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Abstract: For each fundamental and widely used ordinary second-order linear homogeneous dif-
ferential equation of mathematical physics, we derive a family of associated differential equations
that share the same “degenerate” canonical form. These equations can be solved easily if the original
equation is known to possess analytic solutions, otherwise their properties and the properties of their
solutions are de facto known as they are comparable to those already deduced for the fundamental
equation. We analyze several particular cases of new families related to some of the famous differen-
tial equations applied to physical problems, and the degenerate eigenstates of the radial Schrödinger
equation for the hydrogen atom in N dimensions.

Keywords: ordinary differential equations; analytical methods; mathematical models; Riccati equa-
tion; radial Schrödinger equation; transformations

MSC: 34A25; 34A30

1. Introduction

The ordinary second-order linear homogeneous (OSLH) differential equations of
mathematical physics have the general form [1–4]

y′′0 + b0(x)y′0 + c0(x)y0 = 0 , (1)

where primes denote derivatives with respect to the independent variable x and b0(x) and
c0(x) are functions of x. Equation (1) can be transformed to the canonical form [5–8]

u′′0 + q0(x)u0 = 0 , (2)

where
q0 ≡ c0 −

1
4

(
2b′0 + b 2

0

)
, (3)

and then the solutions y0(x) are given by

y0(x) = u0(x) exp
(
−1

2

∫
b0(x)dx

)
. (4)

Equation (2) is degenerate in the sense that it can also be obtained from another
equation of the form

y′′ + b(x)y′ + c(x)y = 0 , (5)
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in which the functions b 6= b0 and c obey the condition that

q ≡ c− 1
4

(
2b′ + b2

)
= q0 , (6)

and then the solutions y(x) of Equation (5) are given by

y(x) = u0(x) exp
(
−1

2

∫
b(x)dx

)
. (7)

Therefore, the original transformation (b0, c0)→ q0 is not uniquely invertible as there
exist an infinite number of function pairs (b, c) that result in the same q0 coefficient in
Equation (2). The solutions y0(x) and y(x) of the two differential equations still differ in
their exponential factors, but the u0(x) function is the same in Equations (4) and (7) and
generally ascribes similar qualitative properties to the solutions.

The degeneracy of the canonical form (2) effectively provides a new method of solution
or at least of investigation of an enormous number of potentially useful OSLH differential
equations. In what follows, we determine some of these families of associated equations
that may prove to be of current or future interest in applied mathematics and in physics
applications. In Section 2, we describe the general theory and some notable special cases
derived from degenerate canonical forms. In Sections 3 and 4, we analyze specific examples
of such families with closely related properties and solutions. In particular, we revisit 15
fundamental OSLH equations of mathematical physics listed in [3] and the degeneracies
of the radial Schrödinger equation across N ≥ 1 spatial dimensions. In Section 5, we
summarize and discuss our results.

2. Exploiting the Degeneracy of the Canonical Form

We consider Equations (1) and (5) with b 6= b0 and/or c 6= c0 leading to the same
canonical form (2) with coefficient q0(x). Ibragimov [5] calls q0(x) the invariant function
and the associated equations equivalent by function (his Theorem 3.3.2, page 112) in the
Lie symmetry group of second-order linear equations [6], but he does not pursue the
classification further, as we do. We assume that the solutions (or at least their properties)
are known for Equation (1) and we determine all other OSLH equations of the form (5) that
are closely related due to the appearance of the same u0(x) function in their solutions (7).
Combining Equations (3) and (6), we find that(

2b′ + b2
)
−
(

2b′0 + b 2
0

)
= 4(c− c0) . (8)

The coefficients b0(x) and c0(x) are known functions of x, whereas b(x) and c(x) are
generally unknown functions to be determined. If b = b0, then c = c0 also, in which
case there is no family of associated equations. If c = c0, then b = b0 is only a particular
solution of Equation (8). We examine this case in Section 2.1, two special cases with c 6= c0
in Section 2.2, and the general case for arbitrary b(x) and c(x) in Section 2.3 below.

Written as a Riccati equation for b(x), Equation (8) takes the form

b′ = 2(c− q0)−
1
2

b2 , (9)

where q0 is known by virtue of Equation (3). A given c(x) and the general solution
b(x) of the Riccati equation determine together a family of coefficients for the associated
Equation (5); some examples of important differential equations from mathematical physics
with c = c0 are analyzed in Section 3 below. Furthermore, two chosen functions b(x) and
c(x) such that they satisfy Equation (9) identically (i.e., q ≡ q0) produce additional (and
generally more complicated) members of the same family; a physically interesting problem
from multidimensional quantum mechanics is analyzed in Section 4 below.
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2.1. The Case for b(x) When c = c0

When the Riccati Equation (9) is solved to obtain b(x), a particular solution bP(x) is
needed [7,8]. In the case with c = c0, we already know that bP = b0. In this case:

Theorem 1. The general solution of Equation (9) is given by

b = b0 +
1
z

, (10)

where z(x) is the general solution of the linear differential equation

z′ − b0(x)z =
1
2

. (11)

Proof. See Procedure 2 in page 392 of [8].

