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1. Introduction

After the apparition of the quantum Yang–Baxter equation in theoretical physics ([1])
and statistical mechanics ([2,3]), it also became important in quantum groups, knot theory,
the quantization of integrable non-linear evolution systems, etc. (see, for example, [4–7]).
However, it is “generally believed that the Yang–Baxter equation is a fundamental
mathematical structure that will have even more relevance in future developments” (cf. [8]).
The focus of the current paper is on various types of Yang–Baxter equations, and its origins
are in an unpublished preprint and a series of short articles. The parameter-dependent
Yang–Baxter equations are very important in mathematical physics, and, in this paper, we
will adapt some constructions of solutions for them for solving for the braid condition.

In the next section, we present the colored Yang–Baxter equation. We propose the
problem of finding algorithms for solving the system of Equations (5)–(9). Solutions for
that system will lead to new solutions for a spectral-dependent Yang–Baxter equation. We
present a new family of solutions for that system, and we hope that other solutions will
be found by computational methods. Section 3 surveys recent results (see [9]) on classical
means inequalities, and it presents new inequalities and interpretations. In Section 4, we
explain that the new colored Yang–Baxter operator (10) is related to the Euler formula.
Furthermore, by employing previous techniques, we obtain new solutions for the braid
condition: the operators R1, R2, R3, and R4.

In 1992, Drinfeld formulated a number of problems in quantum group theory. He
suggested considering “set-theoretical” solutions to the quantum Yang–Baxter equation.
This problem attracts many beautiful minds, and the progress in solving it is significant
(see [10–14]). Reference [12] studies the Yang–Baxter and pentagon equations applicable in
mathematical physics. The objective of this research consists of studying how the solutions
of the pentagon equation are a useful approach for obtaining new solutions of the Yang–
Baxter equation. We will recall the terminology and some results for the set-theoretical
Yang–Baxter equation. One can interpret the set-theoretical Yang–Baxter equation as a
condition that unifies the equivalence relations and the order relations. Means are also
related to the set-theoretical Yang–Baxter equation.
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Some of the above ideas lead to other new constructions related to Euler’s formula.
In Section 6, this investigation leads to a new coalgebra structure. Some of its properties
are highlighted. A short discussion on Artificial Intelligence and computational methods
concludes our paper.

2. The Colored Yang–Baxter Equation

We will work over a field k, and the tensor products are defined over k. For V, a
k-space, we denote by τ : V ⊗ V → V ⊗ V the twist map defined by τ(v⊗ w) = w⊗ v,
and by I : V → V the identity map of the space V. The following terminology will be used,
when we refer to various versions of Yang–Baxter equations. If R : V ⊗V → V ⊗V is a
k-linear map, then R12 = R⊗ I, R23 = I ⊗ R, R13 = (I ⊗ τ)(R⊗ I)(I ⊗ τ).

Definition 1. A hypothesis that the k-linear map R : V ⊗ V → V ⊗ V is invertible is usually
required.

Now, R is a Yang–Baxter operator if it satisfies the equation

R12 ◦ R23 ◦ R12 = R23 ◦ R12 ◦ R23 (1)

Remark 1. To avoid confusion, we call Equation (1) the braid equation. The operator R satisfies (1)
if and only if R ◦ τ satisfies the constant quantum Yang–Baxter equation (QYBE), if and only if
τ ◦ R satisfies the constant QYBE:

R12 ◦ R13 ◦ R23 = R23 ◦ R13 ◦ R12 (2)

Remark 2. (i) The simplest examples of Yang–Baxter operators are τ : V ⊗V → V ⊗V and
its slight generalizations.

(ii) Using computational methods, the invertible solutions for (2) in Dimension 2 were classified
in [15].

(iii) For dimensions greater than 2, the problem of classifying the Yang–Baxter operators is an
unsolved problem.

We now consider an associative algebra A over k, α, β, γ ∈ k, and the k-linear map:
RA

α,β,γ : A⊗ A→ A⊗ A, RA
α,β,γ(a⊗ b) = αab⊗ 1 + β1⊗ ab− γa⊗ b.

Theorem 1 (Dăscălescu and Nichita [4]). With the above notation, if dim A ≥ 2,
then RA

α,β,γ is a Yang–Baxter operator if and only if one of the following holds:
(i) α = γ 6= 0, β 6= 0; (ii) β = γ 6= 0, α 6= 0; (iii) α = β = 0, γ 6= 0.

