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Abstract: In this article, we introduce a new flexible discrete family of distributions, which accommo-
dates wide collection of monotone failure rates. A sub-model of geometric distribution or a discrete
generalization of the exponential model is proposed as a special case of the derived family. Besides,
we point out a comprehensive record of some of its mathematical properties. Two distinct estimation
methods for parameters estimation and two different methods for constructing confidence intervals
are explored for the proposed distribution. In addition, three extensive Monte Carlo simulations
studies are conducted to assess the advantages between estimation methods. Finally, the utility of
the new model is embellished by dint of two real datasets.

Keywords: confidence interval; discrete distributions; generalized family; Marshall–Olkin family;
estimation; Weibull distribution
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1. Introduction

The Marshall–Olkin family of distributions was introduced by [1]. This is an interest-
ing endeavour for associating additional parameter to an existing baseline. The resulting
new probability distributions provide more flexibility to model various kinds of data. The
early studies of the this scheme by [2–8], etc. offered its features. For a comprehensive
discussion, one can refer a write-up by [9]. Keeping in view its applications, researchers fo-
cused on generalizations and extensions of the Marshall–Olkinn family of distribution. For
example, exponentiated Marshall–Olkin extended family [10], Harris extended family [11],
truncated negative-binomial generalized Marshall–Olkin family [12], beta Marshall–Olkin
family [13], Kumaraswamy Marshall–Olkin family [14], truncated discrete Mittag–Leffler
family [15], Marshall–Olkin generalized family [16], truncated discrete Linnik family [17],
etc.

Recently, ref. [18] proposed a new family of distributions called the Weibull Marshall–
Olkin generalized family. Its cumulative distribution function (cdf) with arbitrary baseline
F(x; η), is given by

G(x; α, b, η) = 1− exp

(
−
{
− log

[
αF̄(x, η)

1− ᾱF̄(x, η)

]}b
)

x > 0, b > 0, α > 0 (1)
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and ᾱ = 1− α. This family is derived based on T-X family introduced by [19].
In many practical situations, discretizing statistical models from existing continuous

distributions brings a crucial role. Consequently, some discrete distributions derived
based on popular continuous models, for example, see, refs. [20–25], etc. Furthermore,
several discrete distributions appeared in the literature by using continuous Marshall–Olkin
distributions [26–28].

The most prominent motivating factor that pushed us towards the introduction of
this new discrete distribution is the that while comparing with the volume of literature in
continuous case, only limited research works have been inscribed about the discrete version
of continuous family of distributions. The properties of the proposed model itself is another
source of motivation. That is, the proposed new discrete model has positively skewed,
decreasing and symmetric probability mass function (pmf). Moreover, the new distribution
has decreasing, increasing, unimodal and bathtub shaped hazard rate functions (hrf). In
addition to this, we offered a comparison of the estimation methods and real-life data
application to explain how well the proposed model give consistently better fit than the
other well-known discrete distributions.

The rest of the paper is outlined as follows: In Section 2, we propose a new discrete
family of distributions and a special case of the derived family together with its probabilistic
properties. Two distinct estimation procedures for parameters estimation are illustrated in
Section 3. In Section 4, we give demonstration of the two different methods for constructing
confidence intervals for the proposed distribution. Section 5 inculcates the Monte Carlo
simulations study. Applications to the two real data sets to illustrate the performance of
the new family are explained in Section 6. Section 7 offers some concluding remarks.

2. Discrete Weibull Marshall–Olkin Exponential Distribution

In this section, we propose a new discrete family of distributions namely discrete
Weibull Marshall–Olkin family of distributions. Different methods and constructions of
discrete analogs of continuous distributions are given in [29]. If the underlying continuous
life time X has the survival function Ḡ(x) = P(X > x), the pmf of the discrete random
variable associated with that continuous distribution can be written as

P(X = x) = G(x)− G(x + 1); x = 0, 1, 2, .. (2)

The new family is generated by discretizing the continuous survival in Equation (1)
using Equation (2), we obtain new family of discrete distribution with the pmf g(x). The
pmf can be written as

g(x) = exp

(
−
{
− log

[
αF̄(x)

1− ᾱF̄(x)

]}b
)
− exp

(
−
{
− log

[
αF̄(x + 1)

1− ᾱF̄(x + 1)

]}b
)

; x = 0, 1, 2... (3)

The survival function of the discrete random variable having the pmf (3) is given by

Ḡ(x) = exp

(
−
{
− log

[
αF̄(x + 1)

1− ᾱF̄(x + 1)

]}b
)

; x = 0, 1, 2... (4)

We study a special case of this family, namely, discrete Weibull Marshall–Olkin expo-
nential (DWMOE) distribution. The exponential distribution was chosen because it is the
most tractable model. In practice for modeling and analyzing of random phenomenons,
other distributions could be used.

