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Abstract: For r ≥ 2 and a ≥ 1 integers, let (t(r,a)
n )n≥1 be the sequence of the (r, a)-generalized

Fibonacci numbers which is defined by the recurrence t(r,a)
n = t(r,a)

n−1 + · · ·+ t(r,a)
n−r for n > r, with initial

values t(r,a)
i = 1, for all i ∈ [1, r− 1] and t(r,a)

r = a. In this paper, we shall prove (in particular) that,
for any given r ≥ 2, there exists a positive proportion of positive integers which can not be written as
t(r,a)
n for any (n, a) ∈ Z≥r+2 ×Z≥1.
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1. Introduction

We start by recalling that if A is a set of positive integers, the natural density of A,
denoted by δ(A), is the following limit (if it exists)

δ(A) := lim
x→∞

#A(x)
x

,

where, A(x) := A ∩ [1, x], for x > 0 (also lim infx→∞ #A(x)/x and lim supx→∞ #A(x)/x
are called lower density and upper density, respectively). For example, if F := (Fn)n≥0
is the Fibonacci sequence, one has that F (x) ≤ (log x)/(log φ), where φ = (1 +

√
5)/2.

In particular, the natural density of Fibonacci numbers is zero and, so, almost all positive
integers are non-Fibonacci numbers (i.e., δ(Z>0\F ) = 1). Clearly, this is not a surprising
fact, given the exponential nature of Fibonacci sequence. We refer the reader to the classical
work of Niven [1] (and references therein) for more details about natural (and asymptotic)
density (see also books [2,3] and papers [4–8] for more recent results).

It is especially interesting that the some kind of “combinations” of zero density sets
may have positive density. For instance, the set of powers of two and the set of prime
numbers have zero density but, in 1934, a classical result of Romanov [9] implied that the
set of positive integers which are not of the form p + 2k, for some p prime and k ≥ 0, has
upper density smaller than one.

It is also possible to study the density of a set in some prescribed subset of Z≥1. More
precisely, let A and B be elements of P(Z≥1) (the power set of Z≥1, i.e., the set of all subsets
of positive integers), we name δB(A) the B-density of A, as the limit (if it exists)

δB(A) := lim
x→∞

#AB(x)
x

,

where, AB(x) := {m ≤ x : bm ∈ A} (for x > 0) and B := {b1, b2, . . .} (with bi < bi+1).
By convention δ∅(A) = 0 and note that δZ≥1 : P(Z≥1)→ [0, 1] is the standard natural density.

As any very well-studied object in mathematics, the Fibonacci sequence possesses
many kinds of generalizations (see, e.g., [10–14]). One of the most well-known generaliza-
tion is probably the sequence of generalized Fibonacci numbers of order r, denoted by (t(r)n )n≥0,
which is defined by the rth order recurrence

t(r)n = t(r)n−1 + · · ·+ t(r)n−r
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with initial conditions t(r)0 = 0 and t(r)i = 1, for i ∈ [1, r − 1]. For r = 2, we have the
sequence of Fibonacci numbers, for r = 3, we have the Tribonacci numbers and so on.
For recent results on this sequence, we cite [15] and its annotated bibliography.

Here we are interested in a related generalization. More precisely, let r ≥ 2 and a ≥ 0
be integers. The (r, a)-generalized Fibonacci sequence (t(r,a)

n )n≥1 is defined by

t(r,a)
n =


1, if 1 ≤ n ≤ r− 1;
a, if n = r;

∑r
i=1 t(r,a)

n−i , if n ≥ r + 1.

Note that (t(r)n )n≥1 = (t(r,r−1)
n )n≥1. For our purpose, we consider the previous se-

quence only after its (r + 1)th term, i.e., we denote Tr,a := (t(r,a)
n )n>r+1. As before, by its

exponential nature, it holds that δ(Tr,a) = 0. Now, we turn or attention to the a specific
“combination” of these sets, namely, their union. Thus, the following question arises: Are
there infinitely many positive integers which do not belong to Tr = ∪a≥1Tr,a? If so, does
this “exception set” represent a positive proportion (i.e., with positive natural density) of
the positive integers?

In this paper, we answer (positively) this question by proving a more general result.
More precisely,

Theorem 1. Let r ≥ 2 be an integer. Then there exists B ∈ P(Z≥1) (depending only on r) with

δ(B) = 1
2r−1(2r − 1)

such that
δB(Tr) <

1
αr

r(αr − 1)
, (1)

where αr is the only positive real root of xr − xr−1− · · · − x− 1. In particular, for any r ≥ 2, there
exists a positive proportion of positive integers which do not belong to Tr,a, for all a ∈ Z≥1.

