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decades, and many researchers extensively studied calculus without a limit that deals
with a set of nondifferentiable functions, the so-called quantum calculus. Many types of
quantum difference operators are employed in several applications of mathematical areas,
such as the calculus of variations, particle physics, quantum mechanics, and theory of
relativity. The g-calculus, one type of quantum initiated by Jackson [1-5], was employed in
several fields of applied sciences and engineering such as physical problems, dynamical
system, control theory, electrical networks, economics, and so on [6-14].

For fractional quantum calculus, Agarwal [15] and Al-Salam [16] proposed fractional
g-calculus, and Diaz and Osler [17] proposed fractional difference calculus. In 2017, Brik-
shavana and Sitthiwirattham [18] introduced fractional Hahn difference calculus. In 2019,

Patanarapeelert and Sitthiwirattham [19] studied fractional symmetric Hahn difference calculus.

Later, the motivation of quantum calculus based on two parameters (p, g)-integer
was presented. The (p, g)-calculus (postquantum calculus) was introduced by Chakrabarti
and Jagannathan [20]. This calculus was used in many fields such as special functions,
approximation theory, physical sciences, Lie group, hypergeometric series, Bézier curves,
and surfaces. For some recent papers about (p, q)-differenceequations, we refer to [21-33]
and the references therein. For example, the fundamental theorems of (p, g)-calculus and
some (p, g)-Taylor formulas were studied in [21]. In [32], the (p, 4)-Melin transform and its
applications were studied. The Picard and Gauss—Weierstrass singular integral in (p, q)-
calculus were introduced in [33]. For the boundary value problem for (p, q)-difference
equations were studied in [34-36]. For example, the nonlocal boundary value problems
for first-order (p, g)-difference equations were studied in [34]. The second-order (p, 9)-
difference equations with separated boundary conditions were studied in [35]. In [36], the
authors studied the first-order and second-order (p, g)-difference equations with impulse.

Recently, Soontharanon and Sitthiwirattham [37] introduced the fractional (p, g)-
difference operators and its properties. Now, this calculus was used in the inequali-
ties [38,39] and the boundary value problems [40-42]. However, the study of the boundary
value problems for fractional (p, g)-difference equation in the beginning, there are a few liter-
ature on this knowledge. In [40], the existence results of a fractional (p, g)-integrodifference
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equation with Robin boundary condition were studied in 2020. In 2021 [41], the authors in-
vestigated the boundary value problem of a class of fractional (p, g)-difference Schridinger
equations. In the same year, the existence results of solution and positive solution for the
boundary value problem of a class of fractional (p, g)-difference equations involving the
Riemann-Liouville fractional derivative [42] were studied.

Motivated by the above papers, we seek to enrich the contributions in this new research
area. In this paper, we introduce and study the boundary value problem involving function
F, which depends on fractional (p, q)-integral and fractional (p, q)-difference, and the
boundary condition is nonlocal. Our problem is sequential fractional (p, g)-integrodifference
equation with periodic fractional (p, )-integral boundary conditions of the form

pA’
u(0) = u() 1)

I .8(n)u(n) = ¢(u), nel, —{0,T},

D8, Db u(t) = p[t,u(t),wg,qu(t),D;,qu(t)}, tell

< |

k
where I , 1= {(Z) % ke NO} U{0};0<qg<p<Lapvbec(01;FecC(,x
RxRxR,]R)gE(;q, 5,47
and for ¢ € C (I T I; [0, 0)), we define an operator of the (p, g)-integral of the product
of functions ¢ and u as

1 t —1 s s
W u(t) = (Thpu) () = —— [ (t—q5)07" <t> (>d |
p,qu() ( p,q(pu)( ) p(;')rp,q(,y) /0( qs)p,q (p p7_1 u p'}’_l p’qS

We aim to show the existence results to the problem (1). Firstly, we convert the given
nonlinear problem (1) into a fixed point problem related to (1), by considering a linear
variant of the problem at hand. Once the fixed point operator is available, we make use the
classical Banach’s and Schauder’s fixed point theorems to establish existence results.

