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Abstract: Meta-analyses combine the estimators of individual means to estimate the common mean
of a population. However, the common mean could be undefined or uninformative in some scenar-
ios where individual means are “ordered” or “sparse”. Hence, assessments of individual means
become relevant, rather than the common mean. In this article, we propose simultaneous estimation
of individual means using the James–Stein shrinkage estimators, which improve upon individual
studies’ estimators. We also propose isotonic regression estimators for ordered means, and pretest
estimators for sparse means. We provide theoretical explanations and simulation results demonstrat-
ing the superiority of the proposed estimators over the individual studies’ estimators. The proposed
methods are illustrated by two datasets: one comes from gastric cancer patients and the other from
COVID-19 patients.

Keywords: statistical decision theory; isotonic regression; meta-analysis; pretest estimator; restricted
parameters; shrinkage estimation

1. Introduction

Meta-analysis is a statistical method used to summarize results from published stud-
ies [1]. While it has been applied to all areas of science, meta-analysis has been a partic-
ularly important tool in educational studies [2,3] and medical studies [4,5]. Especially,
meta-analysis has played an important role in studies on the impact of COVID-19 [6–8].

The most basic method in meta-analyses uses a fixed-effect model, where all of the
studies have a common mean [5,9]. This model has long been recognized in mathematical
statistics and stratified sampling designs, where the common mean estimator has rigorously
been investigated (pp. 55–103 of [10]; [11–13]).

Another basic model is the random-effects model [14], where the studies have different
means. This model imposes normally distributed random-effects to account for between-
study deviations from the common mean [15]. In either model, the goal of meta-analyses is
to estimate the common mean by combining the estimators of individual means.

However, in some scenarios, the common mean is undefined or uninformative. In
these scenarios, the focus of meta-analyses can be on individual studies’ means. While
individual means are estimated by published studies, they could be improved by statistical
techniques. For instance, Raudenbush and Bryk [16] pointed out the possibility for improv-
ing individual studies’ estimators in meta-analyses by using empirical Bayes estimators
under the normal random-effects. Schmid [17] also considered similar Bayes estimators that
improve upon individual studies’ estimators. Röver and Friede [18,19] tried to improve
an individual estimator by another individual estimator. All these Bayes estimators are
defined by posterior means under the normal priors (random-effects). Evidently, the poste-
rior means are related to but different from the individual studies’ estimates. However,
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there are some cases where the normal priors (random-effects) do not apply (Section 2.2).
This motivates us to develop non-Bayesian estimation.

In this article, we consider some improved estimation methods of individual means
without normal random-effects. First, we will explain how to employ shrinkage estimators
to obtain improved estimators of individual means. Unlike the existing Bayes estimators,
our frequentist shrinkage estimators do not involve any prior distribution. Next, we
will provide theoretical and numerical results to show the superiority of the proposed
estimators over the individual studies’ estimators. Finally, we will analyze two datasets to
illustrate the proposed methods.

This article is organized as follows. Section 2 provides a background including a
review of meta-analyses. Section 3 proposes the estimators of individual means and studies
their theoretical properties. Section 4 conducts simulation studies, and Section 5 analyzes
real datasets. Section 6 concludes the article.

2. Background
2.1. Meta-Analysis

This subsection reviews the basic models for meta-analysis under the normal distribu-
tion, including the fixed-effect model and random-effects model [1,5].

First, we introduce some mathematical notations and basic assumptions for meta-
analyses. Let G > 0 be the number of studies (G stands for Groups) in a meta-analysis.
For i = 1, 2, . . . , G, the i-th study provides an estimate Yi for an unknown mean µi with a
known variance σ2

i > 0. This implies that each study provides σi as the standard error (SE)
of the estimate Yi. Hence, in meta-analyses, the variance σ2

i is known. We note that there
could be a different setting, where the variance is unknown [20,21].

Next, we further assume the normal model Yi ∼ N
(
µi, σ2

i
)
. This model’s special case,

the fixed-effect model, imposes the common mean assumption. That is, µ ≡ µ1 = . . . = µG.
The random-effects model imposes normally distributed means given by µi ∼ N

(
µ, τ2) for

i = 1, 2, . . . , G. In either case, the main goal of meta-analyses is to estimate µ by optimally
combining Yis [1,5,9].

In a meta-analysis, observed data consist of {Yi; i = 1, 2, . . . , G}. An example is the
two-sample t-test for a continuous outcome, where Yi is the (standardized) mean difference
estimator from the i-th study, and σ2

i is the pooled variance estimator [5]. Another example
is the 2× 2 table analysis for association between an event and a risk factor, where Yi is
the logarithm of the risk ratio (or odds ratio), and σ2

i is estimated variance [5]. Another
example is a survival analysis for censored data, where Yi can be the logarithm of an
estimate of relative risks from the Cox model. Without loss of generality, we assume that
µj = 0 corresponds to the null value.

Finally, we describe the main idea of meta-analyses. The idea is to optimally com-
bine the results from the G studies, based on either the fixed-effect model or random-
effects model. The first model leads to the fixed-effect meta-analysis under the assumption
µ ≡ µ1 = · · · = µG. The second model leads to the random-effects meta-analysis under the
assumption µi ∼ N

(
µ, τ2). In either case, the target is to estimate the common (overall)

mean µ by

µ̂Fixed =
∑G

i=1
(
σ2

i
)−1Yi

∑G
i=1
(
σ2

i
)−1 ,

µ̂Rand =
∑G

i=1
(
σ2

i + τ̂2)−1Yi

∑G
i=1
(
σ2

i + τ̂2
)−1 ,

where the value of τ̂2 is an estimator from the data [5,14].

2.2. Does the Estimation of the Common Mean Make Sense?

Given the data of {Yi : i = 1, 2, . . . , G}, one usually conducts the fixed-effect meta-
analysis and/or random-effects meta-analysis. The Q test for homogeneity can help select



Axioms 2021, 10, 267 3 of 17

between the fixed-effect and random-effects model [1,5]. If the fixed-effect model is rejected
(i.e., the random-effects model is selected), one might explore a systematic source of
heterogeneity by meta-regression. One might also test the goodness-of-fit of the normal
random-effects model [22]. In any case, statistical inference for the common mean depends
on some statistical models.

However, the above statistical models do not always fit the data at hand. If the studies
have a monotonic-effect, e.g., µ1 ≤ . . . ≤ µG, the model is neither fixed nor random. Thus,
there is no general way to estimate the common parameter unless some specific models are
imposed. If a covariate is available to explain some structure among µis, a meta-regression
may be used (Chapter 20 of [1]). However, we do not wish to assume the presence of
covariates to conduct meta-regression in this article.

