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Abstract: In this paper, we present an explicit formula for the approximate solution of the Cauchy
problem for the matrix factorizations of the Helmholtz equation in a bounded domain on the plane.
Our formula for an approximate solution also includes the construction of a family of fundamental
solutions for the Helmholtz operator on the plane. This family is parameterized by function K(w)

which depends on the space dimension. In this paper, based on the results of previous works,
the better results can be obtained by choosing the function K(w).
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1. Introduction

The paper studies the construction of the exact and approximate solutions of the ill-
posed Cauchy problem for matrix factorizations of the Helmholtz equation. Such problems
naturally arise in mathematical physics and in various fields of natural science such as
electro-geological exploration, cardiology, electrodynamics and so on. In general, the theory
of ill-posed problems for elliptic system of equations has been sufficiently formed by
Tikhonov, Ivanov, Lavrent’ev and Tarkhanov in [1–5]. Among them, the most important
and applicable topic is related to the conditionally well-posed problems, characterized by
stability in the presence of additional information about the nature of the problem data.
One of the most effective ways to study such problems is to construct the regularizing
operators. For example, it can be done by the Carleman-type formulas (as in complex
analysis) or iterative processes (the Kozlov–Maz’ya–Fomin algorithm, etc.).

The work is devoted to the main problem for partial differential equations, which is the
Cauchy problem. The main aim of this study is to find the regularization formulas to find
the solutions of the Cauchy problem for matrix factorizations of the Helmholtz equation.
The question of the existence of a solution of the problem is not considered—it is assumed
a priori. At the same time, it should be noted that any regularization formula leads to
an approximate solution of the Cauchy problem for all data, even if there is no solution
in the usual classic sense. Moreover, for explicit regularization formulas, the optimal
solution can be obtained. In this sense, exact regularization formulas are very useful
for real numerical calculations. There is good reason to hope that numerous practical
applications of regularization formulas are still ahead. In [6–8] some applications of the
Cauchy problem and the regularization technique for solving different kinds of integral
equations have been presented.

The Cauchy problem for matrix factorizations of the Helmholtz equation is among
ill-posed and unstable problems. It is known that the Cauchy problem for elliptic equations
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is among unstable problems which by a small change in the data the problem will be
incorrect [1,4,9–13]. Tarkhanov [14] has published a criterion for the solvability of a large
class of boundary value problems for elliptic systems. In some cases of unstable problems,
we should apply some operators for solving the problem. But the image of these operators
are not closed, therefore, the solvability condition can not be written in terms of continuous
linear functions. So, in the Cauchy problem for elliptic equations with data on part of
the boundary of the domain the solution is usually unique and the problem is solvable
for everywhere dense a set of data, but this set is not closed. Consequently, the theory of
solvability of such problems is much more difficult and deeper than theory of solvability of
Fredholm equations. The first results in this direction appeared only in the mid-1980s in
the works of Aizenberg, Kytmanov and Tarkhanov [5].

The uniqueness of the solution follows from Holmgren’s general theorem [10]. The con-
ditional stability of the problem follows from the work of Tikhonov [1], if we restrict the
class of possible solutions to a compactum.

Formulas that allow finding a solution to an elliptic equation in the case when the
Cauchy data are known only on a part of the boundary of the domain are called Carleman
type formulas. In [13], Carleman established a formula giving a solution to the Cauchy–
Riemann equations in a a special form of a domain. Developing his idea, Goluzin and
Krylov [15] derived a formula to determine the values of analytic functions from known
data. A multidimensional analogue of Carleman’s formula for analytic functions of several
variables was constructed in [11]. The Carleman formula to find the solution of the differen-
tial operator with special properties can be found in [3,4]. Yarmukhamedov [16–19] applied
this method to construct the Carleman functions for the Laplace and Helmholtz operators
for special form and domain. In [5] an integral formula was proved for the first order
elliptic type system of equations with constant coefficients in a bounded domain. In [20],
Ikehata applied the presented methodologies in [16–19] to consider the probe method and
Carleman functions for the Laplace and Helmholtz equations in the three-dimensional
domain. In [21], a formula for solving the Helmholtz equation with a variable coefficient
for regions in space where the unknown data are located on a section of the hypersurface
{x · s = t} has been presented by Ikehata.

