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Abstract: This manuscript presents an efficient pair of hybrid Nyström techniques to solve second-
order Lane–Emden singular boundary value problems directly. One of the proposed strategies
uses three off-step points. The obtained formulas are paired with an appropriate set of formulas
implemented for the first step to avoid singularity at the left end of the integration interval. The fun-
damental properties of the proposed scheme are analyzed. Some test problems, including chemical
kinetics and physical model problems, are solved numerically to determine the efficiency and validity
of the proposed approach.

Keywords: hybrid block methods; chemical kinetics and physical models; Lane–Emden singular
boundary value problems; starting procedure; convergence analysis

1. Introduction

In this paper, we consider the following two-point singular boundary value prob-
lem (SBVP):

y′′(x) +
λ

x
y′(x) = k(x, y), 0 < x ≤ xN = 1. (1)

We consider this together with any of the two-point boundary conditions:

y(0) = ya, y(1) = yb, (2)

or
y(0) = ya, y′(1) = y′b, (3)

or
y′(0) = y′a, y(1) = yb, (4)

where λ, ya, yb, y′a, y′b, are known real values and k(x, y) denotes a continuous real function,
where we assume the necessary conditions to guarantee the existence of a unique solution
to the problem. The existence and uniqueness of the solution to the problem (1) subjected
to any of the boundary conditions above have been established by Pandey [1] and Zou [2].

According to Thula and Roul [3], the mathematical expression of numerous problems
arising in chemical kinetics, astrophysics, catalytic diffusion reactions, celestial mechanics,
engineering, and various physical models gives rise to second-order singular boundary
value ordinary differential equations (SSBODEs) of the type given in (1).

The problem of reactant concentration in a chemical reactor, reaction–diffusion pro-
cesses inside a porous catalyst, the conduction of heat in the human head, the distribution
of oxygen in a spherical shell, and many others, can be modelled by the system (1).

Significantly, much work has been carried out to obtain numerical solutions for
the above singular problems. Different strategies have been reported for solving (1),
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where the fundamental difficulty arises due to the singularity at x = 0. Notable scholars
in the field of numerical analysis have proposed numerical techniques for solving the
problem (1). Examples of such techniques include the finite difference methods (FDM)
proposed in [4,5], the spline methods (SM) proposed in [6,7], the Padè approximation
method (PAM) introduced in [8,9], the pseudospectral method (PM) proposed in [10],
or the Jacobi–Gauss collocation method (JCM) reported in [11]. Other manuscripts on
recently developed numerical or analytical techniques for solving (1)–(4) inlcude those
of [12–18].

We propose a pair of hybrid Nyström techniques (PHNT) for solving the SBVPs given
in (1) numerically. The main formulas provide a method of order six, which cannot solve
the problem on its own due to the singularity at x = 0. We have designed a second ad hoc
method that applies only to the first subinterval and is unaffected by singularity. In this way,
we obtain a scheme capable of solving the problem posed effectively. Comparisons show
that the proposed method is more advantageous than other existing methods. A problem
of particular interest is how to select the optimal value of h. We have not addressed
this issue here, but the CESTAC method and the CADNA library could be helpful for
this task [19,20]. This technique is based on the use of stochastic arithmetic in place of
floating-point arithmetic to validate the results and find an optimal solution.

The present work is outlined as follows. In Section 2, we present the PHNT method
for solving SBVPs. The characteristics of the developed formulas are analyzed in Section 3.
Some issues with the implementation of the PHNT are considered in Section 4. In Section 5,
we present the numerical results of some physical models and catalytic diffusion–reaction
problems to show the efficiency and reliability of the proposed technique. Some conclusions
are outlined in Section 6.

2. Development of the PHNT Method

To obtain the PHNT method, we firstly reformulate the equation in (1) as y′′(x) =
f (x, y(x), y′(x)), where f (x, y(x), y′(x)) = k(x, y(x)) − λ

x y′(x). Thus, the singularity is
transferred to the function f .

2.1. Main Formulas

We consider that the exact solution y(x) of the SBVP on an interval [xn, xn+1], xn > 0
with step size h = xn+1 − xn can be approximated by a polynomial p(x) in the form:

y(x) ' p(x) =
6

∑
j=0

aj xj, (5)

From this, it readily follows that:

y′(x) ' p′(x) =
6

∑
j=1

aj jxj−1, (6)

y′′(x) ' p′′(x) =
6

∑
j=2

aj j(j− 1)xj−2, (7)

where aj ∈ R are unknown coefficients that must be specified using collocation conditions
at some chosen nodes.