This result appears to be important for physics applications using equations of the
form (1) with predetermined coefficients b0(x) and c0(x). It shows that when the new term
1/z(x) is added to the coefficient b0(x) of the first derivative (Equation (10)), the complexity
of the mathematical problem does not increase at all; and the new problem remains just as
mathematically tractable as the original problem since the two equations share the exact
same canonical form (Equation (2)).

2.2. Additional Riccati Cases with Particular Solutions bP = b0

(a) For c = Kb and c0 = Kb0, where K is a constant, the Riccati Equation (9) takes
the form

b′ = −2q0(x) + 2Kb− 1
2

b2 , (12)

for which bP = b0 is a particular solution. Then Equation (10) is the general solution, where
z(x) is the general solution of the linear equation

z′ + [2K− b0(x)]z =
1
2

. (13)

Example 1. In the special case with b0 = c0 = 0, the method generates a family of damped
harmonic oscillators (associated with the basic equation y′′0 = 0 [5]) whose simplest member has
constant coefficients b = 4K and c = 4K2 in Equation (5).

(b) For c = Kb2 and c0 = Kb 2
0 , where K is a constant, the Riccati Equation (9) takes

the form
b′ = −2q0(x) +

1
2
(4K− 1)b2 , (14)

for which bP = b0 is a particular solution. Then Equation (10) is again the general solution,
where z(x) is the general solution of the linear equation

z′ + (4K− 1)b0(x)z =
1
2
(1− 4K) . (15)

Example 2. In the special case with K = 1/4, then z = 1/C = constant, and the known function
b0(x) is shifted vertically in order to produce the family of associated coefficients, i.e., b = b0 + C
and c = 1

4 (b0 + C)2, in Equation (5).

Example 3. On the other hand, for K 6= 1/4 and for b0 = c0 = 0, the method generates a family
of Cauchy–Euler equations (associated with y′′0 = 0 [5]) whose simplest member has coefficients
b = B0/x and c = K(B0/x)2 in Equation (5), where B0 = 2/(1− 4K) = constant.

By comparing the associated families in Examples 1 and 3 above, we see how complex-
ity is being built up into the coefficients of the general OSLH form (5), starting merely from
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the simplest possible OSLH equation y′′0 = 0; but without causing any serious difficulties
to the investigations of properties or solutions of the associated equations (see also related
examples in [5], pages 112 and 114).

2.3. The General Case for b(x) and c(x)
2.3.1. Solving a Riccati Equation

For arbitrary coefficients c(x) and c0(x) (not related to b and b0, respectively),
Equation (8) or (9) can be written as a Riccati equation without a linear b-term, viz.

b′ = p(x)− 1
2

b2 , (16)

where
p ≡ 2(c− q0) = 2(c− c0) + b′0 +

1
2

b 2
0 , (17)

is a function of x with no particular dependencies among the functions involved or any
special symmetries. This function does not appear explicitly in the calculations that follow,
but it does affect the determination of the sought-after particular solution. The general
solution of Equation (16) from Theorem 1 is

b = bP +
1
z

, (18)

where bP(x) is a particular solution and z(x) is the general solution of the linear equation

z′ − bP(x)z =
1
2

. (19)

The particular solution bP(x) cannot be specified in general terms. Its form will depend
on the details of the given fundamental differential Equation (1) and on the coefficient c(x)
that will be chosen for the family of the associated Equation (5).

2.3.2. Solving a Canonical Equation

If a particular solution bP(x) cannot be found, then there is one more transformation
that one can try ([8], Section 86, page 392):

Theorem 2. Equation (16) can be recast as an OSLH equation in canonical form (since there is no
linear b-term, and the coefficient of b2 is a constant), viz.

v′′ − 1
2

p(x)v = 0 , (20)

where p is given by Equation (17), and b(x) will then be determined from the general solution v(x),
viz.

b =
2v′

v
. (21)

Proof. See Procedure 1 in page 392 of [8].