Carleman type formulas for various elliptic equations and systems were also obtained
in [5,14–28] and [29–41]. In [22] the Cauchy problem for the Helmholtz equation in an
arbitrary bounded plane domain with Cauchy data which is known only on the boundary
region was discussed. The solvability criterion of the Cauchy problem for the Laplace equa-
tion in Rm was considered by Shlapunov [25]. In [42], the continuation of the Helmholtz
equation was investigated and the results of the numerical experiments were presented.

The construction of the Carleman matrix for elliptic systems was carried out by
Yarmukhamedov, Tarkhanov, Shlapunov, Niyozov, Juraev and others [5,14,16–19,23–41].
The system considered in this paper was introduced by Tarkhanov. For this system, he
studied correct boundary value problems and found an analogue of the Cauchy integral
formula in a bounded domain (see, for instance [5]).

In many well-posed problems of the system of equations of the first order elliptic
type with constant coefficients that factorize the Helmholtz operator, calculating the values
of the vector function on the entire boundary is not possible. Therefore, the problem of
reconstructing the solution of system of equations of the first order elliptic type with
constant coefficients and factorizing the Helmholtz operator [29–41] are among the more
challenging problems in the theory of differential equations.

Additionally, the ill-posed problems of mathematical physics have been investigated
by many researchers. The properties of solutions of the Cauchy problem for the Laplace
equation were studied in [3,4,16–19] and subsequently developed in [5,14,15,20–41].

Let R2 be the two-dimensional real Euclidean space,

x = (x1, x2) ∈ R2, y = (y1, y2) ∈ R2.
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G ⊂ R2 is a bounded simply-connected domain with piecewise smooth boundary
consisting of the plane T: y2 = 0 and some smooth curve S lying in the half-space y2 > 0,
i.e., ∂G = S

⋃
T.

We introduce the following notation:

r = |y− x|, α = |y1 − x1|, w = i
√

u2 + α2 + y2, u ≥ 0,

∂

∂x
=

(
∂

∂x1
,

∂

∂x2

)T
,

∂

∂x
→ ξT , ξT =

(
ξ1
ξ2

)
which is a transposed vector of ξ,

U(x) = (U1(x), ... , Un(x))T , u0 = (1, ... , 1) ∈ Rn, n = 2m, m = 2,

E(z) =

∥∥∥∥∥∥
z1 ... 0
.......
0 ...zn

∥∥∥∥∥∥− diagonal matrix, z = (z1, ... , zn) ∈ Rn.

Let D(ξT) be a (n × n)−dimensional matrix with elements consisting of a set of
linear functions with constant coefficients of the complex plane which is satisfied in the
following condition

D∗(ξT)D(ξT) = E((|ξ|2 + λ2)u0),

where D∗(ξT) is the Hermitian conjugate matrix D(ξT) and λ is a real number.
We consider the following system of differential equations

D
(

∂

∂x

)
U(x) = 0, (1)

in the region G where D
(

∂

∂x

)
is the matrix of first-order differential operators.

We denote the class of vector functions in the domain G by A(G) which is continuous
on G = G

⋃
∂G and satisfy in the system (1).

2. Construction of the Carleman Matrix and the Cauchy Problem

Formulation of the problem: suppose U(y) ∈ A(G) and

U(y)|S = f (y), y ∈ S, (2)

where f (y) is a given continuous vector-function on S. It is required to note that the vector
function U(y) is in the domain G, based on f (y) on S.