Notice that (RA
α,β,γ)

−1 = RA
1
β , 1

α , 1
γ

in Cases (i) and (ii) (and (RA
0,0,γ)

−1 = RA
0,0, 1

γ

).

There are many versions of the Yang–Baxter equation. We will consider the unification
of a one-parameter-dependent Yang–Baxter equation and a two-parameter-dependent
Yang–Baxter equation, which is sometimes called the “colored Yang–Baxter equation” (see,
also, [6]).

We define a colored Yang–Baxter operator as a function

R : k× X× X → EndkV ⊗V,

where V is a finite dimensional k-space, and X is a set.
So, if we fix x ∈ k, u, v ∈ X, R(x, u, v) : V ⊗V → V ⊗V is a linear operator.
According to our previous terminology, there exist three operators acting on a triple

tensor product V ⊗V ⊗V: R12(x, u, v) = R(x, u, v)⊗ I, R23(x, v, w) = I ⊗ R(x, v, w), and
R13(x, u, w) (an operator acting non-trivially on the first and third factors in V ⊗V ⊗V).
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R is a colored Yang–Baxter operator if it satisfies the equation:

R12(x, u, v)R13(x + y, u, w)R23(y, v, w) = R23(y, v, w)R13(x + y, u, w)R12(x, u, v) (3)

for all x, y ∈ k, u, v, w ∈ X.

We want to apply our method for finding solutions for Equation (3).
Let X be (a subset of) the ground field k, and V = A, an associative k-algebra. We will

construct a solution to Equation (3) from the associativity of the product in A. So, we are
looking for solutions to Equation (3) of the following form

R(x, u, v)(a⊗ b) = αx(u, v)1⊗ ab + βx(u, v)ab⊗ 1− γx(u, v)b⊗ a, (4)

where αx, βx, γx are k-valued functions on X× X for any x ∈ k.
Inserting this ansatz into Equation (3), we obtained the following system of equations

(whose solutions produce colored Yang–Baxter operators):

(βy(v, w)− γy(v, w))(αx(u, v)βx+y(u, w)− αx+y(u, w)βx(u, v))

+(αx(u, v)− γx(u, v))(αy(v, w)βx+y(u, w)− αx+y(u, w)βy(v, w)) = 0 (5)

βy(v, w)(βx(u, v)− γx(u, v))(αx+y(u, w)− γx+y(u, w))

+(αy(v, w)− γy(v, w))(βx+y(u, w)γx(u, v)− βx(u, v)γx+y(u, w)) = 0 (6)

αx(u, v)βy(v, w)(αx+y(u, w)− γx+y(u, w)) + αy(v, w)γx+y(u, w)(γx(u, v)− αx(u, v))

+γy(v, w)(αx(u, v)γx+y(u, w)− αx+y(u, w)γx(u, v)) = 0 (7)

αx(u, v)βy(v, w)(βx+y(u, w)− γx+y(u, w)) + βy(v, w)γx+y(u, w)(γx(u, v)− βx(u, v))

+γy(v, w)(βx(u, v)γx+y(u, w)− βx+y(u, w)γx(u, v)) = 0 (8)

αx(u, v)(αy(v, w)− γy(v, w))(βx+y(u, w)− γx+y(u, w))

+(βx(u, v)− γx(u, v))(αx+y(u, w)γy(v, w)− αy(v, w)γx+y(u, w)) = 0 (9)

Remark 3. (i) If we consider the system of Equations (5)–(9), one simplification is to require
that αx, βx, and γx do not depend on x, u, and v. So, we denote them α, β, and γ. Letting γ be
an arbitrary constant, and a ∈ k, one verifies that setting α = aγ and β = γ gives a solution.
Similarly, letting γ, b ∈ k be arbitrary, setting α = γ and β = bγ gives a solution.

(ii) The following is a new family of solutions for the system of Equations (5)–(9):
αx(u, v) = p(axu − v), βx(u, v) = q(axu − v), and γx(u, v) = paxu − qv, where

a, p, q ∈ k.
Here, a is an arbitrary element of the field k. We do need that k is closed under exponentiation,

but this is true for R and C, which are the fields we are mainly interested in.

We can organize the results from this section as a theorem.