Let the parent distribution be exponential with parameter λ and survival function
F̄(x) = e−λx. We set ρ = e−λ and 0 < ρ < 1. Then, the pmf of the new model using (3) is
given by

g(x) = exp

(
−
{
− log

[
αρx

1− ᾱρx

]}b
)
− exp

−{− log

[
αρ(x+1)

1− ᾱρ(x+1)

]}b
; x = 0, 1, 2... (5)
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We called this new distribution the DWMOE distribution with parameters α, b and
ρ. Note that, when b = 1, the distribution with pmf (5) reduces to discrete Marshall–
Olkin distributions, when b = 1 and α = 1, (5) becomes geometric distribution. The
corresponding cumulative distribution function (cdf) corresponding to (5) can be written as

Ḡ(x) = exp

−{− log

[
αρ(x+1)

1− ᾱρ(x+1)

]}b
; x = 0, 1, 2... (6)

The corresponding hrf is given by

h(x) =

exp
(
−
{
− log

[
αρx

1−ᾱρx

]}b
)
− exp

(
−
{
− log

[
αρ(x+1)

1−ᾱρ(x+1)

]}b
)

exp
(
−
{
− log

[
αρ(x+1)

1−ᾱρ(x+1)

]}b
)

Figure 1 shows the plots of the pmf of the DWMOE distribution for various values
of α, b and ρ. The pmf can be decreasing and upside-down bathtub shaped. Furthermore,
Figure 2 illustrates some of the possible shapes of the hrf of DWMOE distribution for
selected values of the parameters. From figures, we can see that the hrf can be increas-
ing, decreasing, bathtub, and upside-down bathtub shaped. Therefore, the DWMOE
distribution is very efficient for modeling various data sets.
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Figure 1. pmfs of the DWMOE (α, b, ρ) distribution for some parameter values.
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Figure 2. hrfs of the DWMOE(α, b, ρ) distribution for some parameter values.

2.1. General Characteristics of the DWMOE Distribution

In this section, we study some general properties of the DWMOE distribution.

2.1.1. Quantiles, Probability Generating Function, Mean and Variance

Suppose X follows the DWMOE with cdf G(x) = 1− Ḡ(x). The quantile function
X = Q(u), 0 < u < 1 of DWMOE is given as

X =


1

log ρ

log


exp

{
−
[
log
(

1
1−u

)] 1
b
}

α + ᾱ exp
{
−
[
log
(

1
1−u

)] 1
b
}


− 1, (7)

where u follows uniform distribution with support (0,1). Equation (7) can be used to
simulate the DWMOE random variable. First, simulate a random variable u and compute
the value of X in (7), which is not necessarily an integer. The DWMOE random variate X is
the largest integer ≤ X, denoted as [X].
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In particular, the Median M is given as

M =

 1
log ρ

log

 exp
{
−[log(2)]

1
b
}

α + ᾱ exp
{
−[log(2)]

1
b
}
− 1

The probability generating function (pgf) of the DWMOE(α, b, ρ) distribution is given
by

P(s) = 1 + (s− 1)
∞

∑
x=1

sx−1 exp

(
−
{
− log

[
αρx

1− ᾱρx

]}b
)

The mean and variance do not have compact forms, but still the solutions of following
equation gives mean and variance of random variable having DWMOE(α, b, ρ) model.

E(X) =
∞

∑
x=1

exp

(
−
{
− log

[
αρx

1− ᾱρx

]}b
)

and

V(X) =
∞

∑
x=1

(2x− 1) exp

(
−
{
− log

[
αρx

1− ᾱρx

]}b
)
−
[

∞

∑
x=1

exp

(
−
{
− log

[
αρx

1− ᾱρx

]}b
)]2

Using statistical software, the mean and variance of the DWMOE(α, b, ρ) distribution
for different values of α, b and ρ are calculated in Table 1. From this, we can say that the
mean increases with ρ and α for different values of b. Moreover, depending on the values of
α and ρ, the mean of the distribution can be smaller or greater than its variance. Therefore,
the parameters of the DWMOE(α, b, ρ) distribution can be used to model different data sets.

Table 1. The mean (variance) of DWMOE(α, b, ρ) for different values of parameters.