If U(y) ∈ A(G), then the following Cauchy type integral formula

U(x) =
∫

∂G

N(y, x; λ)U(y)dsy, x ∈ G, (3)

is valid and

N(y, x; λ) =

(
E
(

ϕ2(λr)u0
)

D∗
(

∂

∂x

))
D(tT),

where t = (t1, t2) shows the unit exterior normal which is drawn at point y on curve ∂G
and ϕ2(λr) denotes the fundamental solution of the Helmholtz equation in R2, which is
defined in the following form

ϕ2(λr) = − i
4

H(1)
0 (λr). (4)

Here H(1)
0 (λr) is the the Hankel function of the first kind [12].
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We introduce K(w) as an entire function which takes real values as real part of w,
(w = u + iv, u, v−real numbers) and satisfies in the following conditions:

K(u) 6= 0, sup
v≥1

∣∣∣vpK(p)(w)
∣∣∣ = B(u, p) < ∞,

−∞ < u < ∞, p = 0, 1, 2.

(5)

We define the function Φ(y, x; λ) at y 6= x by the following equality

Φ(y, x; λ) = − 1
2πK(x2)

∞∫
0

Im
[

K(w)

w− x2

]
u I0(λu)√

u2 + α2
du, (6)

where I0(λu) = J0(iλu)−is the zero order Bessel function of the first kind [10].
In the Formula (6), choosing

K(w) = exp(σw2), K(x2) = exp(σx2
2), σ > 0, (7)

we get

Φσ(y, x; λ) = − e−σx2
2

2π

∞∫
0

Im
[

exp(σw2)

w− x2

]
u I0(λu)√

u2 + α2
du. (8)

Substituting
Φσ(y, x; λ) = ϕ2(λr) + gσ(y, x; λ), (9)

in Equation (3) instead of ϕ2(λr), the formula will be correct where gσ(y, x) is the regular
solution of the Helmholtz equation with respect to the variable y, including the point y = x.

Then the integral formula can written in the follwoing form:

U(x) =
∫

∂G

Nσ(y, x; λ)U(y)dsy, x ∈ G, (10)

where

Nσ(y, x; λ) =

(
E
(

Φσ(y, x; λ)u0
)

D∗
(

∂

∂x

))
D(tT).

3. The Continuation Formula and Regularization According to M.M. Lavrent’ev’s

Theorem 1. Let U(y) ∈ A(G) satisfy in the following inequality

|U(y)| ≤ M, y ∈ T. (11)

If

Uσ(x) =
∫
S

Nσ(y, x; λ)U(y)dsy, x ∈ G, (12)

then the following estimations are correct:

|U(x)−Uσ(x)| ≤ C(λ, x)σMe−σx2
2 , σ > 1, x ∈ G, (13)∣∣∣∣∣∂U(x)

∂xj
− ∂Uσ(x)

∂xj

∣∣∣∣∣ ≤ C(λ, x)σMe−σx2
2 , σ > 1, x ∈ G, j = 1, 2, (14)

where C(λ, x) shows the bounded functions on compact subsets of the domain G.
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Proof. Let us first estimate inequality (13). Using the integral Formula (10) and the equal-
ity (12), we obtain

U(x) =
∫
S

Nσ(y, x; λ)U(y)dsy +
∫
T

Nσ(y, x; λ)U(y)dsy

= Uσ(x) +
∫
T

Nσ(y, x; λ)U(y)dsy, x ∈ G.

Taking into account the inequality (11), we estimate the following

|U(x)−Uσ(x)| ≤

∣∣∣∣∣∣
∫
T

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣
≤
∫
T

|Nσ(y, x; λ)||U(y)|dsy ≤ M
∫
T

|Nσ(y, x; λ)|dsy, x ∈ G.