It is important that this b(x) coefficient will finally contain only one arbitrary constant,
just as the solution (18). The two integration constants in the solution of Equation (20) will
always combine into one constant in Equation (21), thus the solutions (18) and (21) are
equivalent, as shown following Example 4.
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Example 4. An example of such a reduction to one arbitrary constant is provided by the simplest
case with p = 0. In this case, v(x) is a linear function of x, i.e., v = C1x + C2, where C1 and C2
are the integration constants, and then Equation (21) gives

b =
2C1

C1x + C2
=

2
x + C

, (22)

where C ≡ C2/C1. Thus, Equation (21) produces a function b(x) that depends on only one
arbitrary constant C.

In the general case, v = C1v1 + C2v2, where v1(x) and v2(x) are two nontrivial
linearly-indepenent particular solutions of Equation (20). Then Equation (21) gives

b =
2
(
C1v′1 + C2v′2

)
C1v1 + C2v2

=
2
(
v′1 + Cv′2

)
v1 + Cv2

, (23)

where, again, C ≡ C2/C1. In this case as well, the determined b(x) coefficient depends on
only one arbitrary constant C.

Example 5. A simple choice that results in complicated associated equations is b0 = 0 and
c− c0 = x ≥ 0. Then, p = 2x from Equation (17), and Equation (16) gives b′ = 2x − b2/2,
a Riccati equation for which a particular solution bP cannot be readily found. Thus, we turn to
Equation (20) which takes the form of Airy’s differential equation v′′ − xv = 0 with particular
solutions v1 = Ai(x) and v2 = Bi(x), whereAi and Bi are the Airy functions [3]; and the general
solution of b(x) is then given by Equation (23), where C is an arbitrary constant. For C = 0, the
principal solution is b = 2(lnAi)′, which is much more involved as compared to the initial choice
of b0 = 0.

3. Families of Associated Differential Equations with c = c0

We analyze several examples of families of associated OSLH differential equations
of the form (5) that are closely related to well-known and widely used equations of math-
ematical physics that take the form of Equation (1). In this section, we limit ourselves to
families with

c = c0 , (24)

hence the methodology of Section 2.1 is applicable. The new differential equations have
significantly more complicated coefficients b(x) due to the addition of nontrivial terms 1/z
(see Equation (10)) for which z(x) is determined by solving the first-order linear differential
Equation (11).

In physics applications of the standard form (1), the term b0y′0 usually represents
damping due to friction or other resisting forces [7,9], unless it was created by the specific
choice of a curvilinear coordinate system [4], as for example the inertial term y′0/x in
the cylindrical Bessel differential equation [4,10]. The new coefficient b = b0 + 1/z then
generally represents a significantly more sophisticated model of resistance to motion that
surprisingly has a similar effect on the dynamics of the physical system as the original
simpler damping coefficient b0 (see Table 1 for a summary). The similarity is not precise
however because the solutions (4) and (7) also contain differing exponential factors. The
differences in the exponential factors, exp(−

∫
[b(x)− b0(x)]dx/2), are also summarized

in Table 1.
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Table 1. Exponential factors and 1/z terms that appear in the solutions (4) and (7) of the OSLH differential Equations (1)
and (5) with c = c0, due to transformations to the canonical form (2).

Differential Section b0(x) exp
(
−
∫

b0(x)dx/2
)

Equation(s) 1/z(x) = b(x)− b0(x) exp
(
−
∫
[b(x)− b0(x)]dx/2

)
(1) (2) (3) (4)

Canonical 3.1 0 1
Equations (b0 = 0) 2/(x + C) 1/|x + C|

Damped Harmonic 3.2 2k exp(−kx)
Oscillator 4k/[C exp(2kx)− 1] 1/| exp(−2kx)− C|

Cauchy–Euler (B0 6= 1) 3.3 B0/x |x|−B0/2

2(1− B0)/
(

x + CxB0
)

1/|C + x1−B0 |

Cauchy–Euler (B0 = 1) 3.3 1/x 1/
√
|x|

and (Modified) Bessel 3.4 2/(x ln |Cx|) 1/|ln |Cx||

Legendre and 3.5 −2x/(1− x2) (1− x2)−1/2

Associated Legendre 4/
[
(1− x2)(C + ln[(1 + x)/(1− x)])

]
1/|C + ln[(1 + x)/(1− x)]|

Chebyshev 3.6 −x/(1− x2) (1− x2)−1/4

2/[
√

1− x2
(

C + sin−1 x
)
] 1/|C + sin−1 x|

Hermite 3.7 −2x exp(x2/2)
(Physics) 2/[C exp(−x2) +Di(x)] 1/|C + exp(x2)Di(x)|

Hermite 3.7 −x exp(x2/4)
(Probability)