The paper is organized as follows: Section 2 contains some preliminary concepts
related to our problem. We present the existence and uniqueness result in Section 2, and
the existence of at least one solution in Section 4. To illustrate our results, we provide some
examples in Section 5. Finally, Section 6 discusses our conclusions.

Rt ) are given functions; ¢ : C( R) — Ris given functional;

2. Preliminaries

In this section, we provide some basic definitions, notations, and lemmas as follows.
For 0 < g < p <1, we define

1_qk, keN
kl, = —q
1, k=0,
k k
P —q k—1
= kl¢, keN
Ky = 4 pa " 1
1, k=0,
k i i
P-4
K], [k—1], - , keN
[k]p,q! = pPAa rAa g p—q
1, k=0.

The (p, q)-forward jump and the (p, g)-backward jump operators are defined as

k k
Ulrjlq(t) = <%) t and p;‘,,q(t) = (g) t, for k € N, respectively.

The g-analogue of the power function (a — b) withn € Ny :={0,1,2,...} is given by
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[any

n—

(a-bg:=1  (a-bf:=]](a—bg), abeR
=0

i
The (p, g)-analogue of the power function (a — b)}; ; with n € Ny is given by

n—1

0
(a—=b)pg:=1, (a—b)pe=[](ap* —bg"), abeRr

Generally, for « € R, we define

In particular, a5 = a*, a3, = (ﬂ>a and (0)g = (0),,, = 0 fora > 0.

The (p, )-gamma and (p, 9)-beta functions are defined by

e
Pl = Mo x e R\ {0,~1,-2,...
Tpa(0) = {0t T~ gy \ }
[x - 1]]9,[7'/ X € N,
1 -1 1 oy Tpq(x)Lgp,q(y)
B, ,(x, = / 101 opnsg b — a1 (xty=2) 2P\ 2 qr A )
pa(X,Y) 0 ( q )p,q pA p T (x+9)
respectively.

7

Definition 1. For 0 < g < p <1land f :[0,T] — R, we define the (p, q)-difference of f as

flpt) = flat)
Dpaf(t) = { (—a)() for t £0
f,(o)r for t=0

provided that f is differentiable at 0 and f is called (p, q)-differentiable on I;, g if Dp,qf(t) exists for

T
allt € I, .
Observe that the function g(t) = D, f(t) is defined on [0, T/ p].

Definition 2. Let I be any closed interval of R containing a,b and 0. Assuming that f
is a given function, we define (p, q)-integral of f from a to b by

b b a
/a F(E)dygt = /0 F(E)dy gt — /O F(B)dyt,

where

x 00 k k
Tpqf(x) = /0 f(t)dpgt=(p—q)x ) Z+1f<p2+1x>' xel,

k=0 P

I —- R
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provided that the series converges at x = a and x = b and f is called (p, q)-integrable on [a, b] if it
is (p, q)-integrable on [a, b] for all a,b € I.

N .
An operator 7, is defined as
Ig/qf(x) = f(x) and I;,\{qf(x) = Iplqlggl (x),N € N.
The relations between (p, g)-difference and (p, g)-integral operators are given by

DyqZpqef(x) = f(x) and Z,4Dpqf(x) = f(x) — £(0).

Fractional (p, q)-integral and fractional (p, q)-difference of Riemann-Liouville type are
defined as follows.

Definition 3. Fora >0, 0 < q < p < land f defined on I;,q, the fractional (p, q)-integral is
defined by

1 't a1 ( s )
¢ f(t) = ———— | (t=g8)5f | —— )dpas
paf (1) p(z>r,,,q(zx)/0( qs)pa f pa-1 )4pa
a—1
_ oot q" t_(‘7>k“t A
pOTyq(a) i=o P p by AP

and (0, f)(1) = f(¢).