While the common mean estimate can be an informative summary of individual
estimates, this single value rarely describes the whole results. Thus, meta-analysis typically
displays individual estimates (y1, . . . , yG), providing an opportunity for learning the data.
For instance, forest plots show the individual estimates (y1, . . . , yG) along with their 95%
confidence intervals (CIs): (y1, . . . , yG)± 1.96× (σ1, . . . , σG). Funnel plots show (y1, . . . , yG)
against (σ1, . . . , σG); see [1,5,23,24] for these plots. In some cases, one is interested in the µi
that has the largest size [16]. Therefore, reporting individual estimates is an important part
of meta-analysis.

2.3. Individual Estimates Could Be Improved

Despite the potential advantages of improving the individual estimators by the shrink-
age methods [11,12,25,26], the development of such estimators has rarely been discussed
in the literature of meta-analyses. In other words, the goal of meta-analyses has been the
estimation of the common mean by disregarding the individual means. This causes a gap
between meta-analyses and shrinkage estimation methods. Therefore, there is room for im-
proving the standard individual estimators (y1, . . . , yG) for (µ1, . . . , µG) in some scenarios.

We raise scenarios where the common mean is undefined or uninformative.
The first example is the case of the monotonic-effect, µ1 ≤ µ2 ≤ . . . ≤ µG, where the

common mean seems to be not well-defined. In this case, an alternative is to perform
meta-regression with the aid of observable covariates. We however do not assume the
availability of covariates in this article.

The second example is the case of sparse normal means [27,28], where most of µis
are equal to zero, e.g., (µ1, . . . , µ10) = (−5, 0, 0, 0, 0, 0, 0, 0, 0, 5). This is relevant to meta-
analyses that fail to reject many null hypotheses. In this case, the interest may be in the
estimation of the nonzero means rather than the common mean.

3. Proposed Estimators

We propose a variety of shrinkage estimators for simultaneously estimating individual
means (µ1, . . . , µG), and discuss their properties. In particular, we theoretically prove
that the proposed estimators have better precision than the individual studies’ estimates
(y1, . . . , yG) in terms of a mean squared error criterion under some conditions.

The problem setting is as follows: Let Yi ∼ N
(
µi, σ2

i
)

be an estimator for an unknown
mean µi under a known variance σ2

i > 0 for i = 1, 2, . . . , G. As mentioned in Section 2, the
variance σ2

i is known from the i-th study. Observed data consist of {Yi; i = 1, 2, . . . , G}. We
regard Y ≡ (Y1, . . . , YG) as a simultaneous estimator of µ ≡ (µ1, . . . , µG). That is, we regard
Y as an observable random vector to estimate the unknown vector µ.

Let δ(Y) ≡ (δ1(Y), . . . , δG(Y)) be a simultaneous estimator for µ. We state that δ(Y)
improves upon Y if

E

[
G

∑
i=1

(δi(Y)− µi)
2

σ2
i

]
< E

[
G

∑
i=1

(Yi − µi)
2

σ2
i

]
= G, ∃(µ1, . . . , µG), (1)
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E

[
G

∑
i=1

(δi(Y)− µi)
2

σ2
i

]
≤ E

[
G

∑
i=1

(Yi − µi)
2

σ2
i

]
= G, ∀(µ1, . . . , µG). (2)

We then call δ(Y) an improved estimator of Y.
We call δ(Y) = Y the standard unbiased estimator because of the unbiasedness E(Y) = µ.

It is a benchmark estimator for comparing different estimators. Recall that Y is simply the
collection of the individual studies’ estimates. If “∀(µ1, . . . , µG)” in the criterion (2) holds
only for a restricted parameter space, δ(Y) is only locally improved.

The criteria (1) and (2) employ the weighted mean squared errors (WMSEs). The
inverse variance weights guarantee the equal contributions of all studies to the estimation error.
The weighs also make it convenient to apply the classical decision theory. The special case of
σ1 = . . . = σG = 1 gives the total MSE (TMSE), defined as E

[
∑G

i=1(δi(Y)− µi)
2
]

[11,25,29].
We use the WMSEs for theoretical convenience while the TMSE criterion is also a relevant
criterion. We will use both the WMSE and TMSE in our numerical assessments.

Indeed, there are infinitely many estimators δ(Y) that improve upon Y, including
very complex and unrealistic ones [25]. In addition, it is quite easy to find an estimator
that locally improves upon Y, such as δ(Y) = 0. While the problem of deriving/assessing
estimators has been intensively discussed in the statistical decision theory, it has rarely
been appreciated in meta-analytical settings. The goal of this article is to facilitate the
applications of shrinkage estimators in the context of meta-analyses.

In the subsequent sections, we will introduce three estimators that help reduce the
WMSE and TMSE by shrinking Y toward a restricted space of (µ1, . . . , µG). Section 3.1 will
discuss the shrinkage towards the zero vector 0 = {(µ1, . . . , µG) : µ1 = · · · = µG = 0}, the
most traditional shrinkage scheme. Section 3.2 will consider the shrinkage toward 0 under
constraints {(µ1, . . . , µG) : µ1 ≤ . . . ≤ µG}. Section 3.3 will explore the shrinkage towards
the sparse space

{
(µ1, . . . , µG) : ∑G

i=1 I(µi 6= 0) < G
}

.

3.1. Shrinkage Estimation for Means

To estimate µ = (µ1, . . . , µG), we propose the James–Stein (JS) estimator of the form

δJS ≡
(

δJS
1 , . . . , δJS

G

)
≡
(

1− G− 2

∑G
i=1 Y2

i /σ2
i

)
Y.

This estimator is a modification of the original JS estimator [29] that was derived
under the unit variances (σi = 1 for ∀i). See Appendix A.1 for the details. The JS estimator
reduces variance by shrinking the vector Y toward 0 while it produces bias. The degree of
shrinkage is determined by the factor (G− 2)/(∑G

i=1 Y2
i /σ2

i ) that usually ranges from 0 (0%
shrinkage) to 1 (100% shrinkage), and occasionally becomes greater than 1 (overshrinkage).