ρ −→ 0.2 0.5 0.7
α
↓

1.2 23.8886 (6880.8534) 29.2683 (11,009.7047) 36.9219 (14,310.5902)
b = 0.2 0.9 23.8283 (6879.0820) 29.1251 (11,001.4607) 36.6520 (14,291.7716)

1.2 0.2296 (0.2294) 1.0254 ( 1.4259) 2.4205 ( 5.4258)
b = 1.2 0.9 0.1680 (0.1741) 0.8224 (1.1803) 2.0072 (4.5549)

1.2 0.1166 (0.1032) 0.9268 (0.5908) 2.2734 (2.0174)
b = 2 0.9 0.0566 (0.0534) 0.6978 (0.4811) 1.8268 (1.6304)

1.2 0.0011 (0.0011) 0.9671 (0.1231) 2.3879 (0.4845)
b = 5 0.9 8.5316 × 10−7 (8.5316×10−7 ) 0.7933 (0.1662) 1.9016 (0.3986)

1.2 1.1009 × 10−20( 1.1009 × 10−20) 0.9934 (0.0067) 2.5263 (0.2673)
b = 10 0.9 1.55 × 10−85( 1.55 × 10−85) 0.9471 (0.0500) 1.9548 (0.0917)

2.1.2. Shannon Entropy

In probabilistic context, Shannon entropy is a measure of variation of the uncertainty,
with higher entropy corresponding to less information. For a discrete random variable X
with pmf g(x), the Shannon entropy is defined as

S(x) = −∑
x

g(x) log g(x) (8)
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Combining (8) and (5) gives

S(x) = −∑
x

exp

(
−
{
− log

[
αF̄(x)

1− ᾱF̄(x)

]}b
)
− exp

(
−
{
− log

[
αF̄(x + 1)

1− ᾱF̄(x + 1)

]}b
)

log exp

(
−
{
− log

[
αF̄(x)

1− ᾱF̄(x)

]}b
)
− exp

(
−
{
− log

[
αF̄(x + 1)

1− ᾱF̄(x + 1)

]}b
)

(9)

Consider the another representation of pmf of DWMOE, that is after rearranging the
pmf of DWMOE, we get

g(x) = exp

(
−
{
− log

[
αρx

1− ᾱρx

]}b
){

1−
[

exp

(
−
{
− log

[
αρx+1

1− ᾱρx+1

]}b

−
(
−
{
− log

[
αρx

1− ᾱρx

]}b
))]}

Note that when b → ∞ and 0 < α < 1 then S(x) → 0. This indicates that smaller
values of b increase the uncertainty in the distribution.

3. Estimation Methods

To acquire the unknown model parameters, we will look at two estimation methods in
this section. Maximum likelihood estimation (MLE) and the Bayesian estimation method
are the two methods.

3.1. MLE Method

Let X = (X1, . . . , Xn) a random sample of size n from the DWMOE distribution and
x = (x1, . . . , xn) its observed values. The log-likelihood equation of the vector Ω = (α, b, ρ)
are given by

l(Ω) =
n

∑
i=1

log

exp

(
−
{
− log

[
αρxi

1− ᾱρxi

]}b
)
− exp

−{− log

[
αρ(xi+1)

1− ᾱρ(xi+1)

]}b
. (10)

The non-linear likelihood equations are obtained by differentiating Equation (10) with
respect to the parameters α, b, and ρ, respectively:

∂l(Ω)

∂α
=

b
α

n

∑
i=1

1−ρxi

1−ᾱρxi

{
− log

[
αρxi

1−ᾱρxi

]}b−1
exp

(
−
{
− log

[
αρxi

1−ᾱρxi

]}b
)

exp
(
−
{
− log

[
αρxi

1−ᾱρxi

]}b
)
− exp

(
−
{
− log

[
αρ(xi+1)

1−ᾱρ(xi+1)

]}b
)

− b
α

n

∑
i=1

1−ρ(xi+1)

1−ᾱρ(xi+1)

{
− log

[
αρ(xi+1)

1−ᾱρ(xi+1)

]}b−1
exp

(
−
{
− log

[
αρ(xi+1)

1−ᾱρ(xi+1)

]}b
)

exp
(
−
{
− log

[
αρxi

1−ᾱρxi

]}b
)
− exp

(
−
{
− log

[
αρ(xi+1)

1−ᾱρ(xi+1)

]}b
) ,

(11)

∂l(Ω)

∂b
=

n

∑
i=1

log
{
− log

[
αρ(xi+1)

1−ᾱρ(xi+1)

]}{{
− log

[
αρ(xi+1)

1−ᾱρ(xi+1)

]}b
exp

(
−
{
− log

[
αρ(xi+1)

1−ᾱρ(xi+1)

]}b
){

exp
(
−
{
− log

[
αρxi

1−ᾱρxi

]}b
)
− exp

(
−
{
− log

[
αρ(xi+1)

1−ᾱρ(xi+1)

]}b
)

−
n

∑
i=1

log
{
− log

[
αρxi

1−ᾱρxi

]}{
− log

[
αρxi

1−ᾱρxi

]}b
exp

(
−
{
− log

[
αρxi

1−ᾱρxi

]}b
)

exp
(
−
{
− log

[
αρxi

1−ᾱρxi

]}b
)
− exp

(
−
{
− log

[
αρ(xi+1)