Remark 1. Table 1 shows that the upper bound for δB(Tr) provided in the Theorem 1, say ur,
decreases significantly as r grows.

Table 1. The upper bound for δB(Tr).

r 2 3 4 5 6 7 8 9 10

ur 0.6180 0.1914 0.0781 0.0352 0.0166 0.0081 0.0039 0.0019 0.0009

We organize this paper as follows. In Section 2, we will present some helpful properties
of the sequence (t(r,a)

n )n. The third section is devoted to the proof of Theorem 1.

2. Auxiliary Results

Before proceeding further, we shall present some useful tools related to the previ-
ous sequences.

The characteristic polynomial of the sequence (t(r,a)
n )n is ψr(x) = xr − xr−1 − · · · −

x− 1 which has only one root outside the unit circle, say αr, which is located in the interval
(2(1− 2−r), 2) (see [16]). Throughout this work, in order to simplify the notations, we shall
write α for αr and for integers a < b, we write [a, b] for {a, a + 1, . . . , b}.

In 2018, Young [17] (p. 3) found a closed formula for t(r)n in the range n ∈ [r + 1, 2r],
namely,

t(r)r+i = 2i−1(2r− 3) + 1,
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for all i ∈ [1, r]. The next result generalizes this fact for (t(r,a)
n )n:

Lemma 1. The identity

t(r,a)
r+i = 2i−1(r + a− 2) + 1

holds for all i ∈ [1, r].

Proof. To prove this identity, we shall use (finite) induction on i ∈ [1, r]. For the basis case
i = 1, since t(r,a)

r = a, one has that

t(r,a)
r+1 = a + 1 + · · ·+ 1︸ ︷︷ ︸

r−1

= a + r− 1 = 21−1(r + a− 2) + 1.

Suppose (by the induction hypothesis) that t(r,a)
r+i = 2i−1(r + a − 2) + 1, for some i ∈

[1, r− 1]. Then

t(r,a)
r+i+1 = t(r,a)

r+i + t(r,a)
r+i−1 + · · ·+ t(r,a)

i+1 = 2t(r,a)
r+i − t(r,a)

i

= 2 · (2i−1(r + a− 2))− 1

= 2i(r + a− 2) + 1

which completes the induction process.

Before stating the next lemma, we recall that the sequence of k-bonacci numbers (or
k-generalized Fibonacci numbers) (F(r)

n )n≥−(r−2), is the kth order linear recurrence which

satisfies the same recurrence as (t(r,a)
n )n≥1, namely,

F(r)
n = F(r)

n−1 + · · ·+ F(r)
n−r,

but with r initial values 0, . . . , 0, 1 = F(r)
1 (see, e.g., [18,19]).

The third lemma relates the sequences (t(r,a)
n )n and (F(r)

n )n. Specifically, we have

Lemma 2. If n ≥ r, then

t(r,a)
n = aF(r)

n−r+1 + t(r,0)
n .

Proof. Define the sequence (Xn)n≥r, by

Xn := aF(r)
n−r+1 + t(r,0)

n .

Therefore, we want to prove that Xn = t(r,a)
n , for all n ≥ r. For that, first observe that

Xn = aF(r)
n−r+1 + t(r,0)

n

Xn+1 = aF(r)
n−r+2 + t(r,0)

n+1

Xn+2 = aF(r)
n−r+3 + t(r,0)

n+2

...

Xn+r−1 = aF(r)
n + t(r,0)

n+r−1.

By summing up all previous equalities, we obtain that
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Xn+r−1 + Xn+r−2 + · · ·+ Xn = a
r

∑
j=1

F(r)
n−r+j +

r−1

∑
j=0

t(r,0)
n+j

= aF(r)
n+1 + t(r,0)

n+r

= Xn+r.

Therefore, (Xn)n and (t(r,a)
n )n satisfy the same r-order recurrence relation. Now,

it suffices to prove that t(r,a)
r+i = Xr+i, for all i ∈ [0, r − 1]. For i = 0, we have Xr =

aF(r)
1 + t(r,0)

0 = a = t(r,a)
r . In the case i ∈ [1, r− 1], one has

Xr+i = aF(r)
i+1 + t(r,0)

r+i = a · 2i−1 + 2i−1(r− 2) + 1 = 2i−1(a + r− 2) + 1,

where we used Lemma 1 together with the well-known fact that F(r)
n = 2n−2, if n ∈ [2, r+ 1].

The following lower bound for F(r)
n , which is due to Bravo and Luca [20], is the last

useful ingredient.

