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Abstract: The aim of this paper is to explain for broad audience the author’s result concerning the
Navier–Stokes problem (NSP) in R3 without boundaries. It is proved that the NSP is contradictory in
the following sense: if one assumes that the initial data v(x, 0) 6≡ 0, ∇ · v(x, 0) = 0 and the solution
to the NSP exists for all t ≥ 0, then one proves that the solution v(x, t) to the NSP has the property
v(x, 0) = 0. This paradox shows that the NSP is not a correct description of the fluid mechanics
problem and the NSP does not have a solution. In the exceptional case, when the data are equal to
zero, the solution v(x, t) to the NSP exists for all t ≥ 0 and is equal to zero, v(x, t) ≡ 0. Thus, one of
the millennium problems is solved.
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1. Introduction

The results of this paper are proved in detail in the monograph [1]. In the author’s
papers, listed in the References (see [2–5]), some preliminary results are obtained. In
paper [6] some of the results are summarized. These results are stated in the abstract.
The aim of this paper is to explain for broad audience the author’s result concerning the
Navier–Stokes problem (NSP) in R3 without boundaries. The result, proven in detail in the
book [1], can now be stated:

If the exterior force f (x, t) = 0, the initial velocity v0(x) := v(x, 0) 6≡ 0, ∇ · v0(x) = 0 and
the solution v(x, t) of the NSP exists for all t ≥ 0, then v0(x) = 0.

This result, that we call the NSP paradox (or just paradox), shows that
The NSP is not a correct statement of the problem of motion of viscous incompressible fluid. The

NSP is neither physically nor mathematically correct statement of the dynamics of incompressible
viscous fluid.

Let us explain the steps of our proof. The NSP consists of solving the equations:

v′ + (v,∇)v = −∇p + ν∆vs. + f , x ∈ R3, t ≥ 0, ∇ · v = 0, v(x, 0) = v0(x), (1)

see, for example, books [1,7]. Here v = v(x, t) is the velocity of incompressible viscous
fluid, p = p(x, t) is the pressure, f = f (x, t) is the exterior force, ν = const > 0 is the
viscoucity coefficient, v0 = v0(x) is the initial velocity, ∇ · v0 = 0. The data v0 and f are
given, the v and p are to be found. The fluid’s density ρ = 1.

(a) First we reduce the NSP to an equivalent integral equation.

v(x, t) = F−
∫ t

0
ds
∫
R3

G(x− y, t− s)(v,∇)vdy, (2)

where F = F(x, t) depends only on the data f and v0, see [1]. We assume that f = 0. This
is done for simplicity only. Under this assumption one has (see [1]):

F(x, t) :=
∫
R3

g(x− y, t)v0(y)dy, (3)
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where

g(x, t) =
e−
|x|2
4νt

(4νπt)3/2 , t > 0; g(x, t) = 0, t ≤ 0. (4)

The tensor G = G(x, t) = Gjm(x, t) is calculated explicitly in [1]:

G(x, t) = (2π)−3
∫
R3

eiξ·x
(

δpm −
ξpξm

ξ2

)
e−νξ2tdξ. (5)

Let us define the Fourier transform:

ṽ := ṽ(ξ, t) := (2π)−3
∫
R3

v(x, t)e−iξ·xdx. (6)

Take the Fourier transform of Equation (2) and get the integral equation:

ṽ(ξ, t) = F̃(ξ, t)−
∫ t

0
dsG̃(ξ, t− s)ṽF(iξṽ), (7)

where F denotes the convolution in R3. The following inequality, that follows from the
Cauchy inequality, is useful:

|ṽF(iξṽ)| ≤ ‖ṽ‖‖|ξ|ṽ‖. (8)

One proves a priori estimate (see [1]):

sup
t≥0
‖ṽ‖ < c. (9)

By c here and throughout the paper various positive constants, independent of t,
are denoted. We denote by c1 := |Γ(− 1

4 )| > 0 the special constant from Equation (27),
see below.