1−ᾱρ(xi+1)

]}b
) ,

(12)
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and

∂l(Ω)

∂α
=

b
ρ

n

∑
i=1

xi
1−ᾱρxi

{
− log

[
αρxi

1−ᾱρxi

]}b−1
exp

(
−
{
− log

[
αρxi

1−ᾱρxi

]}b
)

exp
(
−
{
− log

[
αρxi

1−ᾱρxi

]}b
)
− exp

(
−
{
− log

[
αρ(xi+1)

1−ᾱρ(xi+1)

]}b
)

− b
ρ

n

∑
i=1

xi+1
1−ᾱρ(xi+1)

{
− log

[
αρ(xi+1)

1−ᾱρ(xi+1)

]}b−1
exp

(
−
{
− log

[
αρ(xi+1)

1−ᾱρ(xi+1)

]}b
)

exp
(
−
{
− log

[
αρxi

1−ᾱρxi

]}b
)
− exp

(
−
{
− log

[
αρ(xi+1)

1−ᾱρ(xi+1)

]}b
) ,

(13)

Equating (11)–(13) with zeros and solving simultaneously by using iterative methods
such as Newton–Raphson, we obtain the MLEs of α, b, and ρ. The asymptotic inference
for the parameter vector ξ can be based on the normal approximation of the MLE of ξ.
Indeed, under some regular conditions stated in [30], we have ξ̂ is approximately normally
distributed with mean ξ and asymptotic variance-covariance matrix Σξ .

3.2. Bayesian Estimation Model

We explore the Square error type of loss function in Bayesian estimation. Several
authors discussed this loss function based on various models [31,32]. Moreover, several
authors discussed Bayesian estimation for parameters of the discrete distribution. For ex-
ample, see [33–35], etc. For the Bayesian analysis, the prior distributions for each parameter
of DWMOE distribution are essential. When prior information about the parameters is
lacking, the Bayesian study might use the non-informative prior. Most previous studies of
Weibull and Marshall–Olkin family distributions have Gamma prior distribution. There-
fore, we supposed the informative priors for parameters α and b. The independent gamma
distribution is our prior distribution of choice since it plays a significant role in estimating
the parameters. While the parameter ρ, we used Jeffreys’ rule.

The independent joint prior density function of α, b can be written as follows:

π(α, b) ∝ αs1−1bs2−1e−(h1α+h2b) (14)

The prior distribution of ρ may be considered to be

π(ρ) ∝
1√

ρ(1− ρ)
(15)

The joint prior density function of Ω can be written as follows:

π(Ω) ∝
αs1−1bs2−1√

ρ(1− ρ)
e−(h1α+h2b) (16)

From the likelihood function and joint prior function (16), the joint posterior density
function of Ω is obtained. The joint posterior of the DWMOE distribution can be written as

Π(Ω|x) ∝
αs1−1bs2−1√

ρ(1− ρ)
e−(h1α+h2b)

n

∑
i=1

exp

(
−
{
− log

[
αρxi

1− ᾱρxi

]}b
)
− exp

−{− log

[
αρ(xi+1)

1− ᾱρ(xi+1)

]}b
, (17)
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Using the most common loss function (symmetric), which is a squared error. Bayesian
estimators of Ω̃ based on the squared error loss function are defined by Markov Chain
Monte Carlo (MCMC).

S(Ω̃) =E
(
Ω̃−Ω

)2∫ ∞

0

∫ ∞

0

∫ ∞

0

(
Ω̃−Ω

)2Π(Ω|x) dα dp dρ.
(18)

As the integrals given by (18) cannot be estimated directly. Because of this, we used
the MCMC to find an approximate value of integrals. A significant sub-class of the MCMC
techniques is the Gibbs sampling and more general Metropolis within Gibbs samplers. The
Metropolis-Hastings (MH) bound with the Gibbs sampling were the two most common
instances of the MCMC method. Because of the similarity of the MH algorithm with
acceptance-rejection sampling, each iteration of the algorithm produces a corresponding
candidate value from the proposal distribution. We used the MH within the Gibbs sampling
steps to produce random samples of conditional posterior densities from the DWMOE
distribution family:

Π(α|p, ρ, x) ∝ αs1−1 e−h1α
n

∑
i=1

exp

(
−
{
− log

[
αρxi

1− ᾱρxi

]}b
)
− exp

−{− log

[
αρ(xi+1)

1− ᾱρ(xi+1)

]}b
, (19)

Π(b|α, ρ, x) ∝ bs2−1 e−h2b
n

∑
i=1

exp

(
−
{
− log

[
αρxi

1− ᾱρxi

]}b
)
− exp

−{− log

[
αρ(xi+1)

1− ᾱρ(xi+1)

]}b
, (20)

and

Π(ρ|α, b, x) ∝
1√

ρ(1− ρ)

n

∑
i=1

exp

(
−
{
− log

[
αρxi

1− ᾱρxi

]}b
)
− exp

−{− log

[
αρ(xi+1)

1− ᾱρ(xi+1)

]}b
. (21)

4. Confidence Intervals

In this section, we propose two different methods to construct confidence intervals (CI)
for the unknown parameters of the DWMOE distribution, which are asymptotic confidence
interval (ACI) in MLE and credible confidence interval in MCMC of α, b, and ρ.