Definition 4. Fora > 0, 0 < g < p < 1 and f defined on I;’q, the fractional (p, q)-difference
operator of Riemann—Liouville type of order « is defined by
Dpaf(t) = DpyTpg “f(1)
1

_ t _ —a—1 S
= oy b 0 (e

rPr”I

and D f(t) = f(t), where N =1 <a < N, N € N.
T
Lemma1 ([37]). Let t €« (N—1,N), NeN, O0<g<p<landf: I, — R. Then,
Ty Dy f(t) = f(H) + Cot* T+ Cot* 2 - 4 Ot N
forsome C; € R, i=1,2,...,N.

Lemma 2 ([37]). Let0 < g<p <landf: I;;r,q — R be continuous at 0. Then,

X s L x
[ [ @ dprdngs = [T [ f@)dpgsdyr.
0 Jo 0 Jpgt

Lemma 3 ([37]). Let «,>0,0<g <p <1 Then,

't
-1
(a) /0 (t— qs);Tsﬁ dpgs = t“+/3Bp,q(,B +1,a),

A S Byg(B+1,0)
(b) /0/0(f—QX);T(x—qS)de’qsdp,qx = ZPANE T T et

Blpa

Lemma 4 ([40]). Let «,>0,0< g <p <1landn € Z. Then,
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t - o Tpg(a)
PR el _ () _~rA $
(a) /0( q5)pq dpgs = P2 T,a(a+1)
1

o K Z 1( )“ _ o+ _Teal®)
- _—gs dpssd,x = pl2tla) DAV qatp
/ / P \ppt i ’ Tpqla+1)

—p-1 s a—n sy I ( n'+1)r ( ﬁ) a—p—n
(©) /O( - <p—ﬁ—1) dyys = pP) plzpq(zx—ﬁ np—iq-l) b

Lemmab5. Let o, 5,0 >0,0<qg<p<1landn € Z. Then,

b o-1( «x B-1,/ o \a=n
I G = I = I

pAq p.q
= p+® Lpgla —n+1)pq(B)Tpq(0) uipro-n
rpq(“+ﬁ+9-7’l—|—l) /

-1 a—1
9 1 ﬁ 9 1 = X
() // /p i ( = _qx> ( p1 _‘75> dp,g5 dpqX dpqgy
P pg NP pA

_ B+ Tpa()Tpg(B)pq(6) arpro
Tpgla+p+60+1)

Proof. By Lemmas 2, 3 and 4 and definition of the (p, g)-beta function, we have

B—1 a—n
9 T X fa— S
(a) / / (t —gx) M <p91 _qs) (plx1> dp,qs dpgx

P4 pA

t 01| [T X Bl g \&n
:/O(t—qx)p,q[/op <Pgl—q5> <pa—l) dpgs| dpgX

P4 pAq

& Tpq(a— nr t
_ p2 Tpgla—n+1)Tp,(p) / 0=l aipn
~ @@ Ty (a+p-n+1) Jo (= gx)pg Apax

= p+G 0 Cpg(a —n4+1)0p4(B)Tp,q(6) atB+0—n
rp,q(“+ﬁ+6—ﬂ+l) ’

(b) // /”ﬁ Ht—ay)yg ( ) ( 5>Hdp,q5dp,qx‘iprqy

pA

2/ / (t—ay)pq (p9 —qx > l/o (p ’15) dp,qs] dpgxdpqy
' P

pA

0 Tpgla "
21",,f,oc+1 // - yi”l 9— —5=1 ) dpaXdpqy

_ p(g)+(2)+(2) Uy (@)Tp,q(B)Tp,q(6) patp+o
Tpgla+B+60+1)

The proof is complete. [

The following lemma, dealing with a linear variant of problem (1), plays an important
role in the forthcoming analysis.

