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1. Introduction
The (generalized) hypergeometric function [1] is defined to be the complex analytic

function
ay,az,. .., aerl

F
+1
4 ”l by, by, ..., by

& (@)n(a2)n - (@ps1)n z"
Z] B 7;) (bl)n(bZ)n T (bp)n n!’

where (ot )
W=

denotes the The Pochhammer symbol, I'(s) is the Euler’s I'-function, p is a non-negative
integer, the complex numbers a;, b; are called, respectively, the numerator and denominator
parameters, and z is called the variable. The denominator parameters are not allowed to be
zero or negative integers (bj & Z<p). If the numerator parameters a; € Z<y, then the series
p+1Fp reduces to a finite sum. The series , 1 F, converges when |z| < 1 for all choices of a;,
bj. If z = 1, the series converges for

=a(a+1)---(a+n-1)

§R(b1+b2+--~+bp—a1—a2—~~-—ap+1)>0.

The case , 11Fp when p = 1is called the Gauss hypergeometric function. The following
well-known and celebrated summation formula for ,F; (1) is due to Gauss:

a,b
2F
c

R(c—a—b)>0,c¢ Z<. 1)

1l I'(c)T(c—a—Db)
- T(c—a)l(c—0b)’

Another interesting formula for 3F,(1) is due to Ramanujan:

2
L7810 I S T = )

sb = 7 ) 2
1n+1 n (2 iZo 16

This article is an open access article  ( hare 1 is a positive integer and which is obtained by replacing 1 by n — 1 in Entry

29(b) in ([2], p. 39). This formula was stated without proof by Ramanujan in his first
letter to Hardy. There are numerous hypergeometric series identities in mathematical
literature (see [3,4]). The evaluation of the hypergeometric sum 3F,(1) (the Clausenian
hypergeometric function with unit argument) is of ongoing interest, since it appears
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ubiquitously in many physics and statistics problems [5-7]. The g-extension of the 3F2(1)-
series is also very interesting and has been studied by many researchers; for example,
see [8] and the references therein.

Recently, Asakura et al. [9] proved that

a,b,q

B(a,b)sF,
(a >32a—|—b,q+l

11 €Q+Qlog®", 3)

where B(a,b) = T'(a)T'(b)/T(a+ b) is the beta function and the right hand side denotes the

Q-linear subspace of C generated by 1, 27ti, and log(a)’s, & € Q" under some conditions
ona,b,q € Q\Z.

To obtain an explicit description of Equation (3) has not been completed except some
cases. Asakura, Yabu [10] evaluated the cases witha = 1/6, b = 5/6 for the examples of
their works. For example,

151
676”2 3\/3
3le61632 1] = 3 log(2+V3), @
)
and
151 152 y y
3F2 67 6:13 1 ff _ [B and 3F2 6 6;3 1{ = \/g\/[IA"_ MB/ (5)
l,§ 2 1, 73 3m 3n

:10g<(1—2*%)2+(]+2*%\/§)2> _1Og<(1_27§)2+(1_2%\[3)2), ©)

3
B = arctan| ———— |.
(3+ %+3€/41>

They list all the explicit values of the cases g = %, £, 4, &, wherei € {1 2}, ] €{1,2,3},
and k € {1,2,3,4} by applying their method to the elliptic fibration y> = 2x> — 3x% 4 t/
where { = 2,3,4,5, respectively. Motivated by their works, it is interesting to give an
explicit formula for the corresponding general form. In this paper, we aim to give an
explicit formula for

| egatn
l,g+n+1

5 GDGH g+n

1 ,
16k27k k+q+n

i

where 7 is an arbitrary integer and g = %, 5 fi wherei € {1,2},and j € {1 2,3}. For the

15
sake of brevity and our convenience, we sometimes will denote 3F2[ 676 1] as F(x).
For example, for any non-negative integer 7, we have the following explicit formulas:
. 3v3log(2+
Lideal)]_ a1 open [PREEEVO
3F2 13 1 :mﬁ 3n X 22 3k+1 16( ) ,
,§+7’l i (211) 2k+1227k( )
. Z\f 3log(2 +/3)
3 8(
32 1 - TN k ’
1,1 —n 3m(2n+1) 27" (21 +3)

: n 016530 (3k +1)
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A \/§€sz—2€63+3"2_1(%)’<(2)"2 ,
& (z)n(é)n k=0 (3k+1)2(%)k

where A, B is stated in Equation (6).