4.1. Asymptotic Confidence Intervals

The most common method to set confidence bounds for the parameters is to use
the asymptotic normal distribution of the MLE. In relation to the asymptotic variance-
covariance matrix of the MLE of the parameters, Fisher information matrix I(Ω), where it
is composed of the negative second derivatives of the natural logarithm of the likelihood
function evaluated at Ω̂ = (α̂, b̂, ρ̂). Suppose the asymptotic variance-covariance matrix of
the parameter vector Ω is

I(Ω̂) =

 Iα̂α̂

Ib̂α̂ Ib̂b̂
Iρ̂α̂ Iρ̂b̂ Iρ̂ρ̂


where V(Ω̂) = I−1(Ω̂).
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A 100(1− γ)% confidence interval for parameter Ω can be constructed based on the
asymptotic normality of the MLE.

α̂± Z γ
2

√
Iα̂α̂, b̂± Z γ

2

√
Ib̂b̂, and ρ̂± Z γ

2

√
Iρ̂ρ̂

where Z γ
2

is the percentile of the standard normal distribution with right tail probability γ
2 .

4.2. Highest Posterior Density

The Highest Posterior Density (HPD) Intervals: [36] discussed this technique to
generate the HPD intervals of unknown parameters of the benefit distribution. In this
study, samples drawn with the proposed MH algorithm should be used to generate time-
lapse estimates. From the percentile tail points, for instance, a 1− γ% HPD interval can
be obtained with two points for 3th parameters of DWMOE distribution from the MCMC
sampling outputs. It is sometimes useful to present the posterior median to informally
check on possible asymmetry in the posterior density of a parameter.

According to [36], the BCIs of the parameters of DWMOE distribution α, b, ρ can be
obtained through the following steps:

1. Arrange α̃, b̃, ρ̃ as
(

α̃[1] ≤ α̃[2] ≤ · · · ≤ α̃[M]
)

,
(

b̃[1] ≤ b̃[2] ≤ · · · ≤ b̃[M]
)

and (ρ̃[1] ≤
ρ̃[2] ≤ · · · ≤ ρ̃[M]), where M denotes the length of the generated of MH algorithm.

2. The 100(1− γ)% symmetric credible intervals of α, b, ρ are obtained as:
(

α̃[M
γ
2 ], α̃[M(1− γ

2 )]
)

,(
b̃[M

γ
2 ], b̃[M(1− γ

2 )]
)

and
(

ρ̃[M
γ
2 ], ρ̃[M(1− γ

2 )]
)

.

5. Simulation

In order to compare the classical estimation methods, the Monte-Carlo simulation
procedure is carried out: MLE, and Bayesian estimation method under square error loss
function based on MCMC, for estimation of DWMOE lifetime distribution parameters by
R program. Monte-Carlo experiments are performed based on t data generated on 10,000
random DWMOE distribution samples using Equation (7), where x has DWMOE lifetime
for various parameter actual values as:

Case 1: α = 2; b = 0.75 with different ρ = 0.25, 0.5, 0.85.
Case 2: α = 2; b = 2 with different ρ = 0.25, 0.5, 0.85.
Case 3: α = 0.65; b = 2 with different ρ = 0.25, 0.5, 0.85.

and different sample sizes n : (25, 80, and 150). We could describe the best methods
of estimators as minimizing estimators’ Bias, mean squared error (MSE) and confidence
interval when γ = 0.05.