It can be shown in Appendix A.1 that δJS has the following WMSE

E

 G

∑
i=1

(
δJS

i (Y)− µi

)2

σ2
i

 = G− (G− 2)2E

[
1

χ2
G(λ)

]
,

where χ2
G(λ) is a random variable having a noncentral χ2-distribution with the noncentral

parameter λ = ∑G
i=1 µ2

i /σ2
i and the degrees of freedom G. Thus, δJS has a smaller WMSE

than Y when G ≥ 3. Indeed, the WMSE is minimized at µ = 0 at which the WMSE is
G− 1/(G− 2) by the inverse moment of the central χ2-distribution with λ = 0. Thus, the
JS estimator gains the greatest advantage if all the individual means are zero. This gain is
appealing for meta-analyses for small individual effects (true means close to zero). Even if
µ 6= 0, the JS estimator has a smaller WMSE than Y. The reduction of the WMSE diminishes
as λ departs from zero.
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One might ask where the special formula of the JS estimator comes from. The JS esti-
mator δJS can be derived as an empirical Bayes estimator under the prior µi ∼ N

(
0, σ2

i τ2):
δJS =

(
1−

ˆ(
1

1 + τ2

))
Y,

where the shrinkage factor ˆ(1/(1 + τ2)) ≡ (G− 2)/ ∑G
i=1 Y2

i /σ2
i is the estimator of 1/

(
1 + τ2).

See Appendix A.2 for the detailed derivations. Thus, if µi ∼ N
(
0, σ2

i τ2), the JS estimator
minimizes the Bayes risk, and hence, is the optimal estimator under the prior.

A minor modification to the JS estimator can reduce the WMSE further. The modifica-
tion is made in order to avoid the effect of an overshrinkage, (G− 2)/(∑G

i=1 Y2
i /σ2

i ) > 1, by
which all the signs of Y are reverted. The overshrinkage phenomenon occurs with a small
probability, and therefore, the modification is minor in the majority of cases. A modified
estimator is the positive-part JS estimator

δJS+ ≡
(

δJS+
1 , . . . , δJS+

G

)
≡
(

1− G− 2

∑G
i=1 Y2

i /σ2
i

)+

Y,

where (.)+ ≡ max(0, .). Consequently, δJS+ has a smaller WMSE than δJS (p. 356, Theo-
rem 5.4 of [25].

In summary, this subsection proposes two estimators (δJS and δJS+) that improve upon
the standard unbiased estimator Y.

3.2. Estimation under Ordered Means

Our next proposal is a shrinkage estimator under ordered means. We consider the case
where the ordering constraints µ1 ≤ . . . ≤ µG are known by the study design. Thus, the
parameter µ is known to be restricted on the space {(µ1, . . . , µG) : µ1 ≤ . . . ≤ µG}. For
instance, suppose that i (= 1, 2, . . . , G) represents the time index (i = 1 for the oldest study,
and i = G for the newest study) at which a treatment effect µi is estimated. Then, one may
assume a trend µ1 ≤ . . . ≤ µG due to the improvements of treatments over time.

For instance, the true means may be (µ1, . . . , µ5) = (−2,−1, 0, 1, 2). This trend could
be modeled by a meta-regression with µi = a + bi, where values a and b are unknown. In
practice, one does not know any structure of the means (e.g., linear regression) except for
µ1 ≤ . . . ≤ µ5. If some knowledge, such as a linear model on covariates, is true, one could
use meta-regression. However, we do not adopt any model, permitting various non-linear
settings such as (−2,−2, 0, 0, 0) and (−2,−1, 4, 4, 5).

The use of the standard unbiased estimator Y = (Y1, . . . , YG) is not desirable under
the ordering constraints. Due to random variations, the estimator Y = (Y1, . . . , YG) can be
outside the parameter space, namely, Y /∈ {(µ1, . . . , µG) : µ1 ≤ . . . ≤ µG}. Under this set-
ting, an estimator accounting for the parameter restriction improves upon the unrestricted
estimator Y, even though the former is a biased estimator [30].

The restricted maximum likelihood (RML) estimator satisfying δ1 ≤ . . . ≤ δG is
calculated by the pool-adjacent-violators algorithm (PAVA)

δRML
i = max

s≤i
min
t≥i

∑t
j=s Yj

t− s + 1
.

This gives the RML estimator δRML ≡
(
δRML

1 , . . . , δRML
G

)
, which has a smaller WMSE

than Y. For an example of G = 3, one has the data of (Y1, Y2, Y3), and the PAVA results in

δRML
1 = min

(
Y1,

Y1 + Y2

2
,

Y1 + Y2 + Y3

3

)
,
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δRML
2 = max

{
min

(
Y1 + Y2

2
,

Y1 + Y2 + Y3

3

)
, min

(
Y2,

Y2 + Y3

2

)}
,

δRML
3 = max

(
Y1 + Y2 + Y3

3
,

Y2 + Y3

2
, Y3

)
.

Hence, δRML
i is equal to Yi itself or an average including Yi. Of course, δRML

i = Yi ∀i if
Y1 ≤ . . . ≤ YG. For theories and applications of the PAVA, we refer to [31–33]. The max
min formula written above can be found in Chapter 8 of [30] or [34].

It is clear that δRML is different from order statistics Y(1) ≤ . . . ≤ Y(G) that are a
permutation of (Y1, . . . , YG) and also improve the WMSE in some cases [34]. However,
the permuted estimator loses the information of individual studies’ identifications, and
therefore, is not considered in this article.

Below, we further improve δRML with the aid of the JS estimator. Let I(.) be the
indicator function; I(A) = 1 or I(A) = 0 if A is true or false, respectively. We adjust the
estimator of Chang [35] who proposed the JS-type estimator under the order restriction
as follows:

δRJS ≡
(

1− G− 2

∑G
i=1 Y2

i /σ2
i

)
YI(Y1 ≤ . . . ≤ YG) + δRML(1− I(Y1 ≤ . . . ≤ YG)),

where “RJS” stands for “Restricted JS”. Note that δRJS has a smaller WMSE than δRML, and
hence, the former improves upon the latter [35].

We further improve the RJS estimator by the positive-part RJS estimator given by

δRJS+ ≡
(

1− G− 2

∑G
i=1 Y2

i /σ2
i

)+

YI(Y1 ≤ . . . ≤ YG) + δRML(1− I(Y1 ≤ . . . ≤ YG))

Consequently, δRJS+ has a smaller WMSE than δRJS (Theorem 5.4 of Lehmann and
Casella [25]). Note that, if Y1 ≤ . . . ≤ YG is not satisfied, then δRML = δRJS = δRJS+.

In summary, this subsection proposes three estimators (δRML, δRJS, and δRJS+) that
improve upon the standard unbiased estimator Y under µ1 ≤ . . . ≤ µG.