(15)

For this aim, we estimate the integrals
∫
T

|Φσ(y, x; λ)|dsy,
∫
T

∣∣∣∣∂Φσ(y, x; λ)

∂y1

∣∣∣∣dsy, and

∫
T

∣∣∣∣∂Φσ(y, x; λ)

∂y2

∣∣∣∣dsy on the part T of the plane y2 = 0.

Separating the imaginary part of (8), we obtain

Φσ(y, x; λ) =
eσ(y2

2−x2
2)

2π

 ∞∫
0

e−σ(u2+α2) cos σ
√

u2 + α2

u2 + r2 uI0(λu)du

−
∞∫

0

e−σ(u2+α2)(y2 − x2) sin σ
√

u2 + α2

u2 + r2
uI0(λu)√

u2 + α2
du

, x2 > 0.

(17)

Given (16) and the inequality

I0(λu) ≤
√

2
λπu

, (17)

we have ∫
T

|Φσ(y, x; λ)|dsy ≤ C(λ, x)σe−σx2
2 , σ > 1, x ∈ G. (18)

To estimate the second integral, we use the equality

∂Φσ(y, x; λ)

∂y1
=

∂Φσ(y, x; λ)

∂s
∂s

∂y1
= 2(y1 − x1)

∂Φσ(y, x; λ)

∂s
,

s = α2.

(19)

Given equality (16), inequality (17) and equality (19), we obtain∫
T

∣∣∣∣∂Φσ(y, x; λ)

∂y1

∣∣∣∣dsy ≤ C(λ, x)σe−σx2
2 , σ > 1, x ∈ G, (20)

Now, we estimate the integral
∫
T

∣∣∣∣∂Φσ(y, x; λ)

∂y2

∣∣∣∣dsy.
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Taking into account equality (16) and inequality (17), we obtain∫
T

∣∣∣∣∂Φσ(y, x; λ)

∂y2

∣∣∣∣dsy ≤ C(λ, x)σe−σx2
2 , σ > 1, x ∈ G, (21)

From inequalities (17), (20) and (21), bearing in mind (15), we obtain an estimate (13).
Now the inequality (14) can be proved. To do this, we take the derivatives from

equalities (10) and (12) with respect to xj, (j = 1, 2) then we get:

∂U(x)
∂xj

=
∫
S

∂Nσ(y, x; λ)

∂xj
U(y)dsy +

∫
T

∂Nσ(y, x; λ)

∂xj
U(y)dsy,

∂Uσ(x)
∂xj

=
∫
S

∂Nσ(y, x; λ)

∂xj
U(y)dsy, x ∈ G, j = 1, 2.

(22)

Taking into account the (22) and inequality (11), we estimate the following∣∣∣∣∣∂U(x)
∂xj

− ∂σU(x)
∂xj

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
T

∂Nσ(y, x; λ)

∂xj
U(y)dsy

∣∣∣∣∣∣
≤
∫
T

∣∣∣∣∣∂Nσ(y, x; λ)

∂xj

∣∣∣∣∣|U(y)|dsy ≤ M
∫
T

∣∣∣∣∣∂Nσ(y, x; λ)

∂xj

∣∣∣∣∣dsy,

x ∈ G, j = 1, 2.

(23)

To do this, we estimate the integrals
∫
T

∣∣∣∣∂Φσ(y, x; λ)

∂x1

∣∣∣∣dsy and
∫
T

∣∣∣∣∂Φσ(y, x; λ)

∂x2

∣∣∣∣dsy on

the part T of the plane y2 = 0.

To estimate the first integrals, we use the equality

∂Φσ(y, x; λ)

∂x1
=

∂Φσ(y, x; λ)

∂s
∂s

∂x1
= −2(y1 − x1)

∂Φσ(y, x; λ)

∂s
,

s = α2.

(24)

Applying equality (16), inequality (17) and equality (24), we obtain∫
T

∣∣∣∣∂Φσ(y, x; λ)

∂x1

∣∣∣∣dsy ≤ C(λ, x)σe−σx2
2 , σ > 1, x ∈ G. (25)

Now, we estimate the integral
∫
T

∣∣∣∣∂Φσ(y, x; λ)

∂x2

∣∣∣∣dsy.