We take the following intermediate nodes on [xn, xn+1]: xn+u = xn + uh, xn+v =
xn + vh and xn+w = xn + wh with 0 < u < v < w < 1. Consider the approximations in
(5) and (6) evaluated at xn, as well as the one in (7) evaluated at xn, xn+u, xn+v, xn+w, xn+1.
Doing this, we obtain a system of equations with seven unknowns an, n = 0(1)6, given by:

p(xn) = yn , p′(xn) = y′n , p′′(xn) = fn,

p′′(xn+u) = fn+u , p′′(xn+v) = fn+v , p′′(xn+w) = fn+w , p′′(xn+1) = fn+1,
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where yn+j and fn+j denote approximations of y(xn+j) and y′′(xn+j), respectively. The sys-
tem may be written in matrix form as:



1 xn x2
n x3

n x4
n x5

n x6
n

0 1 2xn 3x2
n 4x3

n 5x4
n 6x5

n

0 0 2 6xn 12x2
n 20x3

n 30x4
n

0 0 2 6xn+u 12x2
n+u 20x3

n+u 30x4
n+u

0 0 2 6xn+v 12x2
n+v 20x3

n+v 30x4
n+v

0 0 2 6xn+w 12x2
n+w 20x3

n+w 30x4
n+w

0 0 2 6xn+1 12x2
n+1 20x3

n+1 30x4
n+1





a0

a1

a2

a3

a4

a5

a6


=



yn

y′n

fn

fn+u

fn+v

fn+w

fn+1


.

Solving this system, we obtain the values of an, n = 0(1)6. Using the substitution
x = xn + zh, the polynomial in (5) may be expressed as:

p(xn + zh) = α0(z)yn + hα1(z)y′n (8)

+h2(β0(z) fn + βu(z) fn+u + βv(z) fn+v + βw(z) fn+w + β1(z) fn+1),

where u = 1
3 , v = 1

2 , w = 2
3 , and the coefficients α0(z) = 1, α1(z), and {βi(z)}i=0,u,v,w,1

depend on z.
Evaluating the formula in (8) and its derivative at z = 1, we obtain approximations of

y(xn+1) and y′(xn+1), given, respectively, by:

yn+1 = yn + hy′n + h2
(

9 fn+u

20
− 4 fn+v

15
+

9 fn+w

40
+

11 fn

120

)
,

y′n+1 = y′n +
h

120
(11 fn + 81 fn+u + 81 fn+v − 64 fn+w + 11 fn+1). (9)

Now, evaluating p(x) and p′(x) at xn+u, xn+v, xn+w, we obtain the following hybrid
Nyström-type formulas:

yn+u = yn −
1
3

hy′n +
h2(240 fn+u − 224 fn+v + 87 fn+v + 83 fn − 6 fn+1)

3240
,

yn+v = yn +
h
2

y′n + h2
(

207 fn+u

1280
− fn+v

8
+

63 fn+w

1280
+

163 fn

3840
− 13 fn+1

3840

)
,

yn+w = yn +
2h
3

y′n +
2h2

405
(51 fn+u − 32 fn+v + 15 fn+w + 12 fn − fn+1). (10)

y′n+u = y′n + h
(

19 fn+u

40
− 152 fn+v

405
+

17 fn+w

120
+

329 fn

3240
− 31 fn+1

3240

)
,

y′n+v = y′n +
h(1053 fn+u − 512 fn+v + 243 fn+w + 193 fn − 17 fn+1)

1920
,

y′n+w = y′n +
1

405
h(216 fn+u − 64 fn+v + 81 fn+w + 41 fn − 4 fn+1). (11)

The formulas in (9)–(11) altogether form the main block method.