3.3. Estimation under Sparse Means

Our third proposal is a shrinkage estimator under sparse normal means where most of

the µis are zero [27,28]. The vector (µ1, . . . , µG) is called sparse if the number
G
∑

i=1
I(µi 6= 0)

is much smaller than G, e.g., (µ1, . . . , µ10) = (−5, 0, 0, 0, 0, 0, 0, 0, 0, 5). In practice, one does
not know which components are zeros, and how many components are zero. Nonetheless,
one could assume that many of (µ1, . . . , µG) are zero. However, the elements of (Y1, . . . , YG)
are almost always nonzero, which disagree with the true values (µ1, . . . , µG).

Under the sparse means, it is quite reasonable to estimate µi as exactly zero if Yi is
close to zero. Accordingly, one can use a thresholding estimator Yi I(|Yi| > ci) for a critical
value ci > 0. The idea was proposed by Bancroft [36] who formulated pretest estimators
that incorporate a preliminary hypothesis test into estimation. Judge and Bock [37] exten-
sively studied pretest estimators with applications to econometrics; see also more recent
works [38–43]. Among all, we particularly note that Shih et al. [41] proposed the general
pretest (GPT) estimator that includes empirical Bayes and Types I-II shrinkage pretest
estimators for the univariate normal mean.

We modify the GPT estimator to be adopted to meta-analyses as follows:

δGPT
i = Yi I

(∣∣∣∣Yi
σi

∣∣∣∣ > zα1

)
+ q
(

Yi
σi

)
Yi I
(

zα2 <

∣∣∣∣Yi
σi

∣∣∣∣ ≤ zα1

)
, i = 1, 2, . . . , G.

for 0 ≤ α1 ≤ α2 ≤ 1, q : (−∞, ∞) 7→ (0, 1) , and zp is the upper p-th quantile of N(0, 1) for
0 < p < 1. To implement the GPT estimator, the values of α1 and α2, and the probability
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function q(.) must be chosen. They cannot be chosen to minimize the WMSE and TMSE
criteria since pretest estimators do not permit tractable forms of MSEs [38,41]. Fortunately,
for any value of α1 and α2, and a function q, one can show that δGPT ≡

(
δGPT

1 , . . . , δGPT
G

)
has

smaller WMSE and TMSE values than Y provided µ ≈ 0; see Appendix A.3 for the proof.
For the above reasons, we apply statistically interpretable choices of α1, α2, and q(.).

The special case of α1 = α2 = α = 0.025 leads to the usual pretest estimator

δPT
i = Yi I

(∣∣∣∣Yi
σi

∣∣∣∣ > 1.96
)

,

for which q(.) is arbitrary. Thus, we retain Yi if H0 : µi = 0 is rejected in favor of H1 : µi 6= 0
at the 5% level. Otherwise, we discard Yi, and conclude µi = 0.

For the GPT estimator, we set q(z) = 1/2 (50% shrinkage) as suggested by Shih et al. [41].
To facilitate the interpretability of pretests, we chose α1 = 0.025 (5% level) and α2 = 0.05
(10% level). Thus, we propose the estimator

δGPT
i = Yi I

(∣∣∣∣Yi
σi

∣∣∣∣ > 1.96
)
+

Yi
2

I
(

1.645 <

∣∣∣∣Yi
σi

∣∣∣∣ ≤ 1.96
)

, i = 1, 2, . . . , G.

Thus, if H0 : µi = 0 is rejected at the 5% level, we set δGPT
i = Yi. If H0 : µi = 0 is

accepted at the 5% level, but rejected at the 10% level, we set δGPT
i = Yi/2. If H0 : µi = 0 is

accepted at the 10% level, we set δGPT
i = 0. Thus, δGPT

i gives a weaker shrinkage than δPT
i

does. Obviously, we obtain a relationship
∣∣δPT

i

∣∣ ≤ ∣∣δGPT
i

∣∣ ≤ |Yi|.
The GPT estimator introduced above is not an empirical Bayesian estimator. If α1 = 0,

α2 = 1, and q(y) = 1− σ2
i /max

{
σ2

i , y2} were chosen, the resultant GPT estimator would
be an empirical Bayes estimator [41]. However, we do not consider this estimator in
our analysis.

In summary, this subsection proposes two estimators (δPT and δGPT) that improve
upon the standard unbiased estimator Y provided µ ≈ 0.

4. Simulation

We conducted Monte Carlo simulations to examine the performance of the proposed
estimators. The purpose of the simulations is to clarify how the proposed estimators im-
prove upon the standard unbiased estimator Y in terms of the WMSE and TMSE, defined as

WMSE ≡ E

[
G

∑
i=1

(δi(Y)− µi)
2

σ2
i

]
,

TMSE ≡ E

[
G

∑
i=1

(δi(Y)− µi)
2

]
.

We also examined the bias defined as,

Bias ≡ E[δi(Y)− µi], i = 1, 2, . . . , G.

4.1. Simulation Design

We generated normally distributed data Yi ∼ N
(
µi, σ2

i
)
, i = 1, 2, . . . , G, under the

following scenarios:

Scenario (a): Common means: µ = (µ1, . . . , µG) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

Scenario (b): Zero means: µ = (µ1, . . . , µG) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

Scenario (c): Ordered means: µ = (µ1, . . . , µG) = (−2.5,−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2, 2.5),

Scenario (d): Sparse means: µ = (µ1, . . . , µG) = (−5, 0, 0, 0, 0, 0, 0, 0, 0, 5).
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For the known variances, we generated σ2
i ∼ χ2

df=1/4, restricted in the interval
[0.009, 0.6], as previously considered [15,44], leading to E

[
σ2

i
]
= 0.173. Figure 1 depicts

simulated data (Y1, . . . , YG) and (σ1, . . . , σG) under Scenarios (a) and (c). Using the data,
we computed the proposed estimators δJS, δJS+, δRML, δRJS, δRJS+, δPT, and δGPT for
estimating µ. Our interest is to see how and when these estimators improve upon the
standard unbiased estimator Y. The WMSE, TMSE and Bias of all the estimators were
computed by the Monte Carlo average of 10,000 replications of such data.
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Figure 1. Simulated values (Y1, . . . , YG) and the 95%CI (Y1, . . . , YG) ± 1.96× (σ1, . . . , σG), where Yi ∼ N
(
µi, σ2

i
)
, and

σ2
i ∼ χ2

df=1/4 being restricted in the interval [0.009, 0.6], for i = 1, 2, . . . , G. The “FE Model” is the common mean estimator
and its 95%CI under the fixed-effect (FE) model.