Taking into account equality (16) and inequality (17), we obtain∫
T

∣∣∣∣∂Φσ(y, x; λ)

∂x2

∣∣∣∣dsy ≤ C(λ, x)σe−σx2
2 , σ > 1, x ∈ G. (26)

From inequalities (25) and (26), bearing in mind (23), we obtain an estimate of (14).
Theorem 1 is proved.

Corollary 1. For each x ∈ G, the equalities are true

lim
σ→∞

Uσ(x) = U(x), lim
σ→∞

∂Uσ(x)
∂xj

=
∂U(x)

∂xj
, j = 1, 2.
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We define Gε as

Gε =

{
(x1, x2) ∈ G, a > x2 ≥ ε, a = max

T
ψ(x1), 0 < ε < a

}
.

Here ψ(x1)-is a curve. It is easy to see that the set Gε ⊂ G is compact.

Corollary 2. If x ∈ Gε, then the families of functions {Uσ(x)} and

{
∂Uσ(x)

∂xj

}
converge uni-

formly for σ→ ∞, i.e.:

Uσ(x) ⇒ U(x),
∂Uσ(x)

∂xj
⇒

∂U(x)
∂xj

, j = 1, 2.

We should note that the set Eε = G\Gε serves as a boundary layer for this problem,
as in the theory of singular perturbations, where there is no uniform convergence.

4. Estimation of the Stability of the Solution to the Cauchy Problem

Suppose that the curve S is given by the equation

y2 = ψ(y1), y1 ∈ R,

where ψ(y1) is a single-valued function satisfying the Lyapunov conditions.
We put

a = max
T

ψ(y1), b = max
T

√
1 + ψ′2(y1).

Theorem 2. Let U(y) ∈ A(G) satisfies in the condition (20), and on a smooth curve S the inequality

|U(y)| ≤ δ, 0 < δ ≤ Me−σa2
. (27)

Then the following relations are true

|U(x)| ≤ C(λ, x)σM1− x2
2

a2 δ
x2

2
a2 , σ > 1, x ∈ G. (28)∣∣∣∣∣∂U(x)

∂xj

∣∣∣∣∣ ≤ C(λ, x)σM1− x2
2

a2 δ
x2

2
a2 , σ > 1, x ∈ G,

j = 1, 2.
(29)

Proof. Let us first estimate inequality (28). Using the integral formula (10), we have

U(x) =
∫
S

Nσ(y, x; λ)U(y)dsy +
∫
T

Nσ(y, x; λ))U(y)dsy, x ∈ G. (30)

We estimate the following

|U(x)| ≤

∣∣∣∣∣∣
∫
S

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
T

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣, x ∈ G. (31)



Axioms 2021, 10, 82 8 of 14

Given inequality (27), we estimate the first integral of inequality (31).∣∣∣∣∣∣
∫
S

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣ ≤
∫
S

|Nσ(y, x; λ)||U(y)|dsy

≤ δ
∫
S

|Nσ(y, x; λ)|dsy, x ∈ G.

(32)

To do this, we estimate the integrals
∫
S

|Φσ(y, x; λ)|dsy,
∫
S

∣∣∣∣∂Φσ(y, x; λ)

∂y1

∣∣∣∣dsy and

∫
S

∣∣∣∣∂Φσ(y, x; λ)

∂y2

∣∣∣∣dsy on a smooth curve S.