For0§s<%and0§k§1,let

1 1
T Fllz_s’lz—'—s

:

be Ramanujan’s generalized elliptic integral of the first kind of order s. The moment K, s is
given by

1
Kps = / KK (k) dk,
0

where 7 is a real number. Borwein et al. ([11], Theorem 2) proved that for 0 < s < %,

1].

Thus, our hypergeometric series F(x) can be got by setting s = 1/3, and we have

o [bsieen
n,s — 2(n+1)3 2 1,%%

4
_*x
7T

15
676X

F(x) =3F
(1) =5 57

1

1.
2x—1,3

In the last section, we will use the moments of Ramanujan’s generalized elliptic
integral to give another method of obtaining the explicit evaluations.

The organization of this paper is as follows. In Section 2, we give some prelimi-
naries. We provide two recurrence relations for the hypergeometric series F(x). Then,
we solve these recurrence relations to obtain explicit evaluations of the hypergeometric
series F(n+¢q) forn € Zand q =1,1/2,1/3,2/3,1/4,3/4 in Section 3. In Section 4, we
list the explicit forms of F(n +q) for n = £1,42,4+3. In the final section, we use the
moments of Ramanujan’s generalized elliptic integral to give another method of obtaining
the same evaluations.

2. Preliminaries

We list an explicit formula in ([12], Equation 3.13-(41)) which we need to use later.

F a,b,1
3 2

] o (e—1) {F(c—l)l’(c—u—b—i-l) .
C(a-1(b-1) T'(c—a)T(c—0) ’

wherea #£1,b #1,and R(c—a—b+1) > 0. Thus, leta = %,b: %,c:2wehave

121 36(18 — 57
31‘"2[62,62 1| = % @)
We first prove a useful lemma.
Lemma 1. Let x be a complex number with x & Z<g. Then
5 12,x _ (ex+5)(ex+1) o sox+1 1 ®)
1,x+1 36x(x +1) 1,x+2 27X
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Proof. We rewrite this hypergeometric series F(x) as

3F2 %/%/ 1 — 1+ i (%)ﬂ+1(g)ﬂ+lx
,x+1 = (12 (n+1+x)

(% (n—l— )(n+ %)x

o (1)
=14+ (&) .
n;) (1)a(n+1)? (n+1+x)

We use the partial fraction decomposition of

(n+3)m+32)x 5 36x +5 (6x +1)(6x +5)
(m+12m+14x) 36(n+1)2 36x(n+1) 36x(n+1+x)

to the above identity, we have

15 15 15
7/7/x 5 7 /1 1 36x+5 6 7/1
Bl 07 1| =14+ 41| %6 1| - ——35|%% |1

2 x4 367 1,2,2 36x 2 1,

(6x +1)(6x +5) 4, 8x+1
36x(x+1) 1,x+42

The first two hypergeometric series in the right-hand side of the above equation can
be evaluated by Equation (7) and the Gauss formula Equation (1):

15 15
7/7/1/1 7 /1 36(18_57-[)
Eo 076 1| =35 6’6 1| = —— -7 d
4 3[ 1,2,2 ] 321 0 257 an
15 15
:.2,1 2 18
B0 1| =F/|%° 1] = —.
3 2[ 1,2 1 2 1[ D) 57

Substituting these values into the last equation of our 3F,(1), we can get the required
formula. O

We reverse Equation (8) and get another recurrence relation for our 3F,(1).