4.2. Simulation Results

Tables 1–4 summarize the simulation results for comparing eight estimators: Y, δJS,
δJS+, δRML, δRJS, δRJS+, δPT, and δGPT.

Table 1. Simulation results under Scenario (a): µ = (µ1, . . . , µ10) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

Y δJS δJS+ δRML δRJS δRJS+ δPT δGPT

TMSE for µ 1.743 1.608 1.608 0.503 0.503 0.503 3.579 3.137

WMSE for µ 10.045 9.635 9.635 5.761 5.761 5.761 17.491 15.586

Bias for µ1 0.01 −0.04 −0.04 −0.21 −0.21 −0.21 −0.15 −0.12
Bias for µ2 0.00 −0.05 −0.05 −0.12 −0.12 −0.12 −0.15 −0.12
Bias for µ3 0.00 −0.05 −0.05 −0.07 −0.07 −0.07 −0.16 −0.13
Bias for µ4 0.00 −0.05 −0.05 −0.04 −0.04 −0.04 −0.16 −0.13
Bias for µ5 0.00 −0.05 −0.05 −0.01 −0.01 −0.01 −0.16 −0.13
Bias for µ6 0.00 −0.05 −0.05 0.01 0.01 0.01 −0.16 −0.13
Bias for µ7 0.00 −0.05 −0.05 0.04 0.04 0.04 −0.16 −0.13
Bias for µ8 0.00 −0.05 −0.05 0.07 0.07 0.07 −0.16 −0.13
Bias for µ9 0.00 −0.05 −0.05 0.12 0.12 0.12 −0.15 −0.13
Bias for µ10 0.00 −0.05 −0.05 0.21 0.21 0.21 −0.16 −0.13

Notes: TMSE ≡ E
[
∑G

i=1(δi(Y)− µi)
2
]
, WMSE ≡ E

[
∑G

i=1
(δi(Y)−µi)

2

σ2
i

]
, Bias ≡ E[δi(Y)− µi ].
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Table 2. Simulation results under Scenario (b): µ = (µ1, . . . , µ10) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Y δJS δJS+ δRML δRJS δRJS+ δPT δGPT

TMSE for µ 1.743 0.353 0.223 0.503 0.503 0.503 0.489 0.558

WMSE for µ 10.045 2.051 1.287 5.761 5.761 5.761 2.837 3.236

Bias for µ1 0.01 0.00 0.00 −0.21 −0.21 −0.21 0.00 0.00
Bias for µ2 0.00 0.00 0.00 −0.12 −0.12 −0.12 0.00 0.00
Bias for µ3 0.00 0.00 0.00 −0.07 −0.07 −0.07 0.00 0.00
Bias for µ4 0.00 0.00 0.00 −0.04 −0.04 −0.04 0.00 0.00
Bias for µ5 0.00 0.00 0.00 −0.01 −0.01 −0.01 0.00 0.00
Bias for µ6 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00
Bias for µ7 0.00 0.00 0.00 0.04 0.04 0.04 0.00 0.00
Bias for µ8 0.00 0.00 0.00 0.07 0.07 0.07 0.00 0.00
Bias for µ9 0.00 0.00 0.00 0.12 0.12 0.12 0.00 0.00
Bias for µ10 0.00 0.00 0.00 0.21 0.21 0.21 0.00 0.00

Notes: TMSE ≡ E
[
∑G

i=1(δi(Y)− µi)
2
]
, WMSE ≡ E

[
∑G

i=1
(δi(Y)−µi)

2

σ2
i

]
, Bias ≡ E[δi(Y)− µi ].

Table 3. Simulation results under Scenario (c): µ = (µ1, . . . , µ11) =

(−2.5,−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2, 2.5).

Y δJS δJS+ δRML δRJS δRJS+ δPT δGPT

TMSE for µ 1.914 1.847 1.847 1.314 1.309 1.309 2.826 2.547

WMSE for µ 11.041 10.831 10.831 9.259 9.240 9.240 14.600 13.494

Bias for µ1 0.01 0.07 0.07 −0.03 −0.02 −0.02 0.02 0.02
Bias for µ2 0.00 0.05 0.05 0.00 0.01 0.01 0.03 0.03
Bias for µ3 0.00 0.03 0.03 0.00 0.00 0.00 0.08 0.06
Bias for µ4 0.00 0.02 0.02 0.00 0.00 0.00 0.16 0.13
Bias for µ5 0.00 0.01 0.01 0.00 0.00 0.00 0.20 0.17
Bias for µ6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Bias for µ7 0.00 −0.01 −0.01 0.00 0.00 0.00 −0.20 −0.17
Bias for µ8 0.00 −0.02 −0.02 0.00 0.00 0.00 −0.16 −0.13
Bias for µ9 0.00 −0.04 −0.04 0.00 0.00 0.00 −0.08 −0.06
Bias for µ10 0.00 −0.05 −0.05 0.00 −0.01 −0.01 −0.03 −0.02
Bias for µ11 0.00 −0.06 −0.06 0.03 0.03 0.03 −0.01 −0.01

Notes: TMSE ≡ E
[
∑G

i=1(δi(Y)− µi)
2
]
, WMSE ≡ E

[
∑G

i=1
(δi(Y)−µi)

2

σ2
i

]
, Bias ≡ E[δi(Y)− µi ].

Table 4. Simulation results under Scenario (d): µ = (µ1, . . . , µ10) = (−5, 0, 0, 0, 0, 0, 0, 0, 0, 5).

Y δJS δJS+ δRML δRJS δRJS+ δPT δGPT

TMSE for µ 1.743 1.719 1.719 0.823 0.823 0.823 0.739 0.794

WMSE for µ 10.1045 9.897 9.897 7.272 7.272 7.272 4.281 4.599

Bias for µ1 0.01 0.10 0.10 0.01 0.01 0.01 0.01 0.01
Bias for µ2 0.00 0.00 0.00 −0.21 −0.21 −0.21 0.00 0.00
Bias for µ3 0.00 0.00 0.00 −0.11 −0.11 −0.11 0.00 0.00
Bias for µ4 0.00 0.00 0.00 −0.06 −0.06 −0.06 0.00 0.00
Bias for µ5 0.00 0.00 0.00 −0.02 −0.02 −0.02 0.00 0.00
Bias for µ6 0.00 0.00 0.00 −0.02 −0.02 −0.02 0.00 0.00
Bias for µ7 0.00 0.00 0.00 0.02 0.02 0.02 0.00 0.00
Bias for µ8 0.00 0.00 0.00 0.05 0.05 0.05 0.00 0.00
Bias for µ9 0.00 0.00 0.00 0.10 0.10 0.10 0.00 0.00
Bias for µ10 0.00 0.00 0.00 0.21 0.21 0.21 0.00 0.00
Bias for µ11 0.00 −0.09 −0.09 0.00 0.00 0.00 0.00 0.00

Notes: TMSE ≡ E
[
∑G

i=1(δi(Y)− µi)
2
]
, WMSE ≡ E

[
∑G

i=1
(δi(Y)−µi)

2

σ2
i

]
, Bias ≡ E[δi(Y)− µi ].