Let us prove inequality (9).

We denote vj,m :=
∂vj
∂xm

,
∫

:=
∫
R3 , write Equation (1) as

v′j + vmvj,m = f j − p,j + νv,jj, vj,j = 0, (10)

where over the repeated indices summation is understood, 1 ≤ j ≤ 3. We assume that
v = v(x, t) is real-valued and

‖v0‖+
∫ ∞

0
‖ f (x, t)‖dt < c. (11)

Here ‖ · ‖ is L2(R3) norm.
Multiply Equation (10) by vj, integrate over R3 and sum up over j to get

1
2
(‖v‖2),t ≤ |( f , v)| ≤ ‖ f ‖‖v‖, (12)

where z,t := ∂z
∂t . In deriving inequality (12) we have used integration by parts: −

∫
p,jvjdx =∫

pvj,jdx = 0,
∫

νv,jjvjdx = −ν
∫

v,jv,jdx ≤ 0 and
∫

vmvj,mvjdx = − 1
2

∫
vm,mvjvjdx = 0.

From inequality (12) it follows that ‖v‖,t ≤ ‖ f ‖. Consequently,

‖v‖ ≤ ‖v0‖+
∫ ∞

0
‖ f ‖dt.

This and our assumption (11) imply estimate supt≥0 ‖v‖. By Parseval equality the
desired estimate (9) follows. Estimate (9) is proved.
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Inequalities (8) and (9) imply

|ṽF(iξṽ)| ≤ c‖|ξ|ṽ‖. (13)

Therefore, Equation (7) implies inequality (22), see below.
From (5) it follows that

|G̃(ξ, t− s)| ≤ ce−ν(t−s)ξ2
, (14)

because |
(

δpm −
ξpξm

ξ2

)
| < c.

(b) Secondly, we prove that any solution to Equation (7) satisfies integral inequal-
ity (15), see below. The integral in this inequality is a convolution with the kernel that is
hyper-singular; this integral diverges classically, that is, from the classical point of view.
This inequality is derived in Section 2 (see also [1]):

b(t) ≤ b0(t) + c
∫ t

0
(t− s)−

5
4 b(s)ds, (15)

where
b0(t) := ‖|ξ|F̃‖, b(t) := ‖|ξ|ṽ‖ ≥ 0. (16)

The norm here and below is L2(R3) norm. Since the convolution integral in (15)
diverges classically, we give a new definition to this integral in Section 3 and estimate the
solution b(t) to integral inequality (15) by the solution q(t) to an integral equation with the
same hyper-singular kernel:

q(t) = b0(t) + c
∫ t

0
(t− s)−

5
4 q(s)ds. (17)

Namely, we prove the following inequality

b(t) ≤ q(t). (18)

The term b0(t) depends on the data only (on v0 since we assume f = 0) and we may
assume that b0(t) is smooth and rapidly decaying as t→ ∞.

(c) We prove a priori estimate

sup
t≥0

(‖∇v‖+ ‖v‖) < c, (19)

part of which is inequality (9). One has

(2π)3/2‖ṽ‖ = ‖v‖, (2π)3‖|ξ|ṽ‖2 = ‖∇v‖2, (20)

by the Parseval equality. We prove that Equation (17) has a solution in the space C(R+),
supt≥0 q(t) < c, provided that the data v0(x) is smooth and rapidly decaying at infinity.
Moreover, this solution is unique and

q(0) = 0. (21)

(d) We prove that any solution b(t) ≥ 0 of inequality (15) with b0(t) a smooth rapidly
decaying function satisfies inequality (18). Since q(0) = 0 and 0 ≤ b(t) ≤ q(t) it follows
that b(0) = 0. This yields the NSP paradox mentioned at the beginning of this section.
Indeed, the initial data v0(x) 6≡ 0, so b(0) > 0 and we prove that b(0) = 0.