2.2. Formulas to Circumvent the Singularity

This block method cannot be used directly for solving a BVP problem with the differ-
ential equation in (1) because it is not possible to evaluate f0 = f (x0, y0, y′0), since there is a
singularity at x0 = 0.
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To overcome this drawback, we have developed a set of formulas specially designed
for the subinterval [x0, x1], where the value f0 is absent. These formulas are obtained
similarly to before as:

y1 = y0 + hy′0 + h2
(

51 fu

40
− 26 fv

15
+

21 fw

20
− 1

120
11 f1

)
, (12)

y′1 = y′0 + h
(

13 fu

9
− 16 fv

9
+

10 fw

9
− f1

9

)
.

For the remaining formulas, we obtain:

yu = y0 +
h
3

y′0 + h2
(

329 fu

1080
− 194 fv

405
+

139 fw

540
− 89 f1

3240

)
,

yv = y0 +
h
2

y′0 + h2
(

87 fu

160
− 193 fv

240
+

69 fw

160
− 1

240
11 f1

)
,

yw = y0 +
2h
3

y′0 −
1

405
2h2(−159 fu + 224 fv − 123 fw + 13 f1). (13)

y′u = y′0 −
1

18
h(−25 fu + 36 fv − 19 fw + 2 f1),

y′v = y′0 −
1

64
h(−93 fu + 120 fv − 66 fw + 7 f1),

y′w = y′0 −
1
9

h(−13 fu + 16 fv − 10 fw + f1). (14)

Taking a small step size h, and considering all the formulas in (9)–(11) for n =
1, 2, . . . , N − 1, together with the ones developed in (12)–(14) for the first step, we ob-
tain a global method that can provide accurate approximations to complete the integration
along the interval [0, xN ].

3. Characteristics of the Method

The main properties of the proposed technique PHNT are studied here, where the
most challenging task is to analyze the convergence of the global method.

3.1. Consistency and Order of the Formulas

The formulas in (9)–(11) may be written as:

Ā Vn = h B̄ V′n + h2 D̄ Fn, (15)

where Ā, B̄, D̄ are constant matrices containing the coefficients of the formulas (9)–(11), and:

Vn = (yn, yn+u, yn+v, yn+w, yn+1)
T ,

V′n =
(
y′n, y′n+u, y′n+v, y′n+w, y′n+1

)T ,

Fn = ( fn, fn+u, fn+v, fn+w, fn+1)
T .

Using standard strategies (see [21]), assuming that y(x) has enough derivatives, we de-
fine the operator ` related to the formulas in (9)–(11):

`[y(x); h] = ∑
j∈I

[
αjy(xn + jh)− hβ jy′(xn + jh)− h2γjy′′(xn + jh)

]
, (16)

where αj, β j, and γj are, respectively, vector columns of Ā, B̄ and D̄, while I denotes the set
of indices, I = {0, u, v, w, 1}. Expanding in Taylor series about xn, we obtain:

`[y(x); h] = C0y(xn) + C1hy′(xn) + C2h2y′′(xn) + · · ·+ Cqhqyq(xn) + . . . , (17)
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where:

Cq =
1
q!

[
k

∑
j∈I

jqαj − q
k

∑
j∈I

jq−1β j − q(q− 1)
k

∑
j∈I

jq−2γj

]
, q = 0, 1, 2, 3, . . . . (18)

According to [16], the above operator and the associated formulas are said to be of
order p if C0 = C1 = ... = Cp+1 = 0, Cp+2 6= 0, with Cp+2 as the vector of local truncation
errors. For the formulas in (9)–(11), we obtain C0 = C1 = · · · = C6 = 0 and:

C7 =

(
1

181,440
,− 1

1,088,640
,

67
44,089,920

,
1

362,880
,

11
2,755,620

,
1

131,220
,

1
138, 240

,
1

131,220

)T
,

This shows that each of the above formulas is of order 5. Since the order of the
formulas is greater than one, they are consistent. For the ad hoc formulas used for the first
step, it is easy to see that they are also consistent.

3.2. Convergence Analysis

We start by defining convergence, then we will show that the proposed method is
convergent by writing all the formulas in (9)–(14) in an appropriate matrix-vector form.

Definition 1. Let y(x) denote the exact solution of the given singular boundary value problem
and let

{
yj
}N

j=0 be the approximations obtained with the developed numerical strategy. The method
is said to be convergent of order p if, for a sufficiently small h, there exists a constant C independent
of h, such that:

max
0≤j≤N

|y(xj)− yj| ≤ Chp .

Note that in this situation, we obtain max
0≤j≤N

|y(xj)− yj| → 0 as h→ 0.