The JS estimators (δJS and δJS+) improved upon Y in all the scenarios (see the WMSE
and TMSE in Tables 1–4). Scenario (b) produced the greatest reduction in the values of the
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WMSE and TMSE, where all the true means are equal to zero (Table 2). This is exactly what
the theoretical results imply (Section 3.1). The two estimators δJS and δJS+ showed similar
performance except for Scenario (b), where δJS+ exhibited smaller values for the WMSE
and TMSE than δJS (Table 2). In summary, we observed a clear advantage of the two JS
estimators (δJS and δJS+) over the standard estimator (Y) in all the scenarios examined.

The order-restricted estimators (δRML, δRJS and δRJS+) were even more advantageous than
δJS and δJS+ according to the smallest values of the WMSE and TMSE in Tables 1 and 3. The
substantially reduced values of the WMSE and TMSE were brought by the strict constraints
by isotonic regression. We found that δRJS+ had the smallest value of the WMSE and TMSE
under Scenarios (a) and (c) (Tables 1 and 3). However, we observed large and systematic
biases of the order-restricted estimators, which are caused by isotonic regression.

The pretest estimator δPT showed the best performance under Scenario (d) (Table 4),
followed by the general pretest estimator δGPT. However, the comparison between δPT

and δGPT depends on the scenarios: δPT was better in Scenarios (b) and (d) while δGPT was
better in Scenarios (a) and (c). Both δPT and δGPT did not perform well in Scenarios (a) and
(c), where the sparsity hypothesis H0 : µi = 0 fails. Naturally, the sparsity of individual
means is essential for the pretest estimators to perform well.

In summary, our simulations have shown that the proposed estimators have their
own advantageous scenarios: δJS+ for Scenario (b); δRJS+ for Scenarios (a) and (c); δPT or
δGPT for Scenario (d). These proposed estimators substantially reduced the values of the
WMSE and TMSE over the standard estimator Y. Furthermore, the proposed estimators
δJS, δJS+, δRML, δRJS, and δRJS+ improved upon Y across all the scenarios. We therefore
conclude that there are good reasons to apply the proposed estimators to estimate µ in
order to improve the accuracy of estimation.

5. Data Analyses

We analyze two datasets to illustrate the proposed method. One dataset comes from
gastric cancer patients and the other from COVID-19 pneumonia patients.

5.1. Gastric Cancer Data

We illustrate the proposed methods using a dataset from the Global Advanced/Adjuvant
Stomach Tumor Research International Collaboration (GASTRIC) [45]. The data provide
survival times for gastric cancer patients from 14 studies. One of the goals of this collabora-
tion is to estimate the effects of chemotherapy on disease-free survival (DFS) for gastric
cancer patients [46]. We used the data available in the R package surrosurv [47].

Let Yi be the estimator for a Cox regression coefficient for a treatment indicator
(1=treatment vs. 0=control) and let σi be the SE for i = 1, . . . , 14. Table 5 summarizes Yi,
σi, and sample sizes for the 14 studies. It is reasonable to assume the asymptotic normal
approximation Yi ∼ N

(
µi, σ2

i
)

since the sample size of each study is large enough. Table 5
also shows the p-values for testing H0 : µi = 0 through Z-values Yi/σi.

Table 5 shows that only two studies reached 5% significance. Thus, it is reasonable
to assume µi ≈ 0 ∀i, and therefore, the JS estimators are suitable. It is also reasonable to
assume µi = 0 for most of is, and therefore, the PT and GPT estimators are suitable. We
therefore calculated δJS, δJS+, δPT, and δGPT to estimate µ as shown in Table 6.

Table 6 shows that δJS and δJS+ shrink the values of Y by 45%, namely, δJS = δJS+ =
(1− 0.45)× Y. We also observe that δPT and δGPT cause 0%, 50% or 100% shrinkage of
Y. The values of δPT suggested the null effects (µi = 0) for 12 studies while the values
of δGPT suggested the null effects for 10 studies. By shrinkage, the estimators δJS, δJS+,
δPT, and δGPT more accurately estimate µ = (µ1, . . . , µ14) than Y do. The reason is that the
data structure resembles Scenario (b), where δJS and δJS+ performed the best (Table 2) or
Scenario (d), where δPT and δGPT performed the best (Table 4).
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Table 5. The 14 studies on gastric cancer patients for estimating the effects of chemotherapy on DFS.

Sample Size Treatment Effect=Yi SE=σi p-Value

Study 1 269 −0.18312 0.15372 0.234
Study 2 190 −0.72266 0.28686 0.012 **
Study 3 252 −0.48507 0.33192 0.144
Study 4 536 −0.23961 0.21558 0.266
Study 5 219 −0.13226 0.14691 0.368
Study 6 306 −0.27228 0.14416 0.059 *
Study 7 88 −0.5867 0.24885 0.018 **
Study 8 281 −0.13969 0.14542 0.337
Study 9 271 −0.1004 0.16404 0.541

Study 10 178 −0.31143 0.17038 0.068 *
Study 11 126 −0.04949 0.19818 0.803
Study 12 180 −0.11685 0.16476 0.478
Study 13 206 −0.13044 0.19268 0.498
Study 14 186 0.04391 0.17632 0.803

* 10% significance; ** 5% significance.

Table 6. Estimates of the treatment effects on DFS from the 14 studies on gastric cancer patients.