√
2/[C exp(−x2/2) +Di(x/

√
2)] 1/|C + exp(x2/2)Di(x/

√
2)|

Laguerre 3.8 (1− x)/x x−1/2 exp(x/2)
2 exp(x)/[x(C + E i(x))] 1/|C + E i(x)|

Associated Laguerre 3.8 (ν + 1− x)/x x−(ν+1)/2 exp(x/2)
2 exp(x)/[xν+1(C +
(−1)ν+1Γ(−ν,−x))] 1/|C + (−1)ν+1Γ(−ν,−x)|

3-D Radial Schrödinger 3.9 2/x 1/x
(Hydrogen Atom) 2/[x(Cx− 1)] x/|Cx− 1|

3-D Radial Schrödinger 3.9 2(`+ 1)/x− 1 x−(`+1) exp(x/2)

(Kummer’s Form) 2 exp(x)/[x2(`+1)(C + Γ(−2`−
1,−x))]

1/|C + Γ(−2`− 1,−x)|

3-D Radial Schrödinger 3.9 1 exp(−x/2)
(Whittaker’s Form) 2/[C exp(x)− 1] 1/| exp(−x)− C|

Notes: (a) To obtain the coefficient b(x), add the two functions in column (3) in each case. (b) To obtain the factor exp(−
∫

b(x)dx/2),
multiply the two functions in column (4) in each case. (c) In Sections 3.5 and 3.6, |x| < 1. In Sections 3.8 and 3.9, x > 0 and −ν, ` ≥ 0
are integers. (d) Whittaker’s form with b0 = 1 = constant is a form of damped harmonic oscillator with k = 1

2 . Definitions (Ref. [3]):
(1) Dawson’s Integral: Di(x) =

∫ x
0 dt exp(t2 − x2) (2) Exponential Integral: E i(x) = −

∫ ∞
−x dt exp(−t)/t, x > 0 (3) Upper Incomplete

Gamma Function: Γ(a, x) =
∫ ∞

x dt ta−1 exp(−t).

3.1. Canonical Equations of Physics with b0 = 0

There are quite a few OSLH equations of mathematical physics that lack a first deriva-
tive term (b0 = 0 in Equation (1)) [3,4] and their properties and solutions depend only
on the single remaining coefficient c0(x). For such equations, we find that the associated
Equation (5) admit nonzero terms of the form b(x)y′ that complicate their appearances but
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not their studies. For b0 = 0 and c = c0, Equation (11) reduces to z′ = 1/2 and Equation (10)
provides a nonzero coefficient b(x) of the form (22) (since p = 0 from Equation (17)), viz.

b = 2/(x + C) , (25)

where C is an arbitrary constant. This is not a trivial result. The principal (C = 0)
particular solution b = 2/x is ubiquitous in physical models [1,4,9] and the degeneracy
of the canonical form was first discovered in this case: transformations of equations with
b0 = 2/x to their canonical forms would eliminate the b0-terms from q0, thus leading to
q0 ≡ c0 in such models (Equation (3) with b0 = 2/x; see also Section 6.2 in [4]).

3.2. Damped Harmonic Oscillator

The damped harmonic oscillator [7] is described by Equation (1) with b0 = 2k =
constant and c0 = ω 2

0 = constant. A family of associated differential equations is obtained
from Equations (10) and (11). We find that the family members with c = c0 have coefficients
b(x) of the form

b = 2k
[

C exp(2kx) + 1
C exp(2kx)− 1

]
, (26)

where C is an arbitrary constant. The result can also be written in terms of hyperbolic
functions (Appendix 2 in [11]). It may be surprising that such a complicated damping
coefficient can be introduced to the harmonic oscillator, yet the problem remains analyti-
cally solvable. We have seen analogous “harmless” complications in the past (hyperbolic
tangents in b(x); Equations (56) and (59) in [4]) when we solved analytically the CDOS
differential equation [11,12].

3.3. Cauchy–Euler Equation

The Cauchy–Euler equation [2,7] is described by Equation (1) with b0 = B0/x and
c0 = C0/x2, where B0 and C0 are constants. We find that its family members with c = c0
have

b =

{
1/x + 2/(x ln |Cx|), for B0 = 1

B0/x + 2(1− B0)/
(
x + CxB0

)
, for B0 6= 1

, (27)

where C is an arbitrary constant. As with the Bessel differential equation [10], the 1/x term
in the B0 = 1 case does not represent damping if x is a cylindrical radial coordinate [4]. This
must be the case for the new term as well, because b and b0 lead to the same canonical form
with q0 = (C0 + 1/4)/x2, which implies that q0 > 1/(4x2) for C0 > 0; thus, the solutions
are oscillatory in x > 0 for any positive value of the constant C0 (see [4] for details).