Theorem 1 (Convergence theorem). Let y(x) be the true solution of the SBVP in (1) with
the boundary conditions in (2), and {yj}N

j=0 the discrete solution provided by the proposed global
method. Then, the proposed method is convergent to order six.

Proof. Following [22], we define the matrix D of dimension 8N × 8N given by:

D =


D1,1 D1,2 . . . D1,2N

...
...

...

D2N,1 D2N,2 . . . D2N,2N

 ,

where the elements Di,j are 4× 4 sub-matrices, except the Di,N+1, i = 1, . . . , 2N, which have
a size of 4× 3, and Di,2N , i = 1, . . . , 2N, which have a size of 4× 5. Those sub-matrices are

Di,i = I, i = N + 2, . . . , 2N, being I the identity matrix of order four,

DN,N =



1 0 0

0 1 0

0 0 1

0 0 0

; Di,i−1 =



0 0 0 −1

0 0 0 −1

0 0 0 −1

0 0 0 −1

, i = N + 2, . . . , 2N;
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DN+1,N+1 =



−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0

−1 0 0 0 1

; D1,N+1 = h



−1
3

0 0 0 0

−1
2

0 0 0 0

−2
3

0 0 0 0

−1 0 0 0 0


;

Di,N+i = h



0 0 0 −1
3

0 0 0 −1
2

0 0 0 −2
3

0 0 0 −1


, i = 1 . . . , N − 1; DN,2N = h



0 0 0 0 −1
3

0 0 0 0 −1
2

0 0 0 0 −2
3

0 0 0 0 −1


.

For the rest of the submatrices not included above, it is Di,j = O—that is, they are
null matrices.

We also define the matrix U of dimension 8N × (4N + 1):

U =


U1,1 U1,2 . . . U1,N

...
...

...

U2N,1 U2N,2 . . . U2N,N

 ,

where the elements Ui,j are 4× 4 submatrices except the Ui,1, i = 1, . . . , 2N, which have a
size of 4× 5. These submatrices are given as follows:

U1,1 = h



0 − 329
1080

194
405 − 139

540
89

3240

0 − 87
160

193
240 − 69

160
11

240

0 − 106
135

448
405 − 82

135
26

405

0 − 51
40

26
15 − 21

20
11

120

;

Ui,i = h



− 2
27

28
405 − 29

1080
1

540

− 207
1280

1
8 − 63

1280
13

3840

− 34
135

64
405 − 2

27
2

405

− 9
20

4
15 − 9

40 0

, i = 2 . . . , N;

Ui,i−1 = h



0 0 0 − 83
3240

0 0 0 − 163
3840

0 0 0 − 8
135

0 0 0 − 11
120

, i = 3, . . . , N; U2,1 = h



0 0 0 0 − 83
3240

0 0 0 0 − 163
3840

0 0 0 0 − 8
135

0 0 0 0 − 11
120

;
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UN+1,1 =



0 − 25
18 2 − 19

18
1
9

0 − 93
64

15
8 − 33

32
7

64

0 − 13
9

16
9 − 10

9
1
9

0 − 3
2 2 − 3

2 0

;

UN+j,j =



− 19
40

152
405 − 17

120
31

3240

− 351
640

4
15 − 81

640
17

1920

− 8
15

64
405 − 1

5
4

405

− 27
40

8
15 − 27

40 − 11
120

, j = 2, . . . , N;

UN+j,j−1 =



0 0 0 − 329
3240

0 0 0 − 193
1920

0 0 0 − 41
405

0 0 0 − 11
120

, j = 3, . . . , N; UN+2,1 =



0 0 0 0 − 329
3240

0 0 0 0 − 193
1920

0 0 0 0 − 41
405

0 0 0 0 − 11
120

.

For the rest of submatrices Ui,j not included above, it is Ui,j = O—that is, they are
null matrices.

We note that the submatrices Di,j and Ui,j contain the coefficients of the formulas
in (12)–(14) and those of the formulas in (9)–(11), for n = 1, 2, . . . , N − 1.

Let us denote the vectors of exact values as:

Y =
(
y(xu), y(xv), y(xw), y(x1), . . . , y(xN−1+w), y′(x0), y′(xu), . . . , y′(xN)

)T ,

F =
(

f (x0, y(x0), y′(x0)), f (xu, y(xu), y′(xu)), . . . , f (xN , y(xN), y′(xN))) .

