}, \eta_{i}, g$) is called canonical if the following conditions are satisfied:
(i) each $N_{\varphi_{i}}$ is totally skew-symmetric on \mathcal{H},
(ii) each ξ_{i} is a Killing vector field,
(iii) for any $X, Y, Z \in \Gamma(\mathcal{H})$ and any $i, j=1,2,3$,

$$
N_{\varphi_{i}}(X, Y, Z)-d \Phi_{i}\left(\varphi_{i} X, \varphi_{i} Y, \varphi_{i} Z\right)=N_{\varphi_{j}}(X, Y, Z)-d \Phi_{j}\left(\varphi_{j} X, \varphi_{j} Y, \varphi_{j} Z\right)
$$

(iv) M admits a Reeb Killing function $\beta \in C^{\infty}(M)$, that is the tensor fields $A_{i j}$ defined on \mathcal{H} by

$$
A_{i j}(X, Y):=g\left(\left(\mathcal{L}_{\xi_{j}} \varphi_{i}\right) X, Y\right)+d \eta_{j}\left(X, \varphi_{i} Y\right)+d \eta_{j}\left(\varphi_{i} X, Y\right)
$$

satisfy

$$
A_{i i}(X, Y)=0, \quad A_{i j}(X, Y)=-A_{j i}(X, Y)=\beta \Phi_{k}(X, Y)
$$

for every $X, Y \in \Gamma(\mathcal{H})$ and every even permutation (i, j, k) of $(1,2,3)$.
Here $N_{\varphi_{i}}$ also denotes the (0,3)-tensor field defined by $N_{\varphi_{i}}(X, Y, Z):=g\left(N_{\varphi_{i}}(X, Y), Z\right)$ and we say that $N_{\varphi_{i}}$ is totally skew-symmetric on \mathcal{H} if the $(0,3)$-tensor is a 3-form on \mathcal{H}.

Theorem 4 ([1]). An almost 3-contact metric manifold $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ is canonical, with Reeb Killing function β, if and only if it admits a metric connection ∇ with skew torsion such that

$$
\nabla_{X} \varphi_{i}=\beta\left(\eta_{k}(X) \varphi_{j}-\eta_{j}(X) \varphi_{k}\right)
$$

for every vector field X on M and for every even permutation (i, j, k) of $(1,2,3)$. If such a connection ∇ exists, it is unique and its torsion is given by

$$
\begin{aligned}
T(X, Y, Z) & =N_{\varphi_{i}}(X, Y, Z)-d \Phi_{i}\left(\varphi_{i} X, \varphi_{i} Y, \varphi_{i} Z\right) \\
T\left(X, Y, \xi_{i}\right) & =d \eta_{i}(X, Y) \\
T\left(X, \xi_{i}, \xi_{j}\right) & =-g\left(\left[\xi_{i}, \xi_{j}\right], X\right) \\
T\left(\xi_{1}, \xi_{2}, \xi_{3}\right) & =2(\beta-\delta)
\end{aligned}
$$

for every $X, Y, Z \in \Gamma(\mathcal{H})$, and $i, j=1,2,3$, and where δ is the Reeb commutator function.
The connection ∇ is called the canonical connection of M, and also satisfies

$$
\begin{equation*}
\nabla_{X} \xi_{i}=\beta\left(\eta_{k}(X) \xi_{j}-\eta_{j}(X) \xi_{k}\right), \quad \nabla_{X} \eta_{i}=\beta\left(\eta_{k}(X) \eta_{j}-\eta_{j}(X) \eta_{k}\right) \tag{20}
\end{equation*}
$$

for every vector field X on M. Therefore, when $\beta=0$ the canonical connection parallelizes all the structure tensor fields, in which case we call the almost 3-contact metric manifold parallel.

Both 3-($\alpha, \delta)$-Sasaki manifolds and 3- δ-cosymplectic manifolds turn out to be canonical. In particular,

Theorem 5 ([1]). Every 3-($\alpha, \delta)$-Sasaki manifold is a canonical almost 3-contact metric manifold, with constant Reeb Killing function $\beta=2(\delta-2 \alpha)$. The torsion T of the canonical connection ∇ is given by

$$
T=\sum_{i=1}^{3} \eta_{i} \wedge d \eta_{i}+8(\delta-\alpha) \eta_{123}=2 \alpha \sum_{i=1}^{3} \eta_{i} \wedge \Phi_{i}^{\mathcal{H}}+2(\delta-4 \alpha) \eta_{123}
$$

and satisfies $\nabla T=0$.
We denote by η_{123} the 3-form $\eta_{1} \wedge \eta_{2} \wedge \eta_{3}$. From the above theorem, it follows that any 3-($\alpha, \delta)$-Sasaki manifold is a parallel canonical manifold if and only if $\delta=2 \alpha$, in which case the 3-($\alpha, \delta)$-Sasaki structure is positive $(\alpha \delta>0)$.