Example 6. The cases with B0 = 0 and B0 = 2 are also notable and consistent with the results
obtained in Section 3.1 above and in Section 3.9 below, respectively:

(a) For B0 = 0 (i.e., b0 = 0), then b = 2/(x + C), a renowned coefficient [1,4,9].
(b) For B0 = 2 (i.e., b0 = 2/x), then b = 2C/(Cx + 1), a coefficient that includes the special

forms b = 0 (for C = 0) and b = 2/(x + C) (for C → 1/C).

It is important to note here that both Cauchy–Euler special cases with B0 = 0 and B0 = 2 include
the ubiquitous result that b = 2/(x + C).

3.4. Bessel Equations

The Bessel equation of order n [10,13] is described by Equation (1) with b0 = 1/x and
c0 = 1− n2/x2, where n is a constant. We find that its family members with c = c0 have

b = 1/x + 2/(x ln |Cx|) , (28)

where C is an arbitrary constant. In this case too, the new coefficient b(x) does not represent
damping in a cylindrical coordinate frame (see also equation (77) in [4]).
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The modified Bessel equation of order n [10,13] also has b0 = 1/x, but it differs in the
form of c0 = −(1 + n2/x2). Members of this family are described by the same coefficient
b(x) as that in Equation (28) and they are distinguished from the corresponding Bessel
family members only because of their “modified” coefficient c(x) = −(1 + n2/x2).

3.5. Legendre Equations

The Legendre (m = 0) and associated Legendre (m 6= 0) equations [13] are described
by Equation (1) with b0 = −2x/(1− x2) and c0 = `(`+ 1)/(1− x2)−m2/(1− x2)2, where
|x| < 1 and `, m are constants. We find that their family members with c = c0 have

b = −2x/(1− x2) + 4/
[
(1− x2)(C + ln[(1 + x)/(1− x)])

]
, (29)

where C is an arbitrary constant other than zero. The condition C 6= 0 eliminates a
singularity at x = 0 where b(0) = 4/C.

3.6. Chebyshev Equation

The Chebyshev equation [13] is described by Equation (1) with b0 = −x/(1− x2) and
c0 = n2/(1− x2), where |x| < 1 and n is a constant. We find that its family members with
c = c0 have

b = −x/(1− x2) + 2/[
√

1− x2
(

C + sin−1 x
)
] , (30)

where C is an arbitrary constant other than zero. The condition C 6= 0 eliminates a
singularity at x = 0 where b(0) = 2/C. The Chebyshev equation and the associated
differential equations can all be solved analytically by a transformation to their degenerate
canonical form [4,11].

3.7. Hermite Equations

The Hermite differential equation [13] for the so-called H
λ
(x) polynomials in physics

applications is described by Equation (1) with b0 = −2x and c0 = 2λ, where λ ≥ 0 is an
integer. We find that its family members with c = c0 have

b = −2x + 2/[C exp(−x2) +Di(x)] , (31)

where C 6= 0 is an arbitrary constant and Di(x) is Dawson’s integral [3,14].
In probability applications, the Hermite differential equation for the so-called He

λ
(x)

polynomials is written with b0 = −x and an integer c0 = λ ≥ 0 [3]. In this case, we find
that family members with c = c0 have

b = −x +
√

2/[C exp(−x2/2) +Di(x/
√

2)] , (32)

where, again, C 6= 0 is an arbitrary constant and Di(x/
√

2) is Dawson’s integral [3,14]. In
both of the above b(x) coefficients, the condition that C 6= 0 eliminates the singularity at
x = 0 introduced by Di(0) = 0.

3.8. Laguerre Equations

The Laguerre equation [13] is described by Equation (1) with b0 = (1− x)/x and
c0 = λ/x, where x > 0 and λ ≥ 0 is a constant. We find that its family members with
c = c0 have

b = (1− x)/x + 2 exp(x)/[x(C + E i(x))] , (33)

where C is an arbitrary constant and E i(x) is the exponential integral [3,11].
The associated Laguerre equation [13] is described by Equation (1) with b0 = (ν + 1−

x)/x and c0 = λ/x, where x > 0 and λ ≥ 0, ν are real constants. Here we take ν to be a
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negative integer so that the coefficients b(x) will be real (on the other hand, ν = 0 leads
back to Equation (33)). We find that family members with c = c0 have

b = (ν + 1− x)/x + 2 exp(x)/[xν+1(C + (−1)ν+1Γ(−ν,−x))] , (34)

where C is an arbitrary constant and Γ(−ν,−x) is the upper incomplete Gamma function [3].
We note that the coefficient b(x) in Equation (34) is not a real function of x > 0 if ν is taken
to be a real number other than a negative integer or zero.