Note that Y has (4N − 1) + (4N + 1) = 8N components while F has (4N + 1) compo-
nents, because, due to the boundary conditions in (2), y(x0) and y(xN) are known values,
y(x0) = ya, y(xN) = yb.

The exact form of the discretized formulas to approximate the boundary value problem
can be written as:

D8N×8NY8N + hU8N×(4N+1)F4N+1 + C8N = L(h)8N , (19)

where we have included the dimensions for clarity. Here, C8N is a vector that contains the
known values—that is:

C8N = (−ya,−ya,−ya,−ya, 0, . . . , 0, yb, 0, . . . , 0)T ,

and L(h)8N is another vector containing the LTEs of the formulas, given by:
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L(h)8N '



83h6y(6)(x0)
699,840 +O(h7)

163h6y(6)(x0)
829,440 +O(h7)

h6y(6)(x0)
3645 +O(h7)

11h6y(6)(x0)
25,920 +O(h9)

67h7y(7)(x1)
44,089,920 +O(h8)

h7y(7)(x1)
362,880 +O(h9)

11h7y(7)(x1)
2,755,620 +O(h8)

h7y(7)(x1)
181,440 +O(h10)

...
h7y(7)(xN−1)

181,440 +O(h8)

329h5y(6)(x0)
699,840 +O(h7)

193h5y(6)(x0)
414,720 +O(h7)

41h5y(6)(x0)
87,480 +O(h7)

11h5y(6)(x0)
25,920 +O(h7)

h6y(7)(x1)
131,220 +O(h7)

h6y(7)(x1)
138,240 +O(h7)

h6y(7)(x1)
131,220 +O(h7)

− h7y(8)(x1)
1,088,640 +O(h8)

...

− h10y(8)(xN−1)
1,088,640 +O(h11)



.

Concerning the approximate values, they are provided by the system:

D8N×8NȲ8N + hU8N×(4N+1) F̄4N+1 + C8N = 0 , (20)

where Ȳ8N approximates the vector Y8N—that is:

Ȳ8N =
(
yu, yv, yw, y1, . . . , yN−1+w, y′0, y′u, . . . , y′N

)T ,

In addition:
F̄4N+1 = ( f0, fu, fv, fw, f1, . . . , fN)

T .

We subtract (20) from (19) to obtain:

D8N×8N E8N + hU8N×(4N+1)(F− F̄)4N+1 = L(h)8N , (21)

where E8N = Y8N − Ȳ8N =
(
eu, ev, . . . , eN−1+w, e′0, e′u, . . . , e′N

)T is a vector of errors at the
discrete points.

Through the Mean-Value Theorem in [23], we can put any convenient subindex i as:

f (xi, y(xi), y′(xi))− f (xi, yi, y′i) = (y(xi)− yi)
∂ f
∂y

(ξi) +
(
y′(xi)− y′i

) ∂ f
∂y′

(ξi),



Axioms 2021, 10, 202 9 of 16

where ξi denotes intermediate points in the line between (xi, y(xi), y′(xi)) and (xi, yi, y′i).
Thus, we can say that:

(F− F̄)4N+1 =



∂ f
∂y (ξ0) 0 . . . 0 ∂ f

∂y′ (ξ0) 0 . . . 0

0 ∂ f
∂y (ξu) . . . 0 0 ∂ f

∂y′ (ξu) . . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . ∂ f
∂y (ξN) 0 0 . . . ∂ f

∂y′ (ξN)





e0
eu

...
eN
e′0
e′u
...

e′N



=



0 . . . 0 ∂ f
∂y′ (ξ0) 0 . . . 0 0

∂ f
∂y (ξu) . . . 0 0 ∂ f

∂y′ (ξu) . . . 0 0

...
. . . 0

...
...

. . .
...

...
0 . . . ∂ f

∂y (ξN−1+w) 0 0 . . . ∂ f
∂y′ (ξN−1+w) 0

0 . . . 0 0 0 . . . 0 ∂ f
∂y′ (ξN)





eu
ev

...
eN−1+w

e′0
e′u
...

e′N



= J(4N+1)×8N E8N .