Regarding 3- δ-cosymplectic manifolds, we have:
Proposition 5 ([1]). Any 3- δ-cosymplectic manifold is a parallel canonical almost 3-contact metric manifold. The torsion of the canonical connection is given by

$$
T=-2 \delta \eta_{123}
$$

For the class of 3-(0, $\delta)$-Sasaki manifolds, we have the following
Proposition 6. Every 3-($0, \delta$)-Sasaki manifold is a canonical almost 3-contact metric manifold, with constant Reeb Killing function $\beta=2 \delta$. The torsion T of the canonical connection ∇ is given by

$$
T=2 \delta \eta_{123}
$$

which satisfies $\nabla T=0$.
Proof. Let $\left(M, \varphi_{i}, \xi_{i}, \eta_{i}, g\right)$ be a 3-($\left.0, \delta\right)$-Sasaki manifold. We showed that the structure is hypernormal and the Reeb vector fields are Killing. Furthermore, by the second equation in (12), $d \Phi_{i}(X, Y, Z)=0$ for every $X, Y, Z \in \Gamma(\mathcal{H})$. Therefore, conditions (i), (ii) and (iii) in Definition 4 are easily verified. As regards condition (iv), applying the first equation in (4) and Corollary 1 , for every $X, Y \in \Gamma(\mathcal{H})$ we have

$$
A_{i i}(X, Y)=0, \quad A_{i j}(X, Y)=-A_{j i}(X, Y)=2 \delta \Phi_{k}(X, Y)
$$

Hence, the structure is canonical with Reeb commutator function $\beta=2 \delta$. Now, by Theorem 4, taking also into account the fact that the vertical distribution is integrable, the only non-vanishing term of the canonical connection is $T\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=2 \delta$, so that $T=2 \delta \eta_{123}$. Although the structure is not parallel when $\delta \neq 0$, the torsion satisfies $\nabla T=0$, as by (20), the 3 -form η_{123} is parallel with respect to ∇.

The above result generalizes the result obtained in [2] for the Lie group described in Example 1 (see also Remark 2).

Funding: This research received no external funding.
Conflicts of Interest: The author declares no conflict of interest.

References

1. Agricola, I.; Dileo, G. Generalizations of 3-Sasakian manifolds and skew torsion. Adv. Geom. 2020, 20, 331-374. [CrossRef]
2. Andrada, A.; Dileo, G. Odd dimensional counterparts of abelian complex and hypercomplex structures. arXiv 2020, arXiv:2006.16435.
3. Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds, 2nd ed.; Progress in Mathematics 203; Birkhäuser: Boston, MA, USA, 2010.
4. Cappelletti-Montano, B.; De Nicola, A.; Yudin, I. A survey on cosymplectic geometry. Rev. Math. Phys. 2013, 25, 1343002. [CrossRef]
5. Boyer, C.; Galicki, C. Sasakian Geometry; Oxford Mathematical Monographs; Oxford Univiversity Press: Oxford, UK, 2008.
6. Yano, K.; Ishihara, S.; Konishi, M. Normality of almost contact 3-structure. Tôhoku Math. J. 1973, 25, 167-175. [CrossRef]
7. Cappelletti-Montano, B.; De Nicola, A.; Yudin, I. Cosymplectic p-spheres. J. Geom. Phys. 2016, 100, 68-79. [CrossRef]
8. Kuo, Y.-Y. On almost contact 3-structure. Tôhoku Math. J. 1970, 22, 325-332. [CrossRef]
9. Boyer, C.P.; Galicki K. 3-Sasakian manifolds. In Surveys in Differential Geometry: Essays on Einstein Manifolds; Wang, M., Lebrun, C., Eds.; International Press: Cambridge, UK, 2007; pp. 123-184.
10. Boyer, C.P.; Galicki, K.; Mann, B.M. The geometry and the topology of 3-Sasakian manifolds. J. Reine Angew. Math. 1994, 455, 183-220.
11. Cappelletti-Montano, B. De Nicola, A. 3-Sasakian manifolds, 3-cosymplectic manifolds and Darboux theorem. J. Geom. Phys. 2007, 57, 2509-2520. [CrossRef]
12. Cappelletti-Montano, B.; De Nicola, A.; Yudin, I. Topology of 3-cosymplectic manifolds. Q. J. Math. 2013, 64, 59-82. [CrossRef]
13. Cappelletti-Montano, B.; De Nicola, A.; Dileo, G. 3-quasi-Sasakian manifolds. Ann. Glob. Anal. Geom. 2008, 33, 397-409. [CrossRef]
14. Cappelletti-Montano, B.; De Nicola, A.; Dileo, G. The geometry of 3-quasi-Sasakian manifolds. Int. J. Math. 2009, 20, 1081-1105. [CrossRef]
15. Kashiwada, T. On a contact 3-structure. Math. Z. 2001, 238, 829-832. [CrossRef]
16. Pastore, A.M.; Falcitelli, M.; Ianus, S. Riemannian Submersions and Related Topics; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 2004.
17. Agricola, I.; Dileo, G.; Stecker, L. Homogeneous non-degenerate 3-($\alpha, \delta)$-Sasaki manifolds and submersions over quaternionic Kähler spaces. arXiv 2020, arXiv:2011.13434.
18. Konishi, M. On manifolds with Sasakian 3-structure over quaternion Kaehler manifolds. Kodai Math. Semin. Rep. 1975, 26, 194-200. [CrossRef]
19. Tanno, S. Remarks on a triple of K-contact structures. Tôhoku Math. J. II. Ser. 1996, 48, 519-531. [CrossRef]
20. Agricola, I. The Srní lectures on non-integrable geometries with torsion. Arch. Math. (Brno) 2006, 42, 5-84.