3.9. Radial Schrödinger Equation in Three Dimensions

The radial Schrödinger equation for the hydrogen atom [1–3,15–17] is described by
Equation (1) with b0 = 2/x and c0 = n/x− `(`+ 1)/x2 − 1/4, where x > 0 is a spherical
radial coordinate and the integers n ≥ 1 and 0 ≤ ` ≤ n− 1 are the principal and secondary
quantum numbers, respectively. It is often written in alternative forms such as in Kummer’s
form of the confluent hypergeometric equation (Section 67 in [15]) with b0 = 2(`+ 1)/x− 1
and c0 = (n− `− 1)/x; and as Whittaker’s differential equation (Section 16.1 in [1]) with
b0 = 1, c0 = (−m2 + 1/4)/x2, and m = ` + 1/2. All three equations share the same
canonical form (2) with q0 = n/x− `(`+ 1)/x2 − 1/4 [16].

For c = c0, the above forms produce three distinct families of associated differential
equations having b(x) coefficients (Equation (10))

b =
2

x + C
, (35)

b = 2(`+ 1)/x− 1 + 2 exp(x)/[x2(`+1)(C + Γ(−2`− 1,−x))] , (36)

and

b =
C exp(x) + 1
C exp(x)− 1

, (37)

respectively, where C is an arbitrary constant and Γ(−2`− 1,−x) is the upper incomplete
Gamma function [3]. The coefficient (35) with C = 0 is ubiquitous in mathematical
physics [1,4,9]. On the other hand, we find that, as in Equation (34) above with integer
−ν < 0, the coefficient (36) here is not a real function of x > 0 since −2`− 1 < 0 in the
Gamma function for all quantum numbers ` ≥ 0. Finally, b(x) in Equation (37) (derived
from the original b0 = 1) corresponds to the associated coefficient (26) of a damped
harmonic oscillator derived from an original constant damping of b0 = 2k = 1.

4. Radial Schrödinger Equations in N Dimensions

Here we consider the eigenvalue problem posed by the radial Schrödinger equation
in N dimensions with quantum numbers n ≥ 1 and 0 ≤ ` ≤ n− 1 and radial scale x > 0.
The fundamental N-dimensional equation [17] takes the form (1) with b0 = (N − 1)/x
and c0 = EN

nr`
−V(x)− `(`+ N − 2)/x2, where V is the potential and EN

nr`
is the discrete

spectrum of the eigenvalues with radial quantum numbers nr = n − ` − 1 such that
0 ≤ nr ≤ n− 1.

The corresponding eigenfunctions ψ(x) ∈ L2(R+), ψ(0) = 0, ψ(x) → 0 as x → ∞,
and they have nr radial nodes, not counting the boundary node at x = 0. For N = 3 and
V = −k/x, where k > 0 is a constant, and with the proper normalization of variables,
the main differential equation in [17] reduces to the spherical form discussed at the top of
Section 3.9 above and in [16] for the hydrogen atom. In this transformation, the eigenvalues
(usually denoted by En) are absorbed by the scaling (Section 67 in [15]) and they can be
obtained from En = −1/(2n2) in atomic units (Section 3.9.1 in [18]) or, more commonly,
from En ' −13.6/n2 in electron-volts, where n ≥ 1. (We note that, in the metric system of
units [19], 13.6 eV = 2.18× 10−18 J.)

Our interest in this differential equation stems from the comparison theorems of Hall
and Katatbeh [17] who showed that the eigenvalues and the corresponding eigenstates
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with the same number of radial nodes nr are related across different dimensions because
the associated differential equations share effectively the same canonical form. Using
our formulation, we recover and extend their Theorem 2 that quantifies the degeneracies
between eigenvalues across dimensions N and M 6= N (and within the 1-dimensional case
itself) for the same potential function V(x) and with quantum numbers nr, ` and nr, `′,
respectively. We note that, although nr is taken to be the same in degenerate eigenstates,
their principal quantum numbers may still differ since n depends also on ` [15], viz.

n ≡ nr + `+ 1 (0 ≤ nr, ` ≤ n− 1) . (38)

On the other hand, it is the number of radial nodes that determines the number of
oscillations in the corresponding eigenfunctions, causing thus the appearance of similar
qualitative characteristics in the degenerate eigenstates [16].