Lemma 2. Let x be a complex number with x ¢ Z<o and x # %, %. Then

18x

T aEr—1)(6x=5)"

)

7

_ B6x(x—1) Fg,g,x_1
(6x —1)(6x —5)° 2

We have listed the explicit formulas of

LIPS b3
B|%0211|,35[%%3 (1], ands5|% % 3% |1

which Asakura, Yabu have obtained in [10], in Equations (4) and (5). Here we list the
remaining explicit formulas for g = 1/4,3/4,1/5,2/5,3/5,4/5, which is given in [10].

pload| | _2c-p) . 58 i],]_912C+D)
3 5 = > , and 3k 7 =
1,3 g 4 1437
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11 35/4_33/4+\/§ q 35/4+33/4
C==1lo , and D = arccos| ————]|. 10

Let { = e¥/5, 150 = 2™/20, 0 =1/ V/24 > 0,

V20 + a0 — VB(PG,T 1)
V2O + Fa 3000 + V3@ 1)
fim -1 < (g% —1)log(eo) + (¢¥ — ¢¥) log(er) , >
175 +(0Y =) log(ea) + (6% — %) log(es) + 4rmig¥

¥l

and

where log(x) takes the principal values,
log(x) = log |x| +arg(x)i (—m < arg(x) < m).

Then Asakura, Yabu [10] gave

_ kfx

This formula for ¢ = k/5 is complicated. It can be seen that, although the results in
Theorems 1 and 2 can be used to obtain their general formulas, the formulas will be more
cumbersome and complicated, so we will not deal with the formula and its general form
for g = k/5 in this paper.

We give examples applying Equation (8) and note that

B _ GG
2

(1) 16m277
Thus,

2l Z 16727" 1—2n 37r (12)
ploe 3] s GGy 1 VAVEA+2VAB+12 )
2,2 B ; 16"27" 1—3n 87

1,8, 22 MGy 2 3V2V/3A—6V2B 12
plee3 (1| = Z (Gn) Gn) + (14)
MR T = 16m277 230 167

i - T ) 3
2,8 5 16727 T—dn 3 '
MR 0 16"27" 3 —4n 277(

where A, B are defined in Equation (6) and C, D are defined in Equation (10).

3. Explicit Formulas

We will solve the recurrence relations in Lemmas 1 and 2 as explicit formulas in
this section.
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Theorem 1. Let m be a non-negative integer, p be a non-zero complex number such that m 4+ p +1
is not a non-positive integer. Then

%’%’p+m 1

2
Lp+1+m

B (p+m).(p)%n 13132 %,%,P 1 +imi:1 (%+P>k(%+l’)k
(F+9), o, |77 prtl ] 2m S (2

Proof. Consider the hypergeometric series F(x) with x > 1. So we can decomposite
x = m + p, where m € N. Applying the recurrence relation in Lemma 2 a positive integer ¢
times, we get

%/g/x_‘g ii k+1
1L,x+1—¢ 2

where ,
11, (c+1-)—j)
Mt DE—j+b
Using the mathematical induction on the integer /, it is easy to prove that the above

formula is correct. We use the Pochhammer symbols to rewrite the function T and note
that x = m + p, we have

T — k) = P+ DnPhn (PP + &)
(p+mp+)m  (P+1(pk

Therefore,
oamEp | &2 17 T(k+1)
sh =T(m)3b5 1| + 5= Z
1m+p+1 1,p+1 2 =y x—k—1
15 m—1 _
1/P+1 2m =0 p+£
&8P
3b
__(p+Dulp)m Lp+1
(p+)m(p+ §)m +me (P+2Delp+3)e
A (p+O(p+1)(p)

Our result is followed by the fact p(p + 1) = (p)m(p +m). O

Followed by using the similar method to the recurrence relation in Lemma 1, we have
the explicit formula for F(p — m):

15 ,_
LA
Lp+1l-—m
Lip
Bl %% 11
_(pemtPnp—m+ 3w ) L p 41
(p—m)m(p—m+1)p 1 (p—k)(p—k+1)

2T = (p—k+ eilp—k+2lp—k)



Axioms 2021, 10, 125

7of 11

Furthermore, we use the Pochhammer symbols at the negative integer index (a) g,
which is defined by

_Tla-k) 1 _ 1
@k = T T G HE kD) @1 @—0;

Then, the explicit formula F(p — m) is symmetry to the formula F(p + m).