Note that in the second identity we have used, e0 = y(x0) − ya = 0 and eN =
y(xN)− yb = 0.

In view of the above, the equation in (21) may be arranged as:(
D8N×8N + hU8N×(4N+1) J(4N+1)×8N

)
E8N = L(h)8N , (22)

Setting M = D + hUJ, we simply find that:

M8N×8N E8N = L(h)8N . (23)

Following [24], we prove that, except for a few selected values of h > 0, matrix M is
invertible. If we use the abbreviated notation DN = D8N×8N , given the form of this matrix
where the submatrices have many zeros, it is easy to verify that, for N = 2, the determinant
is |D2| = −2h. Now, by induction, it can be proven that |DN | = −Nh; thus DN is invertible
as long as it is h > 0.

Now, the matrix M may be rewritten as:

M = D + hUJ = (Id− B)D,

where Id is the identity matrix of order 8N and B = −hUJD−1. Thus, we find that
|M| = |Id− B| |D|.

As |λId− B| = ∏8N
i=1(λ− λi) is the characteristic polynomial of B, in order to have

|Id− B| 6= 0, if we take λ = 1 it is sufficient to choose h, such that:{
1/λ̄i : λ̄i is an eigenvalue of UJD−1

}
.

For such values of h, the equation in (23) may be rewritten as:

E =
(

M−1
)

L(h) . (24)

The maximum norm in R, ‖E‖= max
i
|ei|, and the corresponding matrix-induced

norm in R8N×8N are considered. If we expand the terms of M−1 in powers of h, it can be
shown that ‖M−1‖= O(h−2).
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Assuming that y(x) has in [0, xN ] bounded derivatives up to the necessary order,
from (24) and the vector L(h) of local truncation errors, we can obtain:

‖E‖≤ ‖
(

M−1
)
‖ ‖L(h)‖

= O(h−2)O(h7)

≤ K h5.

We have shown that the global method exhibits a fifth-order convergence. Nevertheless,
in view of the form of the vector L(h), we see that, assuming the sufficient smoothness of
the solution, at the mesh points we obtain a superconvergence order (see Ascher et al. [25]):

|ej| = |y(xj)− yj| ≤ |O(h−2)| |O(h8)| ≤ Kh6, j = 1, 2, . . . N.

Therefore, the proposed method is convergent, providing sixth-order approximations.

4. Implementation Issues

The PHNT is implemented in a block unification mode. We rewrite the systems in (20)
as F(y) = 0 and the unknowns as:

Ũ =
⋃{

yj
}

j=1,...,N−1

⋃{
y′j
}

j=0,...,N

⋃{
yj+u, yj+v, yj+w, y′j+u, y′j+v, y′j+w

}
j=0,1,...,N−1

.

Then, we use Modified Newton’s method (MNM) to solve non-linear equations, since
the PHNT is an implicit scheme. The MNM is given by:

Ũi+1 = Ũi −
(

Ji
)−1

Fi,

where J represents the jacobian matrix of F. The starting values for using MNM for
solving the systems given in (12)–(14) for each iteration are taken as those provided by the
linear interpolation obtained throughout the boundary values, while the stopping criterion
considers a maximum number of 100 iterations and an error between two successive
approximations of less than 10−16.

We enumerate and summarize how the PHNT is utilized to give numerical solutions
to physical models and catalytic diffusion–reaction problems as follows:

1. Let us take N > 0 ∈ N, and define h = xN−x0
N to generate the partition:

PN =
⋃{

xj
}

j=0,1,...,N

⋃{
xj+k

}
k=u,v,w;j=0,1,...,N−1

.

2. Using Equations (12)–(14) and Equations (9)–(11) for n = 1, . . . , N − 1, we can form a
system of equations with variables:{

yu, yv, yw, y′u, y′v, y′w
}⋃{

yj
}

j=1,...,N−1

⋃{
y′j
}

j=0,...,N

⋃{
yj+u, yj+v, yj+w, y′j+u, y′j+v, y′j+w

}
j=1,...,N−1

.

3. We make just one block matrix equation by joining all the equations generated in the
previous step of the partition PN with the given boundary conditions.

4. We solve the single block matrix equation simultaneously to obtain the approximate
solutions for the SBVP on the whole interval [x0, xN ].