Theorem 2. Under the above assumptions, there exists the following family of solutions for
Equation (3):

R(x, u, v)(c⊗ d) = p(axu− v)1⊗ cd + q(axu− v)cd⊗ 1− (paxu− qv)d⊗ c . (10)

Proof. We will only check that αx(u, v) = p(axu − v), βx(u, v) = q(axu − v), and
γx(u, v) = paxu − qv are solutions for Equation (5). However, αx(u, v)βx+y(u, w) =
αx+y(u, w)βx(u, v) and αy(v, w)βx+y(u, w) = αx+y(u, w)βy(v, w).
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3. Unification Results

We will review and enhance a collection of recent results (see [9]) on unification
theories in order to relate them to the previous section.

The harmonic mean: H = H(a1, . . . , an) =
n

1
a1
+···+ 1

an
, a1, . . . , an ∈ R∗;

The geometric mean: G = G(a1, . . . , an) = n
√

a1a2 . . . an, a1, . . . , an ∈ R+;
The arithmetic mean: A = A(a1, . . . , an) =

a1+···+an
n , a1, . . . , an ∈ R;

The quadratic mean: Q = Q(a1, . . . , an) =
√

a1
2+···+an2

n , a1, . . . , an ∈ R ;
The projection type i-mean: Pm

i = Pm
i (a1, . . . , an) =

1
m+n−1 a1 + · · ·+ m

m+n−1 ai + · · ·+
1

m+n−1 an, a1, . . . , an ∈ R .

The generalized mean: m(α) = mα(a1, . . . , an) =
α

√
a1

α+···+anα

n , a1, . . . , an ∈ R+ , α ≥
1, α ∈ N.

Remark 4. We note that m(1) = A and m(2) = Q for a1, . . . , an ∈ R+. Let us consider the

function m(α) =
(

aα
1+···+aα

n
n

) 1
α , α ∈ R∗. One can extend the function m(α) to R by assigning

m(0) = mG. This is a natural extension, as limα→0 Nα(a1, . . . , an) = mG(a1, . . . , an). It makes
sense now to write: m(0) = G and m(−1) = H .

Remark 5. Because limα→∞ m(α) = Max{a1, . . . , an}, limα→−∞ m(α) = Min{a1, . . . , an} ,
and limm→∞ Pm

i = ai, we will regard Max{a1, . . . , an}, Min{a1, . . . , an} and Pi(a1, . . . , an) =
ai as means.

We consider the following generalization of the above function m(α).

Theorem 3. Let O : R×R→ R, be defined by the following rule:

O(x, y) =


(

ax
1+···+ax

n
ay

1+···+ay
n

) 1
x−y

, if x 6= y;

e
ax
1 ln a1+···+ax

n ln an
ax
1+···+ax

n = a
ax
1

ax
1+···+ax

n
1 . . . a

ax
n

ax
1+···+ax

n
n , otherwise.

Then, the function M has the following properties:

1. It is a continuous function.
2. O(x, y) = O(y, x) ∀ x, y ∈ R.
3. For any fixed x0 ∈ R, the function f (y) = O(x0, y) is a strongly increasing function.
4. For any fixed y0 ∈ R, the function g(x) = O(x, y0) is a strongly increasing function.

Remark 6. We can easily see that O(−1, 0) = H, O(0, 0) = G, O(1, 0) = A, O(2, 0) = Q, and,
in general, O(α, 0) = m(α).

The following are examples of inequalities from [9], for a > 0, b > 0:

√
ab ≤

(√
a +
√

b
2

)2

≤ a + b
2
≤
(

a
3
2 + b

3
2

2

) 2
3

≤
√

a2 + b2

2
≤ a + b−

√
ab . (11)

Of course, one can translate the above inequalities in terms of relations of the above
function O(x, y).

The next inequalities are new:

Theorem 4. The following inequalities hold for positive real numbers:
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log2(2
√

a + 2
√

b − 1) ≤
√

ab ≤ a + b
2
≤ log√2(

√
2

a
+
√

2
b
)− 2 .

Proof. The first inequality follows from algebraic manipulations: 2
√

a + 2
√

b − 1 ≤
2
√

ab ⇐⇒ (2
√

a − 1)(2
√

b − 1) ≥ 0. The last inequality follows from the convexity of the

function f (x) =
√

2
x
: (
√

2
a
+
√

2
b
)

2 ≥
√

2
a+b

2 .