Theorem 2. Let m be a non-negative integer, p be a non-zero complex number such that p +1 —m
is not a non-positive integer. Then

15 ,_
N A I

Lp+1-m

1 5
(=m0 )1 [LEp Lo (B4+p) G+p)

T (1 —3b 1 _T 2 2 ’

(6+P)_m(%+P),m P Lp+tl T (p=k)A(p)%,

where (a)_y is defined by
T(a—k) 1 1

T(a) (a-K(a—k+1)---@a—-1) (a—ky

In the end of this section we give the explicit formulas F (g+n)withg =1/2,1/3,
2/3,1/4,3/4,and n € Z.

Proposition 1. For any non-negative integer n, we have

. 5 B\flog(Z—l—\f)

151 “
rerzt _ (@n+1) 27" () (3k ¢
BB[L§+n T e ) +ZZ iiflgﬁ ; Y
il e ey [0
3h 1 1l = w2y 277 (k) ’ 18)
1,1-n ] 3n(2n+1) 27 (2" +3 om
] A—2Y2B
BFQF,%M RECIESVEI B f?) , (19)
Livn || 2nDu@)n ] 3 ZW
3A+2V/4B
bEodon| ] @renEe, [ VREE
3k 2 1= -1 1 X (5 )-+(2)+ ’ @0)
R b e e I e
1524, 7 (Bn+2)(2) \f[lAJrgfg
3B 7 %5 1 =——m 3 X +9ZM ’ ey
1,3‘{'7’[ ] 6”(6)71(?)71 k=0 (3k+2)2<%)§
Lo -don| ] Gne2(RR, 3“foA§J31
e . DG, DB b @
Vi YTl L el
c D
3F2[é’g"l‘+n 1 _ Wt D(); f\r( 12 )B)k (23)
1,%+n (152) (%3)71 +2 E 4k—|—1 2( /

i
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] ﬁ%(cw)
1L3-n || 37T(ﬁ)—ﬂ(ﬁ)—” * Z(4k+1)2(%)2_k
31:2[%/2,2—#” 1- :wx 3\f\f(c#_D)(lg)k ’ (25)
Li+n || 7a()a(3) 4 Zm
_— ) 7v/2V/27(C - D)
N L ) R +3)(41)%n o2y, Ll o @0
Li-n || 81m(F)-n(h)-n + ,(;0(4k+3)2(‘73)2,k

where A, B are defined in Equation (6) and C, D are defined in Equation (10).

4. Examples

In this section, we list some concrete examples of our results by using Equations (17)—(26)
with n = 1, 2. First we indicate that our formula also cover the most well-known formula,
forn e N,

—1 (6ky 3k
Bl En ]| L _2rme 21 (1) () 27)
= 6my (3 k
Ln+1 2mn () (3n) i=o 27°16F

with the parameters p = 1 and m = n —1 € Ny in Theorem 1. This identity can be

a,b,n

derived by using the more general formula about 31-"2[ 1] in ([13], Equation (1.7)),
c

or ([3], Equation (16)), where n, p are positive integers. It is note that we use the notations
A, B defined in Equation (6) and C, D defined in Equation (10) in the following examples.