Given equality (16) and the inequality (17), we have∫
S

|Φσ(y, x; λ)|dsy ≤ C(λ, x)σeσ(a2−x2
2), σ > 1, x ∈ G. (33)

To estimate the second integral, using equalities (16) and (19) as well as inequality
(17), we obtain ∫

S

∣∣∣∣∂Φσ(y, x; λ)

∂y1

∣∣∣∣dsy ≤ C(λ, x)σeσ(a2−x2
2), σ > 1, x ∈ G. (34)

To find the integral
∫
S

∣∣∣∣∂Φσ(y, x; λ)

∂y2

∣∣∣∣dsy, using equality (16) and inequality (17), we obtain

∫
S

∣∣∣∣∂Φσ(y, x; λ)

∂y2

∣∣∣∣dsy ≤ C(λ, x)σeσ(a2−x2
2), σ > 1, x ∈ G. (35)

From (33)–(35) and applying (32), we obtain∣∣∣∣∣∣
∫
S

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣ ≤ C(λ, x)σδ eσ(a2−x2
2), σ > 1, x ∈ G. (36)

The following is known∣∣∣∣∣∣
∫
T

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣ ≤ C(λ, x)σMe−σx2
2 , σ > 1, x ∈ G. (37)

Now taking into account (36)–(37) and using (31), we have

|U(x)| ≤ C(λ, x)σ
2

(δ eσa2
+ M)e−σx2

2 , σ > 1, x ∈ G. (38)

Choosing σ from the equality

σ =
1
a2 ln

M
δ

, (39)

we obtain an estimate (28).
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Now let us prove inequality (29). To do this, we find the partial derivative from the
integral formula (10) with respect to the variable xj, j = 1, 2:

∂U(x)
∂xj

=
∫
S

∂Nσ(y, x; λ)

∂xj
U(y)dsy +

∫
T

∂Nσ(y, x; λ)

∂xj
U(y)dsy

=
∂Uσ(x)

∂xj
+
∫
T

∂Nσ(y, x; λ)

∂xj
U(y)dsy, x ∈ G, j = 1, 2.

(40)

Here
∂Uσ(x)

∂xj
=
∫
S

∂Nσ(y, x; λ)

∂xj
U(y)dsy. (41)

We estimate the following∣∣∣∣∣∂U(x)
∂xj

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
S

∂Nσ(y, x; λ)

∂xj
U(y)dsy

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
T

∂Nσ(y, x; λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ ≤
∣∣∣∣∣∂Uσ(x)

∂xj

∣∣∣∣∣
+

∣∣∣∣∣∣
∫
T

∂Nσ(y, x; λ)

∂xj
U(y)dsy

∣∣∣∣∣∣, x ∈ G, j = 1, 2.

(42)

Given inequality (27), we estimate the first integral of inequality (42).∣∣∣∣∣∣
∫
S

∂Nσ(y, x; λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ ≤
∫
S

∣∣∣∣∣∂Nσ(y, x; λ)

∂xj

∣∣∣∣∣|U(y)|dsy

≤ δ
∫
S

∣∣∣∣∣∂Nσ(y, x; λ)

∂xj

∣∣∣∣∣dsy, x ∈ G, j = 1, 2.

(43)

To do this, we estimate the integrals
∫
S

∣∣∣∣∂Φσ(y, x; λ)

∂x1

∣∣∣∣dsy, and
∫
S

∣∣∣∣∂Φσ(y, x; λ)

∂x2

∣∣∣∣dsy on

a smooth curve S.

Given equality (16), inequality (17) and equality (24), we obtain∫
S

∣∣∣∣∂Φσ(y, x; λ)

∂x1

∣∣∣∣dsy ≤ C(λ, x)σeσ(a2−x2
2), σ > 1, x ∈ G, (44)

Now, we estimate the integral
∫
S

∣∣∣∣∂Φσ(y, x; λ)

∂x2

∣∣∣∣dsy.

Taking into account equality (16) and inequality (17), we obtain∫
S

∣∣∣∣∂Φσ(y, x; λ)

∂x2

∣∣∣∣dsy ≤ C(λ, x)σeσ(a2−x2
2), σ > 1, x ∈ G, (45)
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From (44) and (45), bearing in mind (43), we obtain∣∣∣∣∣∣
∫
S

∂Nσ(y, x; λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ ≤ C(λ, x)σδe−σx2
2 , σ > 1, x ∈ G,

j = 1, 2.