Lemma6. Let O #0, 4,8,0 € (0,1,0<g<p <1, heC(I;,R) and g € C(I} 5, R") be

given functions, ¢ : C(IT 0.7 R) — R be given functional. Then, the problem



Axioms 2021, 10, 264 6 of 16

DY Dhou(t) =h(t), tell, ©)
u<0>=u(2) 3
70 g(n)uln) = g(u), nel,?,q—{o,;} @

has the unique solution:

ﬁ X — S
£ = ra (t— ( ) h()d d
u(t) p() @ // qx)p pp—1 —gs a1 pgS Ap,gXx

FP g\& p4q
tP-1
- ﬁ{Bnﬂm[m +AT(¢<u> - QlH) }
patp-1 T p-1
+ W{Avmh] + <p> (o(u) - Q[h])} ®)
where the functionals P[h] and Q[h] are defined by
1 Bl oy e
Plh] := — - ( —gx ) (_ — qs) X
pl2)* ()rpq )Tpq(P / / pa NP pA
h (ps_l> dpgs dpgx ©)

. 9
Q- (- WT
p(2)+(2)+(2)Fp,q(Dé)rpq(.B)rP‘i // /

(52, G, (G

and the constants At, Ay, By and Q) are defined by

) dpgsdpgxdpqgy  (7)

T
() () P
A:zi/ Z s T L/ — 8)
T, \p ) ) T p)
1 n o—1 S S -1
A :=7/ (fi—qS),g(> () dp,gs )
n p(g)rplq(e) 0 q pe 1 pG 1 |22
1 U o1 0—1 g1 X
B, := //” (W—qu< - q) g( )X
P(2)+(g)rpq(.3)rpq(8) 0 Jo -1 . pf-1
s a=1
(pzx—1> dpqs dpqx (10)
T\F!
Q:= (p) B, — ArA,. (11)

Proof. Taking fractional (p, g)-integral of order « for (2) and using Lemma 1, we then have

Dhau(t) = Cyt* '+ I8 h(t)
= Ct* 14 1 /t(t - qs)“_lh(s> dpgs (12)
p(g)l—'p,q(lx) 0 P4 pzx—l pAa°-

Next, taking fractional (p, 9)-difference of order f for (12), we have
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patp-1 1

u(t) = Cotﬁil +C + 3 X
Tpq(a+p) p@+Or, ()T, (B)
torger g-1 ( X azl s
Pt —qx) o | —— —gs h{ —= | dpgsdpqx. (13)
/0 /0 pa\ P ba |\t ) s iea
Substituting t = 0, % into (13) and employing the condition (3), we have
T\F!

CO(P) + CiAT = —]P)[h]. (14)

By taking fractional (p, g)-integral of order 6 for (13), we have
po-1 C1
qu(ﬁ+9) p() ()qu(ﬁ)qu(G)

L7 (), ()
t— x — —_— S X
q P - g8 pa1 S Apg

pA

e 1w
p@+EHRIT, (a)T, (B

y B-1
<pg_1 —‘7X> ( ) ( ) dp,g5 dpqX dp,qgy.- (15)
rq

From the condition (4) we have

Ig’qu(t) = o X

CoAy + C1By = @(u) — Q[H] (16)

Solving the system of linear Equations (14) and (16),we obtain

p—1
c, = PP - Arlp() — Q) (o (5)" (p(u) — Ql]) + AyP[H

Q N Q ’

where P[h], Q[h], A1, Ay, B, and Q) are defined by (6)-(11), respectively.
After substituting Cp, C; into (13), we obtain (5). We can prove the converse by direct
computation. The proof is complete. [

3. Existence and Uniqueness Result

In this section, we prove the existence and uniqueness result for problem (1) by using
Banach fixed point theorem as follows.

Lemma 7 ([43] Banach fixed point theorem). Let a nonempty closed subset C of a Banach space
X, then there is a unique fixed point for any contraction mapping P of C into itself.

LetC =C (IPT g ) be a Banach space of all function u with the norm defined by

}

where ||u :max{ut }and DY u :max{‘D” u(t ‘}
|| || P | ()l H pq ||C el pq ()

Clpg

v
Dp,qu

lufle = max {

By Lemma 6, replacing h(t) by F [t, u(t), ¥, u(t), D;;,qu(t)] , we define an operator
A:C— Cby
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P*[F,] =

- P() TG )rpq( )rpq(ﬁ)rpq(g)