Example 1. The Cases p =1/2,—1/2

153 ] 54+81v3log(V3+2)
F 1] = 2
213 647 / 28)
15 3| ] 123+64v3log(V3+2)
sh|Y 2|1 = , (29)
;=3 | 8171
155 2034+ 21873 log (V3 +2)
F 1] =
M I 17927 ’ (30)
15 8 19407 + 8960v/31og (/3 + 2)
F 1] = . 31
e 109357 G

aloés 1'  8Y2\3A—16V2B+24 @)
2,7 B 217 '

(1,55 1 8V4av3A+16V/4B+18

I 1,3 ] 2771
: 1,32 1' 1289234 — 256 /2B + 510 -
MR 3517
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5 $.2,8 || _ 1280V/4v/3A +2560V/4B + 4176 35)
1,4 445571
Example 3. The Case p = —1/3,-2/3
P%,%,—% || 21 VavBA+ 42 VaB+ 300 6)
2,1 B 1287 ’
: 1,3, -2 | _732+13592V3A 270928 )
- - 64070 /
: [1,8,-% || 38172+ 2457V/4v/3 A + 4914V/4 B 8)
2,4 B 1433670 '
: [1,2,-8 || _ 27996+ 4455923 4 — 89102 B )
21,23 - 204807 '
Example 4. The Casesp =1/4and p = 3/4
[1 5 5 T
NAA AR _ 9V27v2(C-D) +18 (40)
1,3 137 ’
: [1,2,7 || _ 243V3V2(C+ D) +126 »
sha ") = 2097t , (41)
L 7 4 J
: 1,2,9 | _ 364527v/2(C — D) + 939 "
sbh R = 55057 , (42)
15 11
BV || = 15309%\&(C+D)+11700. 3)
1,15 135477
Example 5. The Cases p = —1/4and p = —3/4
. [1,5,-2 || _ 444+ 65v2V3(C + D) )
2,1 B 1357 ’
: 1,3, -7 1' 5220 + 1463y/24/27(C — D) 5)
2,3 B 51037 ’
v 1,3, -2 || _ 8034+ 1105v2¥3(C + D) )
- B 21877 '
5 : 3, -4 1' _ 4364838 + 1043119v/2/27(C — D) )
=] 35363797

5. Moments of Ramanujan’s Generalized Elliptic Integrals
For0 <s < %andogkg 1, let

K (k)

1 1
T 5—S5+s
ZF 2 72
221[ 1

:

be Ramanujan’s generalized elliptic integral of the first kind of order s. The moment K, s is

given by

1
Kps = / KK (k) dk,
0
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where 7 is a real number. Borwein et al. ([11], Theorem 2) proved that for 0 < s < %,

K — T %—s,%—i—s,";l 1
" o+ 1) 1, 143 ‘

Thus, our hypergeometric series F(x) can be got by setting s = 1/3, and we have

4x
= —K 1.
T 2x—1,3

15
67 6%

F(x) =3F
(x) L P

1 (48)

The following formula is in ([11], Equation (29)).

a,1—a,l

7 /2
3b 3

l Li

2sin(rta) 1
1 = ri—2a)" T

where . .
7o) = 3|15 -¥(3)],

and ¥(s) = rr/((:)) is the digamma function. We substitute 2 = 1/6 in the above identity and
use the fact

'y(%) = 71+ V3log(2 + V/3),

we have
151 T
2,2, 5 6sin(¥) 1. 3
67672 _ 6 i N
3V3
= ——log(2 .
e og( +\/§)

Therefore, we give another evaluation of Equation (4), which recently was obtained
in ([10], Equation (4.1)). In fact, this number is related to the generalized Catalan constant
G1/3 which was defined in [11].

Borwen et al. ([11], Equation (76)) found a result that followed by Carlson’s Theorem:
((2r4+1)% —45%)Kop 415 — (2r)*Ko,_1 5 = cOS 7T5. (49)
Using Equation (48) we transform the above identity into the following

(6r +1)(6r +5) 1

P =g+ (05

This is exactly the same recurrence relation Equation (8) in Lemma 1. This provides
a new approach to our results. Moreover, if we use the formula for odd moments of K*
in ([11], Theorem 3), we could get Equation (27):

15
6/ g,n o 4£
3F2 1,n 1 1 - 7-L-K27171,%
Cdn|1 (n—-12 ETGEH+ROCE 4k

7| 8T(L+n)T(2 +n) k; k2
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