Remark 7. We consider new operations on R: a ◦ b = 2
√

a + 2
√

b − 1, a ∗ b = log√2(
√

2
a
+

√
2

b
).
The first operation is some kind of exponentiation (in particular, a ◦ a = 2

√
a+1 − 1 ).

The last operation “generates” the addition: a ∗ a = a + 2 , a ∗ a ∗ a ∗ a = a + 4 .
The above theorem can be stated as:

log2(a ◦ b) ≤
√

ab ≤ a + b
2
≤ a ∗ b− 2 .

Remark 8. It is an open problem to generalize the above inequalities. Possible generalizations might
be the following inequalities: log3(3

3√ab + 3
3√bc + 3

3√ca − 3
3√a − 3

3√b − 3
3√c + 1) ≤ 3

√
abc ≤

a+b+c
3 ≤ log 3√3(

3
√

3
a
+ 3
√

3
b
+ 3
√

3
c
)− 3 , ∀a, b, c > 0.

4. Generalized Euler Formula

It is useful to identify linear applications with matrices in the current section.
Additionally, the exponential function of a matrix is thought as the Taylor expansion
of the real exponential function evaluated at the given matrix. The ring of all n× n-matrices
over the field k is denoted by Mn(k). I will be the identity matrix in M4(k), and I′ will be
the identity matrix in M2(k).

Theorem 5 ([9]). Let J ∈ Mn(C) such that

(J ⊗ I′) ◦ (I′ ⊗ J) = (I′ ⊗ J) ◦ (J ⊗ I′) (12)

If ezJ = R(z) , z ∈ C, then the following spectral-dependent Yang–Baxter equation is satisfied:

(R⊗ I′)(z) ◦ (I′ ⊗ R)(z + w) ◦ (R⊗ I′)(w) = (I′ ⊗ R)(w) ◦ (R⊗ I′)(z + w) ◦ (I′ ⊗ R)(z) . (13)

Theorem 6 ([9]). For J ∈ Mn(C), J2 ∈ CI, there exist two “pseudo-trigonometric” functions
c, s : C→ C such that:

ezJ = c(z)I + s(z)J . (14)

Moreover, the functions c and s have the following properties:

(i) If J2 = αI, then c(z + w) = c(z)c(w) + αs(z)s(w), s(z + w) = s(z)c(w) + c(z)s(w);
(ii) If α = 0 in the above case, then c(z) = 1 and s(z) = z , or c(z) = 0 and s(z) = 0;

(iii) If J2 = β2 I , with β2 = α 6= 0 , then c(z) = cosh(βz) and s(z) = sinh(βz)
β .

Remark 9. We now present examples of how the above theorem can be applied, and we also return
to the braid condition (1) in order to obtain new solutions of it in the cases where this is possible.

(i) If J = i I, Formula (14) is equivalent to eix = cos x + i sin x.

If we consider the complex evaluated matrix (c, d ∈ C) J =


0 0 c d
0 0 0 c
0 0 0 0
0 0 0 0
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then, J2 = 04, J12 J23 = J23 J12, I + Jx = exJ = R(x), and

(R⊗ I′)(x) ◦ (I′ ⊗ R)(x + y) ◦ (R⊗ I′)(y) = (I′ ⊗ R)(y) ◦ (R⊗ I′)(x + y) ◦ (I′ ⊗ R)(x).

(ii) If J =


0 0 0 1
0 0 i 0
0 i 0 0
−1 0 0 0

 then ezJ = cos(z)I + sin(z)J, which is a solution for (13).

In this case, two interesting solutions for the braid condition (1) can be obtained.
We consider the operator R = aI + bJ, with a, b ∈ C and J the above matrix. The braid

condition is satisfied by R if a2 = −b2. The following two main cases are of interest:

R1 =


i 0 0 1
0 i i 0
0 i i 0
−1 0 0 i

;

R2 =


−i 0 0 1
0 −i i 0
0 i −i 0
−1 0 0 −i

.

(iii) If J =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 then ezJ = cosh(z)I + sinh(z)J ; this is also a solution for (13).

In this case, two other interesting solutions for the braid condition (1), can be obtained. In a
similar way with Case (ii), we consider the operator R = aI + bJ, with a, b ∈ C and J our matrix.
The braid condition is satisfied by R if a2 = b2. The following two main cases are of interest:

R3 =


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

;

R4 =


1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

.