The simulation results of the methods presented in this paper for point estimation
are summarized in the Tables 2–4. We consider the Bias, MSE, lower and upper of confi-
dence interval values in order to perform the required comparison between various point
estimation methods. The following remarks can be noted from these tables:

1. For fixed actual parameters of DWMOE distribution, the Bias, and MSE decrease as n
increases.

2. When ρ increases, the Bias and MSE for all parameters decrease.
3. When b increases, the Bias and MSE for α and ρ parameters decrease.
4. Bayesian estimation is the best estimation method according Bias and MSE.
5. The confidence interval of Bayesian estimation is shorter confidence interval than

MLE ACI for parameters of DWMOE distribution.
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Table 2. Bias, MSE, Lower, and Upper of CIs for parameters of WMOE distribution: Case 1 with
different value of ρ

MLE Bayesian

ρ n Bias MSE Lower Upper Bias MSE Lower Upper

0.25

25
α 0.2495 0.4825 0.9782 3.5208 0.1108 0.1755 1.4369 2.9437

b 0.3604 0.1941 0.6137 1.6072 0.1306 0.0272 0.6855 1.0716

ρ 0.1488 0.0276 0.2538 0.5439 0.1339 0.0219 0.2683 0.5074

80
α 0.0522 0.1849 1.2152 2.8893 0.0239 0.0273 1.7041 2.3423

b 0.2732 0.0978 0.7251 1.3213 0.1167 0.0215 0.6969 1.0366

ρ 0.1414 0.0241 0.2664 0.5165 0.1206 0.0163 0.3000 0.4651

150
α 0.1958 0.1536 1.5301 2.8615 0.0231 0.0201 1.7841 2.3271

b 0.2462 0.0711 0.7956 1.1967 0.1311 0.0203 0.7421 1.0302

ρ 0.1380 0.0206 0.3115 0.4645 0.1222 0.0160 0.3077 0.4321

0.5

25
α −0.0402 0.2096 1.0459 2.8738 0.1275 0.0408 1.9028 2.3497

b 0.3161 0.1707 0.5328 1.5994 0.1194 0.0183 0.7461 0.9896

ρ 0.0624 0.0112 0.3906 0.7341 0.0723 0.0060 0.4238 0.6467

80
α −0.0144 0.1235 1.1361 2.7351 0.0249 0.0241 1.7244 2.3009

b 0.2003 0.0527 0.7306 1.1700 0.0906 0.0144 0.7017 1.0009

ρ 0.0592 0.0091 0.4885 0.6957 0.0645 0.0058 0.5175 0.6249

150
α 0.0237 0.0337 1.6843 2.3894 0.0240 0.0224 1.7417 2.3112

b 0.1786 0.0375 0.7814 1.0758 0.0856 0.0135 0.6822 0.9720

ρ 0.0838 0.0079 0.5270 0.6406 0.0230 0.0048 0.4848 0.6360

0.85

25
α −0.0706 0.1226 1.2567 2.6021 0.0794 0.0646 1.6848 2.5829

b 0.1413 0.0406 0.6096 1.1730 0.0397 0.0072 0.6569 0.9542

ρ 0.0102 0.0011 0.7993 0.9211 −0.0101 0.0010 0.8169 0.8953

80
α −0.0949 0.0749 1.4013 2.4090 0.0527 0.0627 1.5694 2.5802

b 0.0963 0.0146 0.7028 0.9897 0.0547 0.0067 0.6901 0.9238

ρ 0.0142 0.0005 0.8298 0.8987 0.0042 0.0003 0.8225 0.8907

150
α −0.0538 0.0261 1.6475 2.2450 0.0080 0.0238 1.7425 2.3330

b 0.0871 0.0105 0.7311 0.9431 0.0542 0.0058 0.6958 0.9046

ρ 0.0127 0.0003 0.8411 0.8844 0.0067 0.0002 0.8301 0.8810
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Table 3. Bias, MSE, Lower, and Upper of CIs for parameters of WMOE distribution: Case 2 with
different value of ρ