T\p-1
Q*[F] -1 (%)ﬁ_l a+p—1
+ Q) Art l"pq(oc—i-ﬁ)t

« A\ P
S R VR PO
where the functionals P*[F,] and Q*[F,] are defined by
LG o)
p* (Z)FP‘i «)pq(P pa NP Pa
F[pas—l’u<pas 1) ¥ (%)qu”(;;qﬂ ApqS dpqx (18)

1

X

U= = -1 Y LA ol y
BRI oz G o), (o), sG>

pA

S S S S
F [ptxl u < pzxfl ) ’ TZ/‘]” ( Paz*l ) ’ D;,q” (plxl ):| d?’qu dp"ix dmy (19)

and the constants A, Ay, B, and () are defined by (8)—(11), respectively.
We see that the problem (1) has solution if and only if the operator A has fixed point.

Theorem 1. Assume that F : I}, x R x R x R — R is continuous, ¢ : Iy, x I; , — [0,00)
is continuous with ¢g = max § (t,s) : (t,s) € I}, x I} o v, and ¢ : C(I} ., R) — R is given

functional. Suppose that the following conditions hold:
(Hy) There exist positive constants Ly, Ly, L3 such that for each t € Ig,q and u;,v; € R, i=1,2,3,

’F[t,ul,uz,ug,] — F[t,vl,vg,v3]‘ <L ’u1 — U1| + L2|u2 — Uz‘ + L3|u3 — 7)3‘.
(Hy) There exists a positive constant w such that for each u,v € C,

lp(u) = ¢(v)] < wllu—vlc.

(H3)For eacht € Ipq, 0<g<glt)y<G

where
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po(L)"
Li=Li+L—F"—, 20
1+ 2F D) (20)
Tya+p
OTGUAL+/5+9 (P)
O = O,+1), 21
rp,q(zx+ﬁ+9—1)+rm(a+ﬁ+1)( 1 +1) @
r (I)aJrﬁ*l <I>ﬂ71
4 4
Or = +AT | s (22)
r Tpq(a+B) min Q)]
(1) r\#!
0, = (p)maqu + max By, (p> . (23)
Lpq(a+p) min |Q)
Then, problem (1) has a unique solution in Ig, q
Proof. For each t € I;,q and u,v € C,
‘I’;’Iqu(t) —‘I’Z,qv(t)’ < 7L/t(t—qs)% u( ':_1> —v<,ys_1> dpqg8
plz )FM('Y) 0 P P
7-1
< H/ <—qs> dy g8
M+ N pA
P(Z)FM P
0
- L(%) =l
Tpqg(y+1)
Denote that
Flu—o|(t) ‘F [t w(t), ¥0u(t), D;Iqu(t)] —F [t,v(t),\yg,qv(t), D;;,qv(t)} ]
By using Lemma 5(a), we obtain
P*[E,] — P*[F,]
p-1 a=1
T e
p&+ (4 )qu )Ty q(B pg \P P4
Flu—v| (p‘"_l> dpgsdpqx
[L1|u —o|+ LZ"I’Z,qu — ‘I’Z,qv‘ + L3| D}y gu — Dz,qv| S g1
LG
- B
p2 )+(2)rp,q(“)rp,q(ﬁ) 4
s
( -1 ) (plx—1> dp,qsdpgx
B o)
P v v 4
< Li1+L - L D —D
= 1+ 2470 ,)/+1) ‘u U|+ 3‘ ” ‘ l"q(uc—i-ﬁ—l-l)
()
— , 24