Remark 10. Operator (10) has the form (14).
More precisely, we start with R(x, u, v)(c⊗ d) = p(axu− v)1⊗ cd + q(axu− v)cd⊗ 1−

(paxu− qv)d⊗ c and consider R′(x, u, v) = −τ ◦ R(x, u, v).
We take u = v, a = e, p = 1, and q = −1. After simplifications, we obtain an operator of

the form R′′(x) = I + Jx = exJ .
If we choose the algebra k[X]

X2−aX−b , we can express R′′(x) as a matrix:

R′′(x) =


1 0 0 0
0 x + 1 x ax
0 −x 1− x −ax
0 0 0 1


5. The Set-Theoretical Yang–Baxter Equation

If X is a set, let S : X× X → X× X be a function, S12 = S× I and S23 = I × S.
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Definition 2. Using the above notation, the set-theoretical Yang–Baxter equation reads:

S12 ◦ S23 ◦ S12 = S23 ◦ S12 ◦ S23 (15)

Definition 3. We are using the following notation for a relation R on the set X: we denote
by Rop the opposite relation of R, and we denote by R̄ the complementary relation of R. Let
∆ = ∆X = {(x, x) | ∀x ∈ X} ⊂ X× X.

Theorem 7 (Hobby and Nichita [16]). We consider a reflexive relation R ⊂ X × X on the set

X. If we define the function S = SR : X × X → X × X by S(u, v) =

{
(u, v), if (u, v) ∈ R
(v, u); otherwise,

then, S satisfies (15) if and only if R ∪ Rop is an equivalence relation, and R̄ is a strict partial order
relation on each class of R ∪ Rop.

Note that the definition of SR in the above theorem makes sense for any relation R,
and that SR only depends on R ∩ ∆̄.

Remark 11. The following properties hold.

(i) For any relation R, SR = SR∪∆.
(ii) If R is a symmetric relation, then SR = SRop .

(iii) If R is an antisymmetric relation, then T ◦ SR = SRop , [T : X × X → X × X, (x, y) 7→
(y, x)].

(iv) For any relation R, T ◦ SR = SR̄.
(v) For any equivalence relation R, S12

R ◦ S23
R ◦ S12

R = S23
R ◦ S12

R ◦ S23
R .

(vi) For any partial order relation R, S12
R ◦ S23

R ◦ S12
R = S23

R ◦ S12
R ◦ S23

R .
(vii) For any total order relation R, SR(u, v) = (Max(u, v), Min(u, v)).

Theorem 8. For z, w ∈ C, such that z = ρeiα, w = ρ′eiβ, with α, β ∈ [0, 2π), we define:

Q(z, w) =
z + iw√

2
, A(z, w) =

z + w
2

, G(z, w) =
√

ρρ′ei α+β
2 , H(z, w) =

 2zw
z+w , if z 6= −w

0, otherwise
(16)

If α = β or ρMax ≥ 7ρmin , then:

‖H‖ ≤ ‖G‖ ≤ ‖A‖ (17)

Sketch of proof. If α = β, the inequalities (17) are equivalent to the classical means
inequalities; moreover, we have ‖H‖ ≤ ‖G‖ ≤ ‖A‖ ≤ ‖Q‖.

The inequality ‖G‖ ≤ ‖A‖ is equivalent to finding x ∈ R such that x2 + 2[cos(α−
β)− 2]x + 1 ≥ 0.

The last part of the theorem follows from the property ‖HA‖ =
∥∥G2

∥∥
Theorem 9. The map R : C×C→ C×C, R(z, w) = (A(z, w), z) is a solution for (15).

The map R : C×C→ C×C, R(z, w) = (G(z, w), z) is a solution for (15).

Proof. We see that

R12 ◦ R23 ◦ R12(z, w, u) = R12 ◦ R23(
z + w

2
, z, u) = R12(

z + w
2

,
z + u

2
, z) = (

z+w
2 + z+u

2
2

,
z + w

2
, z).

In a similar manner, R23 ◦ R12 ◦ R23(z, w, u) = (
z+ w+u

2
2 , z+w

2 , z).
The last part of the theorem follows below.
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R12 ◦ R23 ◦ R12(z, w, u) = R12 ◦ R23(
√

ρρ′ ei α+β
2 , z, u) =

R12(
√

ρρ′ ei α+β
2 ,
√

ρρ′′ ei α+γ
2 , z) = (

√
ρ
√

ρ′ρ′′ ei 2α+β+γ
4 ,

√
ρρ′ ei α+β

2 , z).