MLE Bayesian

ρ n Bias MSE Lower Upper Bias MSE Lower Upper

0.25

25
α 0.3139 0.1366 1.9312 2.6966 0.1365 0.0751 1.6867 2.5906

b 0.9532 1.2137 1.8699 4.0364 0.1257 0.0248 1.9302 2.3134

ρ 0.1161 0.0145 0.3031 0.4292 0.1026 0.0141 0.2932 0.4037

80
α 0.2935 0.0954 2.1048 2.4821 0.0493 0.0250 1.7261 2.3206

b 0.9093 0.9120 2.3368 3.4818 0.0948 0.0209 1.8694 2.2937

ρ 0.1204 0.0141 0.3432 0.3976 0.1123 0.0138 0.3418 0.4161

150
α 0.2742 0.0787 2.1572 2.3912 0.0505 0.0175 1.7838 2.2669

b 0.9100 0.8728 2.4952 3.3248 0.0762 0.0088 1.9658 2.1777

ρ 0.1122 0.0135 0.3051 0.3993 0.1027 0.0124 0.3483 0.4075

0.5

25
α 0.1388 0.0416 1.8460 2.4317 0.1110 0.0407 1.8659 2.4055

b 0.5284 0.4035 1.8371 3.2198 0.0590 0.0070 1.9559 2.1861

ρ 0.0600 0.0042 0.5116 0.6084 0.0591 0.0040 0.5232 0.6014

80
α 0.1404 0.0261 1.9833 2.2974 0.0362 0.0241 1.7758 2.3729

b 0.5210 0.3119 2.1266 2.9154 0.0670 0.0060 2.1868 2.2654

ρ 0.0627 0.0041 0.5358 0.5896 0.0624 0.0040 0.5327 0.5860

150
α 0.1070 0.0124 1.7852 2.2510 0.0246 0.0121 2.0471 2.1669

b 0.3693 0.1465 1.9060 2.2538 0.0589 0.0058 2.1972 2.2566

ρ 0.0626 0.0040 0.5367 0.5915 0.0630 0.0039 0.5440 0.5812

0.85

25
α 0.0117 0.0028 1.9101 2.1133 0.0095 0.0021 1.9548 2.1258

b 0.0584 0.0217 1.7930 2.3238 0.0159 0.0055 1.8639 2.1513

ρ 0.0048 0.00013 0.8341 0.8755 0.0043 0.00012 0.8279 0.8804

80
α 0.0242 0.0023 1.9423 2.1061 0.0038 0.0020 1.9735 2.2802

b 0.0563 0.0208 1.8565 2.3562 0.0225 0.0019 1.8279 2.2248

ρ 0.0061 0.00008 0.8439 0.8683 0.0060 0.00007 0.8421 0.8707

150
α 0.0082 0.00015 1.9908 2.0256 0.0036 0.00010 1.9978 2.0210

b 0.0324 0.0020 1.9708 2.0940 0.0211 0.0018 1.9855 2.0919

ρ 0.0062 0.00006 0.8482 0.8642 0.0061 0.00005 0.8456 0.8675
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Table 4. Bias, MSE, Lower, and Upper of CIs for parameters of WMOE distribution: Case 3 with
different value of ρ