The NSP paradox impies the conclusions we have made:
The NSP is physically not a correct description of motion of incompressible viscous fluid in R3

and the NSP does not have a solution on the interval [0, ∞) unless the data are equal to zero. In this
case the solution to the NSP does exist on the whole inteval [0, ∞) and is identically equal to zero.
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The uniqueness of the solution to NSP is proved in Section 4, see Theorem 3.

2. Derivation of the Integral Inequality

Take the absolute value of both sides of Equation (7), then use inequalities (9) and (14)
to get

u ≤ µ + c
∫ t

0
e−ν(t−s)ξ2‖u‖‖|ξ|u‖ds ≤ µ + c

∫ t

0
e−ν(t−s)ξ2

b(s)ds, b(s) := ‖|ξ|u‖, (22)

where the Parseval formula (2π)3/2‖ṽ‖ = ‖v‖ < c was used, and we denoted

|ṽ(ξ, t)| := u, |F̃| := µ(ξ, t) := µ. (23)

In this paper, by c various constants, independent of t, are denoted. Multiply in-
equality (22) by |ξ|, take the norm ‖ · ‖ of both sides of the resulting inequality and get
inequality (15). In this calculation one uses the formulas

‖e−ν(t−s)ξ2‖ = c
(t− s)3/4 , ‖|ξ|e−ν(t−s)ξ2‖ = c

(t− s)5/4 , 0 ≤ s < t, (24)

which are easy to derive. The c are different in these formulas.
To study integral Equation (17) and integral inequality (15) we need to define the

hyper-singular integral in this equation.
To do this, one needs some auxiliary material.
Let us define the function

Φλ :=
tλ−1

Γ(λ)
, (25)

where Γ(λ) is the gamma function. Here and throughout t = t+, that is, t = 0 for t < 0,
t := t for t ≥ 0. It is known (see [8] ) that Γ(λ) is an analytic function of λ ∈ C except
for the points λ = 0,−1,−2, ...., at which it has simple poles. The function 1

Γ(λ) is entire
function of λ.

Consider the convolution operator

Φλ ? b :=
∫ t

0
Φλ(t− s)b(s)ds. (26)

One has ∫ t

0
(t− s)−

5
4 b(s)ds = Γ(−1

4
)Φ− 1

4
? b = −c1Φ− 1

4
? b,

where ? denotes the convolution on R+ and c1 := |Γ(− 1
4 )|. Inequality (15) can be written as

b(t) ≤ b0(t)− cc1Φ− 1
4
? b. (27)

Consider also the corresponding integral equation:

q(t) = b0(t)− cc1Φ− 1
4
? q. (28)

3. Investigation of Integral Equations and Inequalities with Hyper-Singular Kernel

In this section, we solve Equation (28) analytically and prove estimate (18). First, let
us define the hyper-singular integral ψ := Φλ ? q. We are especially interested in the value
λ = − 1

4 because it appears in Equation (28). For λ > 0 the convolution Φλ ? q is defined
classically for q ∈ L2(R+) and one has L(ψ) = L(q)p−λ, where L is the Laplace transform
operator defined as

Q(p) := L(q) :=
∫ ∞

0
e−ptq(t)dt, (29)
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which is analytic in the region Rep > 0 if q ∈ L2(R+). If q(t)e−at ∈ L2(R+) and a =
const > 0, then L(q) is an analytic function of p in the region Rep > a. The Laplace
transform is injective on any domain of its definition. Therefore the inverse operator L−1 is
well defined on the range of L. The inversion formula is known:

q(t) := L−1L(q) :=
1

2πi

∫
Cσ

eptL(q)dp, (30)

where Cσ is the straight line σ = const > a, p = σ + iω, ω changes from −∞ to ∞ and L(q)
is a function of p. In Appendix 3 of [1] one finds information on the Laplace transform
used in this paper. In particular, the following Lemmas 1–3 will be used. Their proofs can
be found in Appendix 3 of [1].