(46)

The following is known∣∣∣∣∣∣
∫
T

∂Nσ(y, x; λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ ≤ C(λ, x)σMe−σx2
2 , σ > 1, x ∈ G,

j = 1, 2.

(47)

Now taking into account (46)–(47), bearing in mind (42), we have∣∣∣∣∣∂U(x)
∂xj

∣∣∣∣∣ ≤ C(λ, x)σ
2

(δ eσa2
+ M)e−σx2

2 , σ > 1, x ∈ G,

j = 1, 2.
(48)

Choosing σ from the equality (39) we obtain an estimate (29). Theorem 2 is proved.

Assume that U(y) ∈ A(G) is defined on S and fδ(y) is its approximation with an error
0 < δ ≤ Me−σa2

then
max

S
|U(y)− fδ(y)| ≤ δ. (49)

We put

Uσ(δ)(x) =
∫
S

Nσ(y, x; λ) fδ(y)dsy, x ∈ G. (50)

Theorem 3. Let U(y) ∈ A(G) on the part of the plane y2 = 0 satisfies in the condition (11).
Then the following estimates is true

∣∣∣U(x)−Uσ(δ)(x)
∣∣∣ ≤ C(λ, x)σM1− x2

2
a2 δ

x2
2

a2 , σ > 1, x ∈ G. (51)∣∣∣∣∣∂U(x)
∂xj

−
∂Uσ(δ)(x)

∂xj

∣∣∣∣∣ ≤ C(λ, x)σM1− x2
2

a2 δ
x2

2
a2 , σ > 1, x ∈ G,

j = 1, 2.
(52)

Proof. From the integral formulas (10) and (50), we have

U(x)−Uσ(δ)(x) =
∫

∂G

Nσ(y, x; λ)U(y)dsy

−
∫
S

Nσ(y, x; λ) fδ(y)dsy =
∫
S

Nσ(y, x; λ)U(y)dsy

+
∫
T

Nσ(y, x; λ)U(y)dsy −
∫

S
Nσ(y, x; λ) fδ(y)dsy

=
∫
S

Nσ(y, x; λ){U(y)− fδ(y)}dsy +
∫
T

Nσ(y, x; λ)U(y)dsy.
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and
∂U(x)

∂xj
−

∂Uσ(δ)(x)
∂xj

=
∫

∂G

∂Nσ(y, x; λ)

∂xj
U(y)dsy

−
∫
S

∂Nσ(y, x; λ)

∂xj
fδ(y)dsy =

∫
S

∂Nσ(y, x; λ)

∂xj
U(y)dsy

+
∫
T

∂Nσ(y, x; λ)

∂xj
U(y)dsy −

∫
S

∂Nσ(y, x; λ)

∂xj
fδ(y)dsy

=
∫
S

∂Nσ(y, x; λ)

∂xj
{U(y)− fδ(y)}dsy +

∫
T

∂Nσ(y, x; λ)

∂xj
U(y)dsy,

j = 1, 2.

Using conditions (11) and (49), we estimate the following:

∣∣∣U(x)−Uσ(δ)(x)
∣∣∣ =

∣∣∣∣∣∣
∫
S

Nσ(y, x; λ){U(y)− fδ(y)}dsy

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
T

Nσ(y, x; λ)U(y)dsy

∣∣∣∣∣∣ ≤
∫
S

|Nσ(y, x; λ)||{U(y)− fδ(y)}|dsy

+
∫
T

|Nσ(y, x; λ)||U(y)|dsy ≤ δ
∫

S
|Nσ(y, x; λ)|dsy

+M
∫
T

|Nσ(y, x; λ)|dsy.