MLE Bayesian

ρ n Bias MSE Lower Upper Bias MSE Lower Upper

0.25

25
α 0.6215 0.4291 0.8654 1.6776 0.2448 0.1164 0.5450 1.3491

b 0.8058 0.7366 2.2257 3.3858 0.0258 0.0304 1.9406 2.1294

ρ 0.1794 0.0761 0.2583 0.4004 0.1764 0.0534 0.3045 0.5271

80
α 0.3994 0.1825 0.7521 1.3466 0.0977 0.0284 0.5057 1.0224

b 0.4832 0.2835 2.0445 2.9219 0.0287 0.0138 1.8191 2.2592

ρ 0.1236 0.0157 0.3341 0.4132 0.1087 0.0137 0.3512 0.5246

150
α 0.2488 0.1497 0.6930 1.3647 0.1178 0.0231 0.5419 0.9682

b 0.3610 0.1964 2.3010 2.9082 0.0428 0.0118 1.8586 2.2454

ρ 0.1068 0.0118 0.3159 0.3976 0.0836 0.0104 0.3642 0.5011

0.5

25
α 0.5223 0.3338 0.6880 1.6566 0.3891 0.2432 0.5403 1.5798

b 0.7786 0.7465 2.0440 3.5131 0.0641 0.0702 1.9507 2.1617

ρ 0.0122 0.0030 0.4072 0.6172 0.0453 0.0030 0.4242 0.6474

80
α 0.3975 0.1886 0.7011 1.3939 0.1113 0.0291 0.4944 0.9766

b 0.6600 0.4671 2.3084 3.0117 0.0572 0.0147 1.8994 2.2347

ρ 0.0382 0.0029 0.4634 0.6129 0.0359 0.0028 0.5204 0.6423

150
α 0.3428 0.1849 0.8647 1.2903 0.1206 0.0261 0.5750 0.9880

b 0.6597 0.4553 2.3812 2.9382 0.0490 0.0121 1.9415 2.3053

ρ 0.0289 0.0014 0.4814 0.5764 0.0218 0.0013 0.5306 0.6450

0.85

25
α 0.1351 0.0477 0.4457 1.1245 0.1219 0.0411 0.5329 1.3685

b 0.2723 0.1236 1.8326 2.7121 0.0746 0.0151 1.9471 2.3112

ρ 0.0021 0.0004 0.8105 0.8938 −0.0046 0.0004 0.8183 0.8853

80
α 0.1386 0.0343 0.5382 1.0390 0.0405 0.0122 0.4971 0.9237

b 0.2066 0.0756 1.8366 2.5767 0.0504 0.0103 1.8674 2.2138

ρ −0.0017 0.0002 0.8191 0.8776 0.0016 0.0002 0.8215 0.8798

150
α 0.1274 0.0212 0.6385 0.9163 0.0591 0.0120 0.5335 0.8672

b 0.1926 0.0727 2.0980 2.4304 0.0208 0.0056 1.9020 2.1739

ρ 0.0065 0.0002 0.7832 0.8299 0.0041 0.0002 0.7858 0.8482

6. Applications

In this section, we illustrate the usefulness of the newly proposed DWMOE distribu-
tion. We fit the DWMOE distribution to two data sets and compare the results with those of
the fitted Kumaraswamy-geometric (KG), discrete Lindley (DL), and geometric models. For
comparing the these distributions, we estimated the values of unknown parameters by the
maximum likelihood method with standard errors (SE). Moreover, the fitted distributions
are compared using the −log likelihood (−logL), AIC (Akaike Information Criterion), BIC
(Bayesian Information Criterion), Kolmogorov–Smirnov (K-S) statistic, the corresponding
p-values, the values of Anderson-Darling (A∗) and Cramér von Mises (W∗). The considered
data sets are presented below.
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Data set 1 : The first dataset represents COVID-19 data belong to Australia of 32 days,
which are recorded from 3 September to 4 October 2020, see, ref. [37]. The data set is:

6 15 59 11 5 9 8 11 7 9 6 7 6 0 8 8 5 7 5 2 35 2 8 1 2 3 7 4 2 2 3
Data set 2: The second data set refers the integer part of the lifetime of fifty devices in
weeks is given by [38]. The data set is:

0 0 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18 18 21 32 36 40 45 46 47 50 55
60 63 63 67 67 67 67 72 75 79 82 82 83 84 84 84 85 85 85 85 85 86 86

Tables 5 and 6 represent the values of descriptive study for the fitted DWMOE, KG,
DL and geometric models for Data set 1 and Data set 2, respectively. From the study, the
smallest−logL, AIC, BIC, K-S statistic, A∗, W∗ and the highest p-values are obtained for the
DWMOE distribution. From these results, the new DWMOE distribution is the adequate
model than others. Therefore, it can be used for fitting these data sets. Figures 3 and 4 give
the estimated pdfs for Data set 1 and Data set 2, respectively. These plots also indeed affirm
that DWMOE distribution is clearly a competitive model for considered datasets. Thus, the
new model may be a best alternative to the considered discrete models for modeling these
real data sets.

Table 5. Estimated values, −logL, AIC, BIC, K-S statistics, p-value, A∗ and W∗ for data set 1.

Distribution Estimates(SE) −logL AIC BIC K-S p-Value A∗ W∗

DWMOE α̂ = 1657.1914 91.11431 188.2286 192.6258 0.1209 0.737 0.54066 0.0831
(4233.4787)

b̂ = 0.421(0.1050)
ρ̂ = 0.3446 (0.5445)

KG â = 3.1744(0.0171) 94.9914 195.9828 200.38 0.19379 0.1807 1.89 0.2395
b̂ = 0.2943(0.0526)
p̂ = 0.5717(0.0062)

DL â = 3.1744(0.0171) 97.12205 196.2441 197.7098 0.1620 0.3703 1.3817 0.1894

geometric â = 0.1194 (0.0198) 98.01666 198.0333 199.499 0.25464 0.03153 1.3817 0.1894

Table 6. Estimated values, −logL, AIC, BIC, K-S statistics, p-value, A∗ and W∗ for data set 2.

Distribution Estimates(SE) −logL AIC BIC K-S p-Value A∗ W∗

DWMOE α̂ = 11.5621(12.5867) 238.0759 482.1519 487.8879 0.17892 0.0814 2.364 0.3069
b̂ = 0.6771(0.1510)
ρ̂ = 0.9488(0.0138)

KG â =0.4987(0.3082) 240.1928 486.3855 492.1216 0.1855 0.0641 2.876 0.4761
b̂ = 0.1129(0.1299)
p̂ = 0.8367(0.1758)

DL â = 0.0424(0.0042) 249.9767 501.9534 503.8654 0.20147 0.0345 6.2977 0.6529

geometric p̂ = 0.02142(0.0030) 241.6264 485.2527 487.1647 0.19310 0.048 0.1931 3.0769
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Figure 3. Plots of estimated pdfs of distributions for Data set 1.
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Figure 4. Plots of estimated pdfs of distributions for Data set 2.
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7. Conclusions

In this paper, we proposed a new discrete Weibull Marshall–Olkin family of dis-
tributions with two shape parameters. A special case of this family, discrete Weibull
Marshall–Olkin exponential (DWMOE) distribution is studied in detail. The model param-
eters have been estimated by the maximum likelihood estimation and Bayesian methods.
Simulation study is carried out to assess the performance of the different estimation meth-
ods. Finally, two real data sets are analyzed to show the importance and flexibility of
specified distribution. We hope that the proposed model will serve as a substitute to
various discrete distributions exist in Statistical literature.
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