and by using Lemma 5(b), we have
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|Q*[F] - Q*[F)
G ,91 ,31 p1
< o //’ /” (1 = qv)}y (y—4x> X
p2 pa (&)L p,q(B)Lp,q(6 4 P
a—1
( 5 qs> .F|u—v|< )dp,qsdp,qxdp,qy
p P
G [L1|u -]+ Lzl‘l’g,qu — ‘I’Z,qv‘ + L3| D}y gu — D;,qvl]
— « B 0
P(2)+(2)+(2)rp,q(“)rp,q(5>rprq(9)
/W/pgyl/ﬁxl( ot (2 = g9) T dpgsdpged
P v—21
nm—qy < - —qx) < - _‘15> 95 Ap,gX ApqgYy
o Jo 0 pa \ po-1 b pp—1 b pgS ApgX dpgq
< ||+t m(5) Ls| D} u — D} Gyt
< 1+ ZW |u— 0| + Ls| Dy gu — Dy 40| Tpgla+p+60+1)
G(,C + L3)77'X+/5+9
ol 25
= Tpa(a+p+6+1) [ —olle (25)
Then,
| (Au)(t) — (Av)(t)]
p—1 at+p—1
wlu—olle(2)" | (%)
Q| Tpq(a+B)
+p-1
. Gﬂa+,5+6 T p-1 (%)m
+(L+Lg)||ju—v <> T TA
T\*+P _ T\"
+ (L +La)||u—2|c <E) -(T>ﬁ 1 (p)A’?_FB’]
QTpa(a+B+1)" \p Tpg(a+B)
(£ +Ly)||u—ollc = N x =
T ed / /p P i T) A
p T g ()T p g (B pa P PA
Gna+ﬁ+9 :|
< <0 L+L
—{ T{“’H M vy y
(I>0¢+ﬁ (I)N-HS
FO, (L4 —2 (L) —— e Yu—v
n ( 3) Fp,q(“+ﬁ+1) ( 3) Fp,q(a+,3+1)}| ||C
= Xu—ole. (26)

Taking fractional (p, q)-difference of order v for (17), we get
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Tpg(a+B)Tpg(a+pB—v) TFM([S —
Q* [Fu} Ar l"p,q (‘B) =1 _ (%)‘Bilrp,xﬂlx + ﬁ) patp-v—1
Tpe(B—v) Tpg(a+B)Tpg(a+pB—v)

P*[F] Tpg(a+B) wipv—1 @ LpaB) gy
{A rp,q(“"‘,B_V)rp,q(““'ﬁ)t By rp,q(ﬁ_v)t ]
1

I3 B —v
P(Z)HZ)H 2 )rp,q(‘x)rp,q (B)Tpq(—v)
t —Z—l ﬁ -1 E
P P t 14
L e () ()
s s s s
F[Pa1'”<pa1>fTZq”<p ) Dy qu (p )} dpgsdpqxdpqy.- (27)

| (D} gAu)(£) = (D}, g Av) (1))

wl=ole(3) AP

_ o) l (%)5,11,]%(“ +B) jatBou—1 Tpq(B) tﬁ_v_1]
( v)

X

Thus,

<
N p pala+pB—v) !

Gy tpHo <T> ' Tpg(a+p)
< (L+L3)|[lu—wv = —

T a+B
(ﬁ) T\ 7" Tpq(a+p)
+<“L3>'“‘””Crp,q<a+ﬁ+1>-<p> A

()b
pala+B—v+1)

G ythte (%)ﬁfm(oc +B)
Tpgla+p+6— 1)} Tpgla+p—v)

(O 1(2) "Thaa+p)
Tpgla+B+1)| Tpgla+p—v)

T x+p—v
(5) )}w—wc

Tpgla+p—v+1
< Xlu—09|ec. (28)

+ (£ +La)u—lleg

IN

{OT [w + ([, + L3)

+0, | (£L+Ls)

+ (L +L3)

From (26) and (28), we have
[ Au — Avlle < X[[u —o]lc.

By (H4), we can conclude that A is a contraction. Thus, by using Banach fixed
point theorem in lemma 7, A has a fixed point, which is a unique solution of problem (1)
onIl . O

P4
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4. Existence of at Least One Solution

In this section, we prove the existence of at least one solution to (1). The following
lemmas reviewing the Schauder’s fixed point theorem are also provided.

Lemma 8 ([43] Arzela-Ascoli theorem). A collection of functions in C[a, b] with the sup norm,
is relatively compact if and only if it is uniformly bounded and equicontinuous on [a,b).

Lemma 9 ([43]). If a set is closed and relatively compact, then it is compact.

Lemma 10 ([44] Schauder’s fixed point theorem). Let (D, d) be a complete metric space, U be
a closed convex subset of D, and T : D — D be the map such that the set Tu : u € U is relatively
compact in D. Then, the operator T has at least one fixed point u* € U: Tu* = u*.

