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Abstract: In this manuscript, we establish the mild solutions for Hilfer fractional derivative integro-
differential equations involving jump conditions and almost sectorial operator. For this purpose, we
identify the suitable definition of a mild solution for this evolution equations and obtain the existence
results. In addition, an application is also considered.
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1. Introduction

Fractional differential equations are a type of mathematical equation that are used to
describe the behaviour of a number of complicated and nonlocal systems with memory.
Because of the fractional derivative’s effective memory function, it has been widely used
to describe many physical phenomena, such as flow in porous media and fluid dynamic
traffic models; more precisely, fractional differential equations have been widely used in
engineering, physics, chemistry, biology, and other fields. One can refer to the references
in [1–6].

The theory of impulsive differential equations describes the processes which experi-
ence a suddenly change of their state at certain moments. There has been notable devel-
opments in the field of impulsive theory, especially in the area of impulsive differential
equations with fixed moments. In recent years, the mathematical models of phenom-
ena in physical, engineering, and biomedical sciences focus on the impulsive differential
equations. The condition (2) includes such a kind of dynamics.

In [7], Anjali et al. discussed the analysis of Hilfer fractional differential equations with
almost sectorial operators, and Abdo et al. [8] proved the existence of soutions for Hilfer
fractional differential equations with boundary conditions. Boundary value problems
for Hilfer fractional differential inclusions with nonlocal integral boundary conditions is
investigated by Wongcharoen et al. [9]. In [10], the authors Yong et al. discussed the multi
point boundary value problem for Hilfer fractional differential equation at Resonance.
For some recent works of the mild solution, see [11–13].

Motivated by the above-cited works, we consider the impulsive initial Hilfer fractional
derivative integro-differential equations involving jump conditions with almost sectorial
operator in Banach space Y of the following form:

Dα,ν℘(t) +A ℘(t) =E

(
t,℘(t),

∫ t

0
ς(t, s)ϑ(s,℘(s))ds

)
, t ∈ (0, T] = J (1)
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∆℘|t=tk =Ik(℘(t−k )), k = 1, 2, 3, ...m (2)

I(1−α)(1−ν)
0+ ℘(0) =

m

∑
k=1

ck℘(tk), (3)

where Dα,ν
0+ is the Hilfer fractional derivative of order α ∈ (0, 1) and type ν ∈ [0, 1]. A is

an almost sectorial operator in Y having norm ‖ · ‖, E : J ×Y ×Y → Y is a function
which is defined later, and 0 < t1 < t2 < . . . < tm < b, m ∈ N, and ck are real numbers
such that ck 6= 0. For brevity, we will take the following:

B℘(t) =
∫ t

0
ς(t, s)ϑ(s, u(s))ds.

In [7], Anjali Jaiswal and Bahuguna studied the equations of the Hilfer fractional
deritaive with almost sectorial operator in the abstract sense as follows:

Dα,ν(t) +A u(t) =E (t, u(t)), t ∈ (o, T]

I(1−α)(1−ν)
0+ u(0) =u0.

We also refer to the work in [3], where Hamdy M. Ahmed et al. studied the existence
for nonlinear Hilfer fractional derivative differential equations with control. Sufficient
conditions were established where the time fractional derivative is the Hilfer derivative.
In [14], Yong Zhoy et al. studied the factional Cauchy problems with almost sectorial
operators of the following form:

Dαu(t) =A x(t) +F (t, x(t)), t ∈ (0, T]

I(1−α)
0+ x(0) =x0

where Dα is the Riemann–Liouville derivative of order α, I(1−α) is the Riemann–Liouville
integral of order 1− α,0 < α < 1, A is an almost sectorial operator on a complex Banach
space, and F is a given function.

The following sections describes the supporting results of the given problem and also
generalize the results in [14].

2. Preliminaries

Definition 1 ([15]). For α > 0, the fractional integral of order α of a function f (t) is defined by:

Iα
0+ f (t) =

1
Γ(α)

∫ t

0
f (r)(t− r)α−1dr.

Definition 2 ([15]). For 0 < α < 1, the Riemann–Liouville (R–L) fractional derivative with order
α of a function f (t) is defined by the following:

Dα f (t) =
1

Γ(1− α)

d
dt

∫ t

0

f (r)
(t− r)α

dr.

Definition 3 ([15]). For 0 < α < 1, the Caputo fractional derivative with order α of a function
f (t) is defined by the following:

cDα f (t) =
1

Γ(1− α)

∫ t

0

f ′(r)
(t− r)α

dr.

Definition 4 ([16]). Let 0 < α < 1 and 0 ≤ v ≤ 1. The Hilfer fractional derivative of order α and
type v is defined by the following:

Dα,v
0+u(t) = Iv(1−α)

0+
d
dt

I(1−v)(1−α)
0+ u(t).
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Measure of Non-compactness:

Let L ⊂ Y and be bounded. The Hausdorff measure of non-compactness Φ is
defined by the following:

Ψ(L ) = inf
{

ζ > 0 such that L ⊂
m⋃

j=1

Bζ(xj) where xj ∈ Y , m ∈ N
}

. (4)

The Kurtawoski measure of non-compactness Φ on a bounded set B ⊂ Y is defined
by the following:

Φ(L ) = inf
{

ε > 0 such that L ⊂
m⋃

j=1

Mj and diam(Mj) ≤ ε
}

(5)

with the following properties:

1. L1 ⊂ L2 gives Ψ(L1) ≤ Ψ(L2) where L1, L2 are bounded subsets of Y ;
2. Ψ(L ) = 0 iff L is relatively compact in Y ;
3. Ψ({z}⋃L ) = Ψ(L ) for all z ∈ Y L ⊆ Y ;
4. Ψ(L1

⋃
L2) ≤ max{Ψ(L1), Ψ(L2)};

5. Ψ(L1 +L2) ≤ Ψ(L1) + Ψ(L2);
6. Ψ(rL ) ≤ |r|Ψ(L ) for every r ∈ R.