4.1. The Case with `′ = 0

For the given b0 and c0 functions, the coefficient of the N-dimensional canonical
form (2) is

q0 = EN
nr`
−V(x)− 1

4x2 [(N − 1)(N − 3) + 4`(`+ N − 2)] . (39)

Degeneracy occurs between these eigenstates with discrete eigenvalues EN
nr`

and the
families of the corresponding eigenstates in M dimensions with eigenvalues EM

nr0 and
canonical coefficients

q = EM
nr0 −V(x)− 1

4x2 (M− 1)(M− 3) , (40)

in which the secondary quantum number is `′ = 0 [17]. The condition q = q0 then results in
two intersecting sets of degenerate solutions with eigenvalues EM

nr0 = EN
nr`

: (i) M = N + 2`
and (ii) M = 4− (N + 2`). Set (ii) is finite (since M ≥ 1 requires that N + 2` ≤ 3 and
M + N ≥ 2 requires that ` ≤ 1) and its elements are also contained in set (i), except for
one particular solution: M = 1 for N = 3 and ` = 0. This solution indicates that in
three-dimensional and in one-dimensional spaces, the corresponding coefficients b0 = 2/x
and b0 = 0 result in the same canonical form for ` = `′ = 0. This occurs because the
s-orbitals effectively respond to the same radial potential V(x) in one and three dimensions.
The same property does not extend to the s-orbitals in two dimensions because the electron
sees a different effective potential, V(x)− 1/(4x2), when we restrict its motion to be on a
plane (Equation (39) with N = 2 and ` = 0).

We note that Equations (39) and (40) allow for more sets of solutions with ` = 2− N
and/or `′ = 2−M for 1 ≤ M, N ≤ 2. These sets are finite and their solutions are included
in the fundamental set (i). We conclude that in the N-dimensional radial Schrödinger
equation, given an eigenstate with eigenvalue EN

nr`
for potential V(x), the degenerate

eigenstates with `′ = 0 are described by the conditions

EN+2`
nr0 = EN

nr`
and E1

nr0 = E3
nr0 , (41)

where the integers N ≥ 1, 0 ≤ nr ≤ n− 1, and 1 ≤ ` ≤ n− 1 (because using ` = 0 for
s-orbitals in the first condition leads to a tautology).

4.2. The Case with c = c0

For c = EM
nr`′
−V(x)− `′(`′ + M− 2)/x2 = c0, the inferred equation

`′(`′ + M− 2) = `(`+ N − 2) , (42)

can be rewritten in the convenient form[
(M + N − 4) + 2

(
`′ + `

)][
(M− N) + 2

(
`′ − `

)]
= (M + N − 4)(M− N) , (43)
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which has three nontrivial solution sets with degenerate eigenvalues EM
nr`′

= EN
nr`

in the
case M + N = 4: (iii) M = 1 for N = 3, `′ = `+ 1 (where `′ ≥ 1); (iv) M = 3 for N = 1,
`′ = `− 1 (where ` ≥ 1); and (v) `′ + ` = 0 and M 6= N (which is identical to the second
condition in Equation (41) obtained in Section 4.1). Sets (iii) and (iv) are equivalent, thus
the degenerate eigenstates with c = c0, M + N = 4, and `′ + ` > 0 are described by
the condition

E1
nr`+1 = E3

nr`
(0 ≤ nr, ` ≤ n− 1) , (44)

that associates the (`+ 1)-orbitals in 1 dimension with the corresponding `-orbitals in three
dimensions and the same number of radial nodes.

Equation (42) also has a solution set (vi) for M = N = 1: In one dimension, we find
that `′ + ` = 1, which gives the degeneracy condition

E1
nr1 = E1

nr0 (0 ≤ nr ≤ n− 1) . (45)

This condition shows that the s- and p-orbitals are degenerate in one dimension, if
they have the same number of radial nodes nr (i.e., if their principal quantum numbers
differ by 1). Finally, combining Equations (44) and (45) and with ` = 0, we infer the second
condition in Equation (41) which also results from set (v) above.

4.3. The General Case for Any c(x) Function

For the same potential function V(x), the degeneracy condition q = q0 in the general
case takes the form

(M− 1)(M− 3) + 4`′(`′ + M− 2) = (N − 1)(N − 3) + 4`(`+ N − 2) , (46)

which can be recast as a quadratic equation for M + 2`′ in terms of N + 2`, viz.(
M + 2`′ − 2

)2
= (N + 2`− 2)2 , (47)

that has two sets of solutions: (I) M + 2`′ = N + 2` and (II) M + 2`′ = 4− (N + 2`).
The two sets are intesecting and the combinations (M ± N) are even integers in all

solutions, just as in the subsets of solutions with `′ = 0 studied in Section 4.1. Similarly here,
set (II) is finite and small in size since its solutions are valid only for 2 ≤ M + N ≤ 4 and
0 ≤ `+ `′ ≤ 1. Sets (I) and (II) include all special cases found in Sections 4.1 and 4.2 above:

(a) From set (II) and for M + N = 2, we recover the solution set (45);
(b) whereas for M + N = 4 in set (II), we recover the second condition (41).
(c) Finally, condition (44) is recovered here from set (I) for N −M = 2;
(d) and the first condition (41) is recovered also from set (I) for `′ = 0.