Lemma 1. If Q(p) is analytic in the region Rep > 0 and

|Q(p)| < c(1 + |p|)−b, b > 1/2, |p| � 1, Re p > 0, (31)

then q(t) = 1
2π

∫ ∞
−∞ eiωtQ(iω)dω, q(t) ∈ L2(R+) and L(q) = Q(p).

In Lemma 1 sufficient conditions are given for a function, analytic in the region Rep > 0 to be
the Laplace transform of an L2(R+) function.

Lemma 2. Let the assumptions of Lemma 1 hold with b > 1. Then q(0) = 0.

Lemma 3. One has
L(Φλ ? q) = L(q)p−λ. (32)

Here we have used the known result (see [1] or [9]):

L(Φλ) = p−λ, (33)

and the known formula
L(Φλ ? q) = L(Φλ)L(q). (34)

For λ > 0 and q smooth and decaying at infinity this formula can be understood
classically. For λ < 0 it is defined by the analytic continuation with respect to λ ∈ C
where L(Φλ) is given in formula (33). Formula (33) is valid for all λ ∈ C by the analytic
continuation from the region Reλ > 0, where it is valid classically.

Let us define convolution ψ := Φλ ? q by the formula:

ψ(t) := L−1(L(q)p−λ). (35)

The expression under the sign L−1 is an entire function of λ. For λ > 0 the ψ(t) is well
defined classically if q ∈ C(R+) ∩ L2(R+). The function L(ψ) admits analytic continuation
with respect to λ to the whole complex plane C. Therefore, the convolution ψ is defined
for all λ ∈ C. We are especially interested in the value λ = − 1

4 because it appears in
Equation (27).

To illustrate the argument with analytic continuation, consider a simple example:∫ ∞

0
tz−1e−ptdt =

∫ ∞

0
sz−1e−sdsp−z = Γ(z)p−z, (36)

where s = pt. Formula (36) is valid classically for Rez > 0, but remains valid for all z ∈ C,
z 6= 0,−1,−2, . . . . . ., by the analytic continuation with respect to z because Γ(z) is analytic
for z ∈ C, z 6= 0,−1,−2, . . . . . ., and p−z is an entire function of z. Formula (33) follows
from (36) immediately: just divide both sides of (36) by Γ(z). The integral (36) diverges
classically for Rez ≤ 0, but formula (36) is valid by analytic continuation for all z ∈ C
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except for z 6= 0,−1,−2, . . . . . .. In [10], a regularization method is described for defining
divergent integrals. By this method one writes

∫ ∞

0
sz−1e−sds =

∫ 1

0
sz−1(e−s − 1− s)ds +

∫ ∞

1
sz−1e−sds + (

sz

z
+ 0.5

sz+1

z + 1
)|10, (37)

and uses analytic continuation with respect to z. The third term of the right side of
Equation (37) for Rez > 0 can be written as 1

z + 0.5 1
z+1 . The first integral on the right side

of (37) is analytic with respect to z in the region Rez > −2, the second integral is also
analytic with respect to z in this region and the third term, 1

z + 0.5 1
z+1 , admits analytic

continuation with respect to z from the region Rez > 0 to the complex plane C except
for the points z = 0 and z = −1. Thus, the right side of Equation (37) admits analytic
continuation with respect to z to the region Rez > −2, except for the points z = 0 and
z = −1 at which it has simple poles. So, this right side is well defined at z = − 1

4 .
However, the right side of (37) is much less convenient than Γ(z), the expression we

use. If one deals with the integral Φλ ? q, then the advantage of our definition, based on
the Laplace transform, is even greater because the three terms, analogous to the terms on
the right side of Equation (37), will depend on p and on z and there is no separation of
z-dependence similar to the one we have in Equation (36). Furthermore, these three terms
are not all the Laplace transforms. Consequently, it is wrong to use the regularization
procedure from [10] in our problem.