Additionally, R23 ◦ R12 ◦ R23(z, w, u) = (
√

ρ
√

ρ′ρ′′ ei
α+

β+γ
2

2 ,
√

ρρ′ ei α+β
2 , z).

Remark 12. Let us restrict our attention to positive real numbers. Rephrasing the above
theorem, we can say that R = A × P1 and R = G × P1 are solutions for (15). Additionally,
R = Max×Min is a solution for (15). According to Remark 11 (vii), this solution is related to
Theorem 7.

6. Coalgebra Structures

Let us start by observing that Formula (14) can be interpreted in terms of coalgebras
(see [17,18]).

There exists a coalgebra C[X]
X

2
= C[a], where a2 = α = β2 ∈ C, generated by two

generators c and s, such that: ∆(c) = u⊗ u+ αs⊗ s, ∆(s) = c⊗ s+ s⊗ c, ε(c) = 1, ε(s) = 0.
Formula (14) leads to the subcoalgebra generated by u + βs.
It is an open problem how to interpret Equation (13) in the above representative coalgebras.

Theorem 10. There exists a coalgebra structure over k, generated by three generators a, b, and c,
such that: ∆(a) = a⊗ c + b⊗ b + c⊗ a, ∆(b) = a⊗ a + b⊗ c + c⊗ b, ∆(c) = a⊗ b + b⊗
a + c⊗ c, ε(a) = 0 = ε(b) , ε(c) = 1.

Proof. There exists a direct proof.
Alternatively, let A ∈ M2(k) such that A3 = I. We are looking for functions αx , βx , γx

such that (αx A + βx A2 + γx I)(αy A + βy A2 + γy I) = (αx+y A + βx+y A2 + γx+y I), and
α0 = 0 , β0 = 0 , γ0 = 1. The system of equations

αx+y = αxγy + βxβy + γxαy,

βx+y = αxαy + βxγy + γxβy,

γx+y = αxβy + βxαy + γxγy,

leads to a representative coalgebra.

Remark 13. If the coalgebra structure from the previous theorem is defined over M2(k), and the
matrix A ∈ M2(k) has the property A3 = I, then there exists a coideal generated by Aa + A2b + c.
Indeed, one can check that ∆(Aa + A2b + c) = (Aa + A2b + c)⊗ (Aa + A2b + c).

This is true:

∆(Aa + A2b + c) = Aa⊗ c + Ab⊗ b + Ac⊗ a + A2a⊗ a + A2b⊗ c + A2c⊗ b + a⊗ b + b⊗ a + c⊗ c;

(Aa + A2b + c) ⊗ (Aa + A2b + c) = A2a ⊗ a + a ⊗ b + Aa ⊗ c + b ⊗ a + Ab ⊗ b +
A2b⊗ c + Ac⊗ a + A2c⊗ b + c⊗ c.

7. Final Comments and Conclusions

Computational methods are important tools in some areas of abstract mathematics
and for certain teaching methods. In our current paper, we referred to the computational
methods used for finding all invertible solutions for the quantum Yang–Baxter equation
(Equation (2)) in the case n = 2 (see [15,19]). These algorithms are not powerful enough
to fully classify the solutions for other small dimensions. Thus, a complete computer
calculation for n = 3 is still out of reach at this time. Additionally, one can explicitly solve
the set-theoretical Yang–Baxter equation (Equation (15)) for small sets by an exhaustive
search. So, computational methods are helpful for solving (other) mathematical equations
(see [20–23], or the system of Equations (5)–(9)).
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This paper is related to several articles published in AXIOMS and SCI, where examples
of unification constructions in mathematics are presented, or poetical approaches are
proposed. Unifying mathematical structures is not always an easy task, and this guiding
principle has subtle rules. So, there exists a universal unifying principle both in mathematics
and in poetry.

Some of our Yang–Baxter operators are related to quantum gates. Quantum computers
are gaining more interest nowadays, as they are very powerful. Artificial Intelligence as
we understand it today, was born during the summer of 1956 (at Dartmouth College). The
Romanian history of informatics (see [24]) could also be traced back around that period.
Thanks to a summer grant at the Targu Mures Computer Center in 1987 (for studying
informatics on HC 85, using Basic language), we implemented that technology in education.
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