and ∣∣∣∣∣∂U(x)
∂xj

−
∂Uσ(δ)(x)

∂xj

∣∣∣∣∣ =
∣∣∣∣∣∣
∫
S

∂Nσ(y, x; λ)

∂xj
{U(y)− fδ(y)}dsy

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
T

∂Nσ(y, x; λ)

∂xj
U(y)dsy

∣∣∣∣∣∣ ≤
∫
S

∣∣∣∣∣∂Nσ(y, x; λ)

∂xj

∣∣∣∣∣|{U(y)− fδ(y)}|dsy

+
∫
T

∣∣∣∣∣∂Nσ(y, x; λ)

∂xj

∣∣∣∣∣|U(y)|dsy ≤ δ
∫

S

∣∣∣∣∣∂Nσ(y, x; λ)

∂xj

∣∣∣∣∣dsy

+M
∫
T

∣∣∣∣∣∂Nσ(y, x; λ)

∂xj

∣∣∣∣∣dsy, j = 1, 2.

Now, repeating the proof of Theorems 1 and 2, we obtain∣∣∣U(x)−Uσ(δ)(x)
∣∣∣ ≤ C(λ, x)σ

2
(δ eσa2

+ M)e−σx2
2 .

∣∣∣∣∣∂U(x)
∂xj

−
Uσ(δ)(x)

∂xj

∣∣∣∣∣ ≤ C(λ, x)σ
2

(δ eσa2
+ M)e−σx2

2 , j = 1, 2.
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From here, choosing σ from equality (39), we obtain an estimates (51) and (52). Thus
Theorem 3 is proved.

Corollary 3. For each x ∈ G, the following equalities are true

lim
δ→0

Uσ(δ)(x) = U(x), lim
δ→0

∂Uσ(δ)(x)
∂xj

=
∂U(x)

∂xj
, j = 1, 2.

Corollary 4. If x ∈ Gε, then the families of functions
{

Uσ(δ)(x)
}

and

{
∂Uσ(δ)(x)

∂xj

}
are conver-

gent uniformly for δ→ 0, i.e.:

Uσ(δ)(x) ⇒ U(x),
∂Uσ(δ)(x)

∂xj
⇒

∂U(x)
∂xj

, j = 1, 2.

5. Conclusions

The article obtained the following results:
Using the Carleman function, a formula can be obtained for the continuation of the

solution of linear elliptic systems of the first order with constant coefficients in a spatial
bounded domain R2. The resulting formula is an analogue of the classical formula of
Riemann, Voltaire and Hadamard, which they constructed to solve the Cauchy problem
in the theory of hyperbolic equations. An estimate of the stability of the solution of the
Cauchy problem in the classical sense for matrix factorizations of the Helmholtz equation
was presented. This problem can be considered when, instead of the exact data of the
Cauchy problem we have their approximations with a given deviation in the uniform
metric and under the assumption that the solution of the Cauchy problem is bounded on
part T, of the boundary of the domain G.

We note that for solving applicable problems, the approximate values of U(x) and
∂U(x)

∂xj
, x ∈ G, j = 1, 2 should be found.

In this paper, we have built a family of vector-functions U(x, fδ) = Uσ(δ)(x) and
∂U(x, fδ)

∂xj
=

∂Uσ(δ)(x)
∂xj

, (j = 1, 2) depend on a parameter σ. Also, we prove that under

certain conditions and a special choice of the parameter σ = σ(δ), at δ → 0, the family

Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
are convergent to a solution U(x) and its derivative

∂U(x)
∂xj

, x ∈ G

at point x ∈ G.

According to [1], a family of vector-functions Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
is called a

regularized solution of the problem. A regularized solution determines a stable method to
find the approximate solution of the problem.

Thus, functionals Uσ(δ)(x) and
∂Uσ(δ)(x)

∂xj
determine the regularization of the solution

of problems (1) and (2).
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