Lemma 4. One has
Φλ ? Φµ = Φλ+µ. (38)

for any λ, µ ∈ C. If λ + µ = 0 then
Φ0(t) = δ(t), (39)

where δ(t) is the Dirac distribution.

Proof. By formulas (32) and (33) one gets

L(Φλ ? Φµ) =
1

pλ+µ
. (40)

By formula (33) one has

L−1
( 1

pλ+µ

)
= Φλ+µ. (41)

This proves formula (38).
If λ + µ = 0 then

p−(λ+µ) = 1, L−11 = δ(t). (42)

This proves formula (39).
Lemma 4 is proved. 2

This proof is taken from [1].
Our plan is to prove that Equation (28) has a solution q(t) ∈ C(R+) provided that

b0(t) is smooth and rapidly decaying as t→ ∞. Moreover, this solution is unique in C(R+)
and q(0) = 0. Any solution b(t) ≥ 0 to inequality (27) satisfies the relation b(t) ≤ q(t).

In particular, b(0) = 0. This is the NSP paradox because a priori b(0) 6= 0.
To realize this plan, let us investigate Equation (28). First, let us apply to (28) the

operator Φ1/4? and use Lemma 4 to get

Φ1/4 ? q = Φ1/4 ? b0 − cc1q. (43)
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This implies

q = c3(Φ1/4 ? b0 −Φ1/4 ? q), c3 := (cc1)
−1, c3 > 0. (44)

Take the Laplace transform of (44) to get

L(q) = c3L(b0)p−
1
4 − c3L(q)p−

1
4 . (45)

Therefore

L(q) =
c3L(b0)

p1/4 + c3
. (46)

The function p1/4 := |p|eiφ is analytic function of p in the region −π/2 ≤ φ ≤ π/2,
where φ is the argument of p. One can check that the function 1

p1/4+c3
, c3 > 0, is an analytic

function of p in the region Rep > 0 and is bounded in this region. To check this, denote
r := |p| and write

|reiφ/4 + c3|2 = r2 + 2rc3 cos(φ/4) + c2
3 ≥ c2

3(1− cos2(φ/4)) + (r cos(φ/4) + c3)
2 > c > 0.

This inequality is valid for all −π/2 ≤ φ ≤ π/2. The function L(b0) is also analytic
in this region. Therefore, the function L(q) in formula (46) is analytic in this region. We
assumed that b0(t) is smooth and rapidly decaying as t→ ∞. Thus, L(b0) is analytic in the
region Rep > 0 and

|L(b0)| < c(1 + |p|)−1, Re p > 0, |p| � 1. (47)

Therefore, L(q) is analytic in the region Rep > 0 and

|L(q)| < c(1 + |p|)−
5
4 , Re p > 0, |p| � 1. (48)

By Lemma 1, the function L(q) is the Laplace transform of the function q(t) ∈ C(R+)
and q(0) = 0. We have proved the following result.

Theorem 1. Assume that v0(x) is smooth and rapidly decaying as |x| → ∞, f (x, t) = 0 and
x ∈ R3. Then estimate (48) holds, Equation (28) is solvable in C(R+), its solution q(t) is unique
in this space and q(0) = 0.

Let us now prove that b(t) ≤ q(t), where b(t) ≥ 0 solves inequality (27).

Theorem 2. Any solution b(t) ≥ 0 of inequality (27) satisfies the inequality b(t) ≤ q(t).

Proof of Theorem 2 requires the following lemma.

Lemma 5. The operator A f :=
∫ t

0 (t − s)a f (s)ds in the space X := C(0, T) for any fixed
T ∈ [0, ∞) and a > −1 has spectral radius r(A) equal to zero. The equation f = A f + g is
uniquely solvable in X. Its solution can be obtained by iterations

fn+1 = A fn + g, f0 = g; lim
n→∞

fn = f , f =
∞

∑
j=0

Ajg, (49)

for any g ∈ X and the convergence holds in X.