Theorem 2. Assume that F : ng x R x R x R — Ris continuous, and ¢ : C(
given functional. Suppose that the following conditions hold:

(Hs) There exists a positive constant M such that for each t € I;];,q andu; € R, i=1,2,3,

I7,R) = Ris

‘F[t, Uy, Up, Uz) ’ < M.

(Hg) There exists a positive constant N such that for each u € C,
[p(u)] < N.
; T
Then, problem (1) has at least one solution on I, ;.

Proof. To prove this theorem, we proceed as follows.

Step L. Verify A maps bounded sets into bounded sets in Bx = {u € C : ||u|¢ < R}.
Let us prove that for any R > 0, there exists a positive constant L such that for each x € Bg,
we have || Au||¢ < L. By using Lemma 5, for each t € I;?,q and u € Bg, we have

T x B—1 a—1
< M /p /pﬁ*1 (T _ qx) <ngl — qs> dpqsdpqx
pDHEIT, ()T 0(B) 70 /0 p pg \P pa

a+p
M(%) (29)

- Fplq(oc +B+1)
@' [F]

p(z

2)+(

GM //el/pﬁl
246 B)Tpq(0

) (Z)Fp,q(l’é)rpq

x a—1
<Pﬁ1 - q5> dp,gs dp,gx dpqy

GMUIXJrﬁJrG

pA
(30)

= Ty (a+B+0+1)

From (29) and (30), we have
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a+pB+0
GMy or
Fp,q(oc +B6+60—-1)

M(I)DH_‘B
__\F) o
Tpo(a+B+1) "

r . x_ B—1 a—1
= 2 /V /pﬁf] (qu)(ﬁx—lqs) dp,qs dpgx
P(2)+(2>rp,q(“)rp,q<ﬁ> 700 P P

|(Au)(t)| < NOT +

pa pa
T a+p
OT Gﬂﬂt"t‘ﬁ-‘r@ (?)
< NOr+M + 0O, +1
= T T+ p+6-1) Fp,q(a+/3+1)( 7+ 1)
< NOp+ MO := L. @31)

We find that

(DpgAn) )] < Nor (1)

p
Or Gﬂoc+/3+9 (T)V Fp,q(‘xﬁL;B)
Tpgla+p+0-1)\p/) Tpela+p—v)
(I)H/5 TN Tpola+B)
P T pa
rrf,q(“+ﬁ+1)(0”+1)(i’> Tpgla+p—v)
< L. (32)

+M

Thus, ||(Au)||¢ < L, which implies that A is uniformly bounded.

Step II. Since F is continuous, we can conclude that the operator A is continuous
on BR-

Step III. For any ¢, t; € Ig, q with #; < f,, we find that

(R

[(Au) (1) = (Au) ()] < [Ar(N +Q'[.]) + B,P*[F]|

o]
tg—&-ﬁ—l . ttié-‘rﬁ—l‘ 7 A1
+ 2) (N+QU[R]) + A P[E
QT pq(a+ B) <P> ( IF) Pl u]]
M x+p x+p
G+ —t —t , 33
Tpq(a+p)l? 1 (33)

and

|(Dyp,q" Au)(t2) — (D g Au) ()|
tg+ﬁ . ti&ﬂi‘

= AT, (6—v)

B—1
[(;) (N +Q*[F]) + AyP*[F,]

at+p-v—1 at+p—-v—1
t2 o tl ‘

QTp4(a+B—v)
M
Tpgla+p—v+1)

[AT(N + Q*[Fu]) + B, P~ [Fu]] +

+

at+p—v tt;—i—ﬁ—v ) (34)

2

We see that the right-hand side of (33) and (34) tends to be zero when |t, — t;| — 0.
Thus, A is relatively compact on Bg. This implies that .A(Bg) is an equicontinuous set. By
Arzela-Ascoli theorem in Lemma 8, Lemma 9, and the above steps, we see that A: C — C
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is completely continuous. Hence, we can conclude from Schauder fixed point theorem in
Lemma 10 that problem (1) has at least one solution. [