Lemma 3. We have that

F(r)
n ≥ αn−2

holds for all n ≥ 1.

Now we are ready to deal with the proof.

3. The Proof of the Theorem 1

First, let us denote S (r)n by

S (r)n := {aF(r)
n−r+1 + t(r,0)

n : a ∈ Z≥1}.

From Lemma 2, we have that

Tr =
⋃

n≥r+2
S (r)n .

Consider B := ArZ≥1, where Ar := 2r−1(2r − 1). Note that the natural density of B is
1/Ar, i.e.,

δ(B) = 1
2r−1(2r − 1)

.

We also define Tr,n(x) := {m ≤ x : Arm ∈ S (r)n } and then

(Tr)B(x) := {m ≤ x : Arm ∈ Tr} =
⋃

n≥r+2
Tr,n(x).

Thus
#(Tr)B(x) ≤ ∑

n≥r+2
#(Tr,n(x)). (2)

Now, we claim that

Tr,r+2(x) = Tr,r+3(x) = · · · = Tr,2r(x) = Tr,2r+1(x) = ∅.
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In fact, aiming for a contradiction, suppose the contrary, then there exists m ≤ x such
that Arm ∈ S (r)r+i for at least one i ∈ [2, r + 1] and so at least one of the following relations
is true

Arm = aF(r)
3 + t(r,0)

r+2

Arm = aF(r)
4 + t(r,0)

r+3

Arm = aF(r)
5 + t(r,0)

r+4

... (3)

Arm = aF(r)
r+1 + t(r,0)

2r

Arm = aF(r)
r+2 + t(r,0)

2r+1.

However, if some of the previous equalities (except equality (3)) holds (since F(r)
i | Ar,

for all i ∈ [3, r + 1]), we would arrive at the absurdity that F(r)
i = 2i−2 > 1 divides

t(r,0)
r+i−1 = 2i−2(r− 2) + 1 (see Lemma 1), for some i ∈ [3, r + 1].

It is well-known that F(r)
r+2 = 2r − 1 (which also divides Ar), thus, for the case in

which (3) holds, one has that F(r)
r+2 should divide t(r,0)

2r+1 = 2t(r,0)
2r = 2r(r − 2) + 2. Since

2r(r− 2) + 2 = (2r − 1)(r− 2) + r, then 2r − 1 | r which is an absurd (since 22 − 1 - 2 and
2r − 1 > r, for all r ≥ 3). In conclusion, Tr,r+i(x) is the empty set, for all i ∈ [2, r + 1].

Going back to (2), one infers that

#(Tr)B(x) ≤ ∑
n≥2r+2

#(Tr,n(x))

and so

#(Tr)B(x)
x

≤ ∑
n≥2r+2

#(Tr,n(x))
x

.

However,

#(Tr,n(x))
x

≤
#{a ≥ 1 : aF(r)

n−r+1 + t(r,0)
n ≤ x}

x
≤

(x− t(r,0)
n )/F(r)

n−r+1
x

<
1

F(r)
n−r+1

and hence

#(Tr)B(x)
x

< ∑
n≥2r+2

1

F(r)
n−r+1

≤ ∑
n≥2r+2

1
αn−r−1

=
1

αr+1

(
1 +

1
α
+

1
α2 + · · ·

)
=

1
αr(α− 1)

,

where we used Lemma 3. Since

δB(Tr) = lim
x→∞

#(Tr)B(x)
x

,

we then have

δB(Tr) ≤
1

αr(α− 1)

as desired. The proof is complete.
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4. Conclusions

In this paper, we study the natural density of some sets related to recurrence sequences.
More precisely, for r ≥ 2 and a ≥ 1 integers, let (t(r,a)

n )n≥0 be the sequence of the (r, a)-
generalized Fibonacci numbers which is defined by the recurrence t(r,a)

n = t(r,a)
n−1 + · · ·+ t(r,a)

n−r

for n ≥ r + 1, with initial values t(r,a)
i = 1, for all i ∈ [1, r− 1] and t(r,a)

r = a. This family
contains many well-known sequences such as the Fibonacci, k-Fibonacci, r-Fibonacci,
Tribonacci etc. The main result here is that for any r ∈ Z≥2, it is possible to find a set
B (depending only on r) with positive density and such that the portion of terms of(

t(r,a)
n

)
n≥r+2

belonging to B is smaller than one (the novelty here is that this particular

union of zero density sets will have positive density). In particular, there exist infinitely
many positive integers which are not of the form t(r,a)

n , for all n ≥ r + 2 and a ≥ 1.
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