Y δJS δJS+ δPT δGPT

µ1 −0.18 −0.10 −0.10 0 0
µ2 −0.72 −0.40 −0.40 −0.72 −0.72
µ3 −0.49 −0.27 −0.27 0 0
µ4 −0.24 −0.13 −0.13 0 0
µ5 −0.13 −0.07 −0.07 0 0
µ6 −0.27 −0.15 −0.15 0 −0.14
µ7 −0.59 −0.32 −0.32 −0.59 −0.59
µ8 −0.14 −0.08 −0.08 0 0
µ9 −0.10 −0.06 −0.06 0 0
µ10 −0.31 −0.17 −0.17 0 −0.16
µ11 −0.05 −0.03 −0.03 0 0
µ12 −0.12 −0.06 −0.06 0 0
µ13 −0.13 −0.07 −0.07 0 0
µ14 0.04 0.02 0.02 0 0

All values are rounded up to 2 digits.

5.2. COVID-19 Data

We illustrate the proposed methods using data from Pranata et al., [7] who examined
the effect of hypertension on mortality for patients with COVID-19 pneumonia. One of
their conclusions was that hypertension increases mortality. We obtained mortality data
from Pranata et al. [7], consisting of 11 published studies (Table 7).

Let Yi, i = 1, . . . , 11, be the log of the risk ratio (RR) calculated from two-by-two
contingency tables examining the association (mortality vs. hypertension). Let σi be the SE
for i = 1, . . . , 11. Table 7 summarizes the 11 studies. Table 7 also shows the p-values for
testing the no association (H0 : µi = 0) by Z-values Yi/σi assuming Yi ∼ N

(
µi, σ2

i
)
.

Before applying the proposed methods, we changed the order of the 11 studies by the
percentages of male patients (Table 8). The largest percentage (82%) gave the smallest RR
(Y1 = 0.46) while the smallest percentage (45%) gave the largest RR (Y11 = 2.89). However,
the values of Yis are not monotonically increasing (Y1 < Y2 < Y3< Y4 >Y5< Y6< Y7 >Y8
> Y9 < Y10 < Y11 in Table 8). While Pranata et al. [7] regressed Yis on the percentages by
meta-regression, we prefer not to assume a linear model. Alternatively, we considered the
order-restricted estimators (δRML, δRJS, and δRJS+) by merely assuming that the true means
are ordered by the percentages of male patients.
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Table 7. Summary of the 11 studies (shown by the author and publication year) on COVID-19
patients for examining the effects of hypertension on mortality.

Study Sample Size Male (%) Log (RR) SE p-Value

Akbari 2020 440 56.4 0.6881 0.6732 0.307
Bai 2000 127 63.0 0.5933 0.2754 0.031 **
Cao 2020 102 52.0 1.1756 0.2821 0.000 **

Chen 2020 123 49.0 0.5365 0.2493 0.031 **
Chen T 2020 274 62.0 0.6780 0.1713 0.000 **

Fu 2020 200 49.5 0.5878 0.3302 0.075 *
Grasselli

2020 1591 82.0 0.4637 0.0956 0.000 **

Li 2020 102 58.0 0.5247 0.3272 0.109
Luo 2020 403 47.9 1.2326 0.1489 0.000 **

Yuan 2020 27 45.0 2.8904 1.4263 0.043 **
Zhou 2020 191 62.0 1.1378 0.2097 0.000 **

* 10% significance; ** 5% significance.

Table 8. Estimated effects of hypertension on mortality from the 11 studies on COVID-19 patients.

Study Male (%) Mean Y δJS δJS+ δRML δRJS δRJS+

Grasselli 2020 82.0 µ1 0.46 0.44 0.44 0.46 0.46 0.46
Bai 2000 63.0 µ2 0.59 0.56 0.56 0.59 0.59 0.59

Chen T 2020 62.0 * µ3 0.68 0.64 0.64 0.68 0.68 0.68
Zhou 2020 62.0 * µ4 1.14 1.08 1.08 0.78 0.78 0.78

Li 2020 58.0 µ5 0.52 0.50 0.50 0.78 0.78 0.78
Akbari 2020 56.4 µ6 0.69 0.65 0.65 0.78 0.78 0.78

Cao 2020 52.0 µ7 1.18 1.12 1.12 0.78 0.78 0.78
Fu 2020 49.5 µ8 0.59 0.56 0.56 0.78 0.78 0.78

Chen 2020 49.0 µ9 0.54 0.51 0.51 0.78 0.78 0.78
Luo 2020 47.9 µ10 1.23 1.17 1.17 1.23 1.23 1.23

Yuan 2020 45.0 µ11 2.89 2.74 2.74 2.89 2.89 2.89
All values are rounded up to 2 digits. * ties are sorted by the age (62 years-old in Chen T 2020; 56 years-old in
Zhou 2020).

Table 8 shows the proposed estimators δJS, δJS+, δRML, δRJS, and δRJS+. The JS shrink-
age estimators were δJS = δJS+ = (1− 0.05)× Y. They reduced only 5% of Y, and hence
gave very weak shrinkage toward zero. This is because µis are unlikely to be zero. The
order-restricted estimator δRML successfully enforced order restrictions, δRJS

1 ≤ . . . ≤ δRJS
11 ,

which was not achieved by Y. Since the order restrictions were not met for Y, we had
δRML = δRJS = δRJS+ by definition. Thus, the last three estimators can clearly incorporate
the knowledge that hypertension-related mortality is monotonically influenced by gender
without imposing a linear model.

In summary, it would be advantageous and informative to add the order restriction to
individual studies’ estimators on the association (mortality vs. hypertension). The resultant
order-restricted estimators are expected to provide more accurate estimates than individual
studies’ estimators. The reason is that the data structure resembles Scenario (c), where
δRML, δRJS, and δRJS+ performed the best (Table 3).

6. Conclusions and Future Extensions

We have shown that the proposed shrinkage estimators can be more precise than the
standard unbiased estimators for estimating individual means in meta-analyses. Theo-
retical evidence (Section 3) and simulation studies (Section 4) identified the remarkable
advantages of the proposed estimators under certain scenarios of the true individual means.
However, no single estimator is the best for all the scenarios. Hence, it is important to
choose a suitable estimator for each scenario. We have provided two data examples to
demonstrate the scenarios under which the proposed estimators are beneficial (Section 5).
However, the choice of estimators depends on the goal of research, and hence, it is diffi-
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cult to set a purely statistical strategy to choose the estimator. What we have concluded
in this article is that there is good potential for the proposed estimators by their careful
applications to real meta-analyses.

Recall that the shrinkage effects on the general pretest estimators,
(
δGPT

1 , . . . , δGPT
G

)
,

are component-wise, and hence, do not involves the JS-type shrinkage as in Sections 3.1 and 3.2.
In the presence of pretests, it is unclear how the JS-type shrinkage can be introduced. This
issue is an interesting topic, yet it is beyond the scope of the article.