5. Examples
In this section, to illustrate our results, we consider some examples.

Example 1. Consider the following fractional (p, q)-integrodifference equation as

pi,p}u = ! e (12 4+ 2ful) e (T L ()
51 5% (10062 + £3) (1 + |u(t)]) 33
k
27+cos? i 10(%)
52 52 2 k+1
with periodic fractional (p, q)-integral boundary condition
u(0) = u(15)
2 1215\ \? /1215 ® Cilu(t) :
73 2 P = ! ! t= 1 1
%é( Hsm( 256 )) ”( 256 ) Ly 173400, 6O

where C; is given constants with ﬁ < Y20 Ci < 100 and ¢(t,s) = G

: _ 3 _ 1 _ 1 _ 1 _ 2 _ 2
Lettinga =3, p=3, 7=3,v=140=%p=1}
(

15, g(t) = (20e +sint)? and F[t,u(t), ¥},4u(t), Dy yu

] |

¢o = 0.0498, |Ar|=2.06344, |A,| < 264588, |B,| <196.777 and |Q| > 283.525.

1 2
¥3 1u(t)‘ +ef(27r+cos 7tt)
372

[e3t(u2+2|u|) +e*(ﬂ+sin2nt)

Using above values, we find that

Forallt € 1%01 and u,v € R, we find that
32

’F {t, u,‘IfZ,qu, D;/ u] —F {t, v, ‘T’Z,qv, D;,qv} ’

! v
< Jo0 91+ 1oggee Thatt = ¥hat| + oz | Dpat — Dt

Thus, (H; ) holds with L; = 0.001353, L, = 5.848 x 10~5 and L3 = 2.5273 x 10~6. So

L = 0.00136.
Forall u,v €C,

9(u) = 9(0)] < s lu —2lc.

Thus, (H;) holds with w = 0.002718.
In addition, (H3) holds with ¢ = 19.6831, G = 41.42935.

Since

O7 =0.001885 O, =2.10484 and © = 89.5277,

therefore, (Hy) holds with
X =0.121989 < 1.

Hence, by Theorem 1 this problem has a unique solution.
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Example 2. Consider the following fractional (p, q)-integrodifference equation as

1 1
3 1 —(t+15) |u()+[¥3 | u(t)|+|D3 u(t)}
pi 0}ty = o (r+3)e LT TR rem )
32 32 10 3 21
with periodic fractional (p, q)-integral boundary condition
u(0) = u(15)

2 1215\ \* (1215 d ‘
7;,(2 i = ()| B e

%é( e+sm< 256 )) "‘( 256 ) Lce "l h=0 00, @

where D; is given constants with ﬁ < Y20 Di < 55
: _3 g_1 . _1 ,_1pg_2 ,_2 _1 7 _ _ 1215 14 ;
Lettlngoc—1,IB—Q,’Y—g,V—E,G—g,p—g,q—E,T—lo,ﬂ—ﬁ.Itls

clear that ’F[t, u,‘{’z,qu, Dz,q“} ) < % = Mfort € 11%, and lp(u)| < 555 = N foru € C.
3.3

Thus, we can conclude from Theorem 2 that our problem has at least one solution.

6. Conclusions

A fractional (p, q)-integrodifference equation with periodic fractional (p, q)-integral
boundary condition (1) is studied. Our problem contains three fractional (p, q)-difference
operators, and two fractional (p, g)-integral operators. We establish the conditions for
the existence and uniqueness of solution for problem (1) by using the Banach fixed point
theorem, and this result is shown in Theorem 1. We also established the conditions of at
least one solution by using the Schauder’s fixed point theorem, and this result is shown
in Theorem 2. The choice to use of Theorems 1 or 2 depends on the conditions of the
assumptions. The main results are illustrated by a numerical example. Some properties of
fractional (p, g)-integral needed in our study are also discussed. The results of the paper
are new and enrich the subject of boundary value problems for fractional (p, g)-difference
equations. In the future work, we may extend this work by considering new boundary
value problems.
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