Proof. The spectral radius of a linear operator A is defined by the formula

r(A) = lim
n→∞

‖An‖1/n.



Axioms 2021, 10, 95 8 of 9

By induction one proves that

|An f | ≤ tn(p+1) Γn(p + 1)
Γ(n(p + 1) + 1)

‖ f ‖X , n ≥ 1. (50)

From this formula and the known asymptotic of the gamma function Γ(z) for z→ ∞
(see [8]) the conclusion r(A) = 0 follows. If r(A) = 0 then the solution to equation
f = A f + g is unique and can be calculated by the iterative process (49).

This proof is taken from [1] where more details are provided.
Lemma 5 is proved. 2

By Lemma 5 the solution to Equation (44) can be obtained as

q =
∞

∑
j=0

(−c3Φ1/4?)
jc3Φ1/4 ? b0, (51)

and any solution to inequality (27) satisfies the inequality

b ≤
∞

∑
j=0

(−c3Φ1/4?)
jc3Φ1/4 ? b0, (52)

which is checked by iterations.

Proof of Theorem 2. From (51) and (52) the inequality b(t) ≤ q(t) follows.
Theorem 2 is proved. 2

It follows from Theorems 1 and 2 that supt≥0 q(t) < c, b(t) ≤ q(t). This and the
Parseval equality implies supt≥0 ‖∇ · v‖ < c. Together with the estimate (9) this proves
the a priori estimate (19). So, solutions to Equation (7) belong to W1

2 (R3)× C(R+), where
W1

2 (R3) is the Sobolev space.

4. Uniqueness of the Solution to the NSP

Theorem 3. There is no more than one solution to the NSP in the space W1
2 (R3)× C(R+).

Proof. Let there be two solutions ṽ and w̃ to (7) and z := ṽ− w̃. Then, subtracting from
the first equation the second, one gets:

z = −
∫ t

0
dsG̃(ξ, t− s)

(
zF(iξṽ) + w̃F(iξz)

)
. (53)

Using estimate (13) and (19), one obtains from (53) the following inequality:

|z| ≤ c
∫ t

0
e−ν(t−s)ξ2

η(s)ds, η := ‖z‖+ ‖|ξ|z‖. (54)

From (54), taking the norm ‖ · ‖ and using (24), one obtains:

‖z‖ ≤ c
∫ t

0
(t− s)−

3
4 η(s)ds. (55)

Multiply (54) by |ξ| and take the norm ‖ · ‖. One gets:

‖|ξ|z‖ ≤ c
∫ t

0
(t− s)−

5
4 η(s)ds. (56)

Taking the Laplace transform of (55) and of (56) and summing the results yields:

L(η) ≤ c
(

Γ(−1
4
)p

1
4 + p−

1
4 Γ(1/4)

)
L(η) = c

(
−c1 p

1
4 + p−

1
4 Γ(1/4)

)
L(η), c1 > 0. (57)
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Since L(η) ≥ 0, one concludes that 1 ≤ c(−c1 p
1
4 + p−

1
4 Γ(1/4)). If L(η) 6≡ 0, then

one has a contradiction: take p → +∞, then the above inequality yields 1 ≤ −∞. This
contradiction proves that L(η) = 0, so z = 0. Theorem 3 is proved. 2

Theorem 3 is not used in the derivation of our basic conclusions. This theorem is new.
Earlier uniqueness theorems were proved under different assumptions on the spaces to
which the solution to the NSP belongs, see [2,11].

5. Conclusions

From Theorems 1 and 2 the NSP paradox follows. From the NSP paradox we conclude
that the NSP is physically and mathematically contradictive and is not a correct description
of the dynamics of incompressible viscous fluid.

Thus, one of the millennium problems is solved.
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