This article focused on the shrinkage toward zero because a meta-analysis is typically a
collection of individual studies of weak effects. However, other shrinkage schemes can also
be considered, such as the shrinkage toward an arbitrary mean vector, a truncated space,
a polyhedral convex, or a positive halfplane [12,25,48–54]. Different shrinkage schemes
could be considered depending on the goals of meta-analyses. Therefore, there is good
potential for shrinkage estimation methods to work with meta-analyses.

This article focuses on univariate response. One may consider extensions of this
article to multiple (e.g., bivariate) responses. For instance, educational research may in-
volve meta-analyses of bivariate test scores on verbal and mathematics tests [55], and
mathematics and statistics tests [44]. In our data example of gastric cancer patients
(Section 5.1), bivariate correlated endpoints are of great interest [55]. Correlations between
responses should be employed to improve the efficiency and reduce the bias of univariate
analyses [56–65] and to predict a primary outcome by the secondary outcome [66–69].
Multivariate shrinkage estimators of multivariate normal means, such as [70,71], can be
considered for this extension.

One may also consider extensions of this article to non-normal (e.g., gamma dis-
tributed) responses. For non-normal distributions, shrinkage estimators exist, such as [72]
for gamma distribution. Thus, introduction of shrinkage estimators to multivariate and/or
non-normal models, and even their regression models, is a promising future direction.

Finally, we note that all meta-analyses are valid under the questionable assumption
of no publication bias. Frequentist and Bayesian models for checking the publication
biases are often considered [73,74]. It would be interesting to see if the proposed shrinkage
methods can mitigate the effect of publication biases.
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Appendix A

Appendix A.1. Derivations of the JS Estimator

Define X ≡ (Y1/σ1, . . . , YG/σG) and θ ≡ (θ1, . . . , θG) ≡ (µ1/σ1, . . . , µG/σG). Then,
we obtain X ∼ NG(θ, IG), where IG is the identity matrix of dimension G. The random
vector X having the unit variance is the traditional setup of the simultaneous inference
(pp. 346–355 of [25]). Now, X is a maximum likelihood estimator of θ. Consider an arbitrary
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estimator θ(X) ≡ (θ1(X), . . . , θG(X)) of θ under the square error loss ‖θ(X) − θ‖2 ≡
∑G

i=1|θi(Y)− θi|2. Let the JS estimator be

θJS(X) ≡
(

1− G− 2

∑G
i=1 X2

i

)
X.

It can be shown that

Eθ‖θJS(X)− θ‖2 = G− (G− 2)2Eθ

[
1

χ2
G(λ)

]
,

where χ2
G(λ) is the noncentral χ2-distribution with the noncentral parameter λ = ‖θ‖2; see

p. 355 of [25] for the proofs. From this equation,

Eθ‖θJS(X)− θ‖2 < G = Eθ||X− θ||2,

for G ≥ 3. Thus, θJS(X) improves upon X for G ≥ 3. Rewriting the above results, we
arrive at

Eθ‖θJS(X)− θ‖2 = Eθ

 G

∑
i=1

(
δJS

i (Y)− µi

)2

σ2
i

 < E

[
G

∑
i=1

(Yi − µi)
2

σ2
i

]
= G, ∀(µ1, . . . , µG).

Appendix A.2. Derivations of the Empirical Bayes Estimator

Under the prior µi ∼ N
(
0, σ2

i τ2), the Bayes estimator is derived as

δBayes = E(µ|Y) =
(

1− 1
1 + τ2

)
Y.

It can be shown that the marginal distribution of Yi is Yi ∼ N
(
0, σ2

i + σ2
i τ2). Thus,

G
∑

i=1
Y2

i /(σ2
i + σ2

i τ2) = 1/
(
1 + τ2) G

∑
i=1

Y2
i /σ2

i ∼ χ2
G, a central χ2-distribution with G degrees

of freedom. Taking the inverse,

1 + τ2

∑G
i=1 Y2

i /σ2
i

∼ 1
χ2

G
.

Taking the expectation for left and right sides,

E

[
1 + τ2

∑G
i=1 Y2

i /σ2
i

]
=

1
G− 2

.

Thus, by the method of moment estimation,

ˆ(
1

1 + τ2

)
=

G− 2

∑G
i=1 Y2

i /σ2
i

.

This estimator is unbiased since

E
ˆ(
1

1 + τ2

)
≡ E

[
G− 2

∑G
i=1 Y2

i /σ2
i

]
=

1
1 + τ2 E

[
G− 2

∑G
i=1 Y2

i /
(
σ2

i + σ2
i τ2
)] =

1
1 + τ2 .
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Appendix A.3. Proof for the Pretest Estimators

The proofs for the WMSE and TMSE are similar. Thus, we focus on the latter. Then, it
suffices to show

E
[
(Yi − µi)

2
]
> E

[(
δGPT

i − µi

)2
]
∀i for µi ≈ 0.

It follows that

E
[
(Yi − µi)

2
]
= E

[
(Yi − µi)

2 I(|Yi| > σizα1)
]
+ E

[
(Yi − µi)

2 I(σizα2 < |Yi| ≤ σizα1)
]
+ E

[
(Yi − µi)

2 I(|Yi| ≤ σizα2)
]

There exists a small value εi > 0 such that for ∀µi ∈ (−εi, εi)

E
[
(Yi − µi)

2 I(|Yi| ≤ σizα2)
]
> E

[
(−µi)

2 I(|Yi| ≤ σizα2)
]
,

E
[
(Yi − µi)

2 I(σizα2 < |Yi| ≤ σizα1)
]
> E

[
(q(Yi/σi)Yi − µi)

2 I(σizα2 < |Yi| ≤ σizα1)
]

Thus, for ∀µi ∈ (−εi, εi),

E
[
(Yi − µi)

2
]
> E

[
(Yi − µi)

2 I(|Yi| > σizα1)
]
+ E

[(
q
(

y
σi

)
y− µi

)2
I(σizα2 < |Yi| ≤ σizα1)

]
+ E

[
(−µi)

2 I(σizα2 ≥ |Yi|)
]

= E
{

Yi I
(∣∣∣Yi

σi

∣∣∣ > zα1

)
+ q
(

Yi
σi

)
Yi I
(

zα2 <
∣∣∣Yi

σi

∣∣∣ ≤ zα1

)
− µi

}2
= E

[(
δGPT

i − µi
)2
]
.
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