5. Summary and Discussion

For OSLH differential equations of the form (1), we have determined entire fami-
lies of associated differential Equation (5) of the same form, but with generally differ-
ent coefficients b(x) and/or c(x), that exhibit comparable qualitative properties in their
solutions. All such equations belonging to the same family share the same canonical
form (see Equations (2) and (6)) and their general solutions y(x) differ only by the in-
troduction of exponential factors in Equations (4) and (7), such as those listed in the
exp(−

∫
[b(x)− b0(x)]dx/2) entries of the summarizing Table 1. Given an original well-

studied and widely used differential equation, the methods for determining associated
equations with comparable qualitative properties were described in Section 2, and several
examples known from physics applications were analyzed in Section 3 (c = c0; see also
Table 1) and Section 4 (generally b 6= b0 and c 6= c0 in L2(R+) Hilbert spaces with different
spatial dimensions).

Although one may generally create arbitrarily complicated differential equations
(as in Sections 2.2 and 2.3), we focused here on the “tip of the iceberg,” that is, on the
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multidimensional radial Schrödinger equations of quantum mechanics (Section 4), as well
as on other physically-important OSLH differential equations (Section 3) in which the
y-coefficients of Equations (1) and (5) remain the same (Equation (24)) within each family of
associated equations. In the latter case, the transformations of coefficients b0(x)→ b(x) that
we carried out are not iterative: If the derived function b(x) is used in place of the original
b0(x), then the new derived function is equivalent to the input b(x), that is, repeated
transformations produce the sequence b0 → b→ b and only one general solution b(x).

Example 7. For instance, in the canonical case with b0 = 0 (Section 3.1):

b0 = 0 → b = 2/(x + C) → b = 2/(x + C);

and similarly in the Bessel case with b0 = 1/x (Section 3.4):

b0 = 1/x → b = 1/x + 2/(x ln |Cx|) → b = 1/x + 2/(x ln |Cx|),

where C and C are arbitrary constants.

This property arises from the method of solution of the Riccati Equation (9). For any
choice of the arbitrary constant C = C1, b(x) becomes a particular solution and if it is used
in place of b0(x) in Equation (11), then this equation will produce the same general solution
(10) for b(x) that will contain yet another arbitrary constant C which absorbs both C1 and
the new integration constant C2. In particular, in the two cases of Example 7, we have
C = C1 + C2 and C = C1C2, respectively.

The results listed in Table 1 indicate that b → b0 as C → ±∞, and then the listed
exp(−

∫
[b(x)− b0(x)]dx/2) entries are not applicable; as b→ b0, these exponential factors

tend to 1. On the other hand, for C = 0, the principal solutions b(x) are described mostly
by elementary functions and by three notable special functions (Dawson’s integral Di(x),
the exponential integral E i(x), and the upper incomplete Gamma function Γ(a, x); their
standard definitions are given in [3] and in the notes to Table 1). Because of their appearance
in the corresponding families of associated differential equations, these special functions
have just grown somewhat in importance to mathematical physics. Of the three special
functions appearing in Table 1, E i(x) and Γ(−ν,−x) (for x > 0 and −ν > 0 an even
integer) contain singular points other than the familiar x = 0 in the coefficients b(x)
of the (associated) Laguerre equation for C = 0 (Equations (33) and (34), respectively,
in Section 3.8). In particular, the only root of E i(x) = 0 is x ≈ 0.372507 and it lies in
the domain x > 0 of the Laguerre equation; and the root of Γ(2,−x) = 0 is x = 1
and it lies in the domain x > 0 of the associated Laguerre equation; similarly, the real
roots of Γ(−ν,−x) = 0 for −ν = 4, 6, 8, 10 are x ≈ 1.596072, 2.180607, 2.759003, 3.333551,
respectively.

The coefficients b(x) derived from Equation (10) for c = c0 and listed in Table 1 (one
has to add up the two b-entries in each case) generally describe damping of motion due to
friction ([20], Section 3.4, page 172), or air resistance ([20], Section 2.3, page 93), or other
dissipative processes (e.g., [21], Section 17.9, page 603) in physics applications (unless the
b(x)y′ term is inertial created by the curvature of the coordinate system; see [4]). At present,
there is no general theory of friction or such resisting forces [22]. Then, these new functions
b(x) would potentially represent more complicated and more sophisticated models of
resisting forces acting on the corresponding dynamical systems. Despite their intimidating
look at first sight (owing to the overly complicated b(x)y′ terms), the associated differential
equations of the various families are quite easily mathematically tractable, provided that
the original models involving simpler damping terms of the form b0(x)y′0 in Equation (1)
are already well-studied and their qualitative properties are fully understood.
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