5. Numerical Illustrations

This section presents the numerical outcomes and discussion of the proposed PHNT
for the solution of the singular physical models and catalytic diffusion–reaction problems
of the form (1). The accuracy of the PHNT is measured by utilizing the following formulas:

ABER = ‖y(xj)− yj‖, MAXABER = max
j=0,1,...,N

‖y(xj)− yj‖,
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where ABER denotes the absolute error at the considered node, MAXABER is the maximum
absolute error along the considered interval, y(xj) is the theoretical solution, and yj is the
approximate solution provided by the PHNT.

5.1. Example 1

We firstly consider the following scalar Lane–Emden singular equation (SCLSE), which
corresponds to the reaction–diffusion process in a spherical permeable catalyst as reported
in [3,26],

y′′(x) +
2
x

y′(x)− φ2y(x)n = 0, y(1) = 1 (at the catalyst surface), (25)

y′(0) = 0 (at the centre of the catalyst surface), x ∈ [0, 1].

The general analytical solution of problem (25) is unknown, but its solution for n = 1, is
given by y(x) = sinh(xφ)

x sinh(φ) , where φ is the Thiele modulus and φ2 =
reaction rate at the catalyst surface
diffusion rate at the catalyst pores .

Table 1 presents the numerical results with the proposed method, showing that they
are very close to the theoretical solution available for n = 1. The CPU time with the PHNT
for the value of N = 10 in Table 1 is 0.2188 s.

Table 1. Comparison of PHNT and the exact solution on test 1 with h = 1
10 , n = 1, φ = 5.

x PHNT Exact Solution ABER

0.1 0.07022543735304641 0.07022543922779090 1.87474× 10−9

0.2 0.07918802960817403 0.07918802869127974 9.16894× 10−10

0.3 0.09565082522028227 0.09565082330512954 1.91515× 10−9

0.4 0.12219351619982496 0.12219351358270766 2.61712× 10−9

0.5 0.16307123522003290 0.16307123192997786 3.29006× 10−9

0.6 0.22500992040856140 0.22500991644891966 3.95964× 10−9

0.7 0.31848116606908733 0.31848116156439320 4.50469× 10−9

0.8 0.45971591487821106 0.45971591027923203 4.59898× 10−9

0.9 0.67387038375554700 0.67387038020431460 3.55123× 10−9

1 1.00000000000000000 1.0000000000000000 0.00000

To analyze the impact of the Thiele modulus (φ) on the concentration profile (y(x)),
we also considered other values of φ and n. Figure 1 displays the numerical outcomes for
various values of φ and n. We observed that in Figure 1, the concentration profile increases
when φ diminishes.

5.2. Example 2

As a second test problem, we consider the non-homogeneous SCLSE, which corre-
sponds to the physical model problem 2 in [4]:

y′′(x) +
1
x

y′(x) + y(x) = 4− 9x + x2 − x3, y(0) = 0, y(1) = 0 (26)

where the exact solution is given by y(x) = x2 − x3.
We have applied PHNT to test problem 2; Figure 2 presents the numerical solution of

PHNT, which is very close to the exact solution for problem 2. Figure 3 shows a graphical
representation of the absolute errors (ABER) for different values of x. The CPU time with
the PHNT for the value of N = 10 in Figures 2 and 3 is 0.0625 s.
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n=0.5, ϕ=2

n=1.5, ϕ=5

n=2, ϕ=5
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Figure 1. Approximate solutions of PHNT for h = 1
10 for different values of φ and n for Example 1.

0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

Figure 2. Exact solution and the discrete one obtained with the PHNT for h = 1
10 for Example 2.
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0.2 0.4 0.6 0.8 1.0

1.×10-17

2.×10-17

3.×10-17

4.×10-17

5.×10-17

6.×10-17

7.×10-17

Figure 3. Plot of the ABER with PHNT for h = 1
10 for Example 2.

5.3. Example 3

Let us consider the non-linear SCLSE, which corresponds to the physical model
problem of thermal explosion in cylindrical vessel reported by Thula and Roul [3] and
Roul et al. [14]:

y′′(x) +
1
x

y′(x) = exp(y(x)), y(0) = 0, y′(1) = 0, (27)

where the analytical solution is given by y(x) = 2 log
(

2
√

6+1−5
(2
√

6−5)x2+1

)
.

Test problem 3 is numerically solved using the new PHNT for different values of step
size (h). The numerical results and the comparisons of MAXABER and ABER between
PHNT and the methods in [3,14] are abridged in Table 2.

We note that the PHNT method presents a better performance compared with the
techniques in [3,14]. Additionally, the CPU time in our proposed PHNT to obtain the
approximate solutions for problem 3 with step size h = 1

16 is 0.4531 s. In Table 2, we have
included the numerical rate of convergence (ROC) with the following formula:

ROC ' − log2

(
MAXABERh
MAXABER2h

)
.

5.4. Example 4

As a test problem 4, we consider a non-linear homogeneous SCLSE, which corresponds
to the physical model problem arising in chemistry and chemical kinetics. The formulation
of heat and mass transfer within porous catalyst particles is reported by Ravikanth [27]:

y′′(x) +
λ

x
y′(x)− φ2y(x) exp

(
rs(1− y(x))

c(1− y(x)) + 1

)
= 0, y(0) = 0, y′(1) = 0, (28)

where the analytical solution is unknown.
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Table 2. Maximum absolute errors (MAXABER) for test problem 3.

h Method MAX ABER ROC
1
8 PHNT 1.91969× 10−10

1
8 Method in [3] 1.01400× 10−8

1
8 Method in [14] 8.53810× 10−10

1
16 PHNT 2.99397× 10−12 6.00

1
16 Method in [3] 5.80500× 10−10 4.13

1
16 Method in [14] 2.19100× 10−11 5.30

1
32 PHNT 4.77118× 10−14 5.97

1
32 Method in [3] 3.49500× 10−11 4.05

1
32 Method in [14] 3.92400× 10−13 5.94

We solved problem 4 with the PHNT scheme for φ = r = s = c = 1. The PHNT
approximate solutions for λ = 2 and λ = 4 for different values of x are plotted in Figure 4.

λ=2

λ=4

0.0 0.2 0.4 0.6 0.8 1.0

0.85

0.90

0.95

1.00

x-values

P
H
N
T
S
o
lu
ti
o
n
s
(y
(x
))

Figure 4. Approximate solutions of PHNT for h = 1
10 for different values of λ = 2 and λ = 4 for test

problem 4.

Table 3 contains the numerical results provided by PHNT. We also used, for compari-
son, the cubic spline method (CSM) and the modified Adomian decomposition technique
(MADT) in [13,27], with the PHNT being significantly better. The CPU time used by PHNT
for N = 10 with the specifications in Table 3 is 0.5938 s.
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Table 3. Comparison of approximation solutions for test problem 4 for λ = 2.

x PHNT , h = 1
10 Method in [13], h = 1

10 Method in [27], h = 1
50

0.1 0.8383648968983356 0.838364878696000 0.83836491959750

0.2 0.8431842515107244 0.843184233589000 0.84318428772800

0.3 0.8512302074850839 0.851230190133000 0.85123026453741

0.4 0.8625224114697174 0.862522394979000 0.86252249405263

0.5 0.8770865272403503 0.877086511985000 0.87708663616863

0.6 0.8949523006678164 0.894952287104000 0.89495243141739

0.7 0.9161509382771176 0.916150926969000 0.91615107927542

0.8 0.9407117001197036 0.940711691749000 0.94071183074544

0.9 0.9686575885218047 0.968657583887000 0.96865767679753

1.0 1.0000000000000000 1.0000000000000000 1.000000000000000

6. Conclusions

This work presented a reliable PHNT approach for solving the scalar and system of
SBVP of Lane-Emden type in various physical models and chemical kinetics. We employed
a set of optimized hybrid block formulas given in (9)–(11) which are combined with an
appropriate starting algorithm in (12)–(14) specifically designed to cope with the singularity
at the beginning of the integration interval of the considered problem. Four real-world
model problems in applied sciences and engineering are solved numerically to show
the strength and quality of the proposed PHNT. The obtained approximate results in
Tables 1–3 and Figures 1–4 accentuate the effectiveness of the new methodology. An
interesting question to be addressed in future investigations is how to select the optimal
stepsizes. Notice that we have used the same step size for both groups of formulas, but we
could have chosen one stepsize for the formulas in (9)–(11) and another for the formulas
in (12)–(14). How to obtain the optimal values for these step sizes is an open question.
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