Let W ⊂ C(I, Y ) and W(r) =
{

υ(r) ∈ Y |υ ∈W}. We define

∫ t

0
W(r)dr =

{ ∫ t

0
υ(r)dr|υ ∈W

}
, for t ∈ J .

Proposition 1 ([17]). If W ⊂ C(J , Y ) is equicontinuous and bounded, then t → Ψ(W(t)) is
continuous on I and

Ψ(W) = maxΨ(W(t)), Ψ(
∫ t

0
υ(r)dr) ≤

∫ t

0
Ψ(υ(r))dr, for t ∈ I.

Proposition 2 ([18]). Let {υn : I → Y , n ∈ N} be the Bochner integrable functions such
that, for n ∈ N, ‖υn‖ ≤ m(t) a.e m ∈ L1(I, R+). Then, ξ(t) = Ψ({υn(t)}∞

n=1) ∈ L1(I, R+)
and satisfies the following:

Ψ({
∫ t

0
υn(r)dr : n ∈ N}) ≤ 2

∫ t

0
ξ(r)dr.

Proposition 3 ([19]). Let W be a bounded set. Then, for any ζ > 0, there exists a sequence
{υn}∞

n=1 ⊂W, such that:

Ψ(W) ≤ 2Ψ{υn}∞
n=1 + ζ.

Almost Sectorial Operators:

Let 0 < µ < π and −1 < β < 0. We define S0
µ = {υ ∈ C \ {0} that is |argυ| < µ} and

its closure by Sµ, that is Sµ = {υ ∈ C \ {0}|argυ| < µ}⋃{0}.
Definition 5 ([20]). For −1 < β < 0, 0 < ω < π

2 , we define {�β
ω} as a family of all closed and

linear operators A : D(A ) ⊂ X → Y this implies the following:

1. σ(A ) is contained in the Sω;
2. For all µ ∈ (ω, π), there exists Mµ such that

‖R(z, A )‖L(X) ≤ Mµ|z|β
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where R(z, A ) = (zI −A )−1 is the resolvent operator of A for z ∈ ρ(A ) and A ∈ �β
ω is

called an almost sectorial operator on X.

Proposition 4 ([20]). Let A ∈ �β
ω for −1 < β < 0 and 0 < ω < π

2 . Then, the below properties
are completed:

1. =(t) is analytic and dn

dtn=(t) = (−A n=(t)(t ∈ S0
π
2
);

2. =(t + s) = =(t)=(s) ∀ t, s ∈ S0
π
2

;

3. ‖=(t)‖L(Y ) ≤ C0t−β−1(t > 0); where C0 = C0(β) > 0 is a constant;
4. Let ∑= = {x ∈ Y : limt→0+=(t)x = x}. Then D(A θ) ⊂ ∑= if θ > 1 + β;
5. R(r,−A ) =

∫ ∞
0 e−rs=(s)ds for r ∈ C with Re(r) > 0.

We consider the following Wright-type function [15]:

Mα(θ) = ∑
n∈N

(−θ)n−1

Γ(1− αn)(n− 1)!
, θ ∈ C.

For −1 < σ < ∞, r > 0, the following are satisfied:

(A1) Mα(θ) ≥ 0, t > 0;

(A2)
∫ ∞

0 θσMαdθ = Γ(1+σ)
Γ(1+ασ)

;

(A3)
∫ ∞

0
α

θα+1 e−rθMα(
1
θα )dθ = e−rα

.

Define the operator families {Sα(t)}|t∈S0
π
2 −w

and {Qα(t)}|t∈S0
π
2 −w

as follows:

Sα(t) =
∫ ∞

0
Mα(ζ)$(tαζ)dζ

Qα(t) =
∫ ∞

0
αζMα(ζ)$(tαζ)dζ.

Theorem 1 (Theorem 4.6.1 [15]). For each fixed t ∈ S0
π
2 −ω

, Sα(t) and Qα(t) are bounded and
linear operators on Y . In addition:

‖Sα(t)‖ ≤ Cst−α(1+β), ‖Qα(t)‖ ≤ Cpt−α(1+β), t > 0

where Cs and Cp are constants.

Theorem 2 (Theorem 4.6.2 [15]). Sα(t) and Qα(t) are continuous in the uniform operator
topology for t > 0. Moreover, for every s > 0, the continuity is uniform on [s, ∞].

For T > 0, we set J = [0, T] and J ′ = (0, T]. We introduce C(J , Y ) as the space of

continuous functions from J to Y . Define Y =
{
℘ ∈ C(J ′, Y ) : limt→0 t1+αβ(1−v)℘(t)

exists and is finite
}

, and ‖℘‖Y = sup′t∈J {t1+αβ(1−v)‖℘(t)‖}.
Then, Y is a Banach space. Then:

(a) For v = 1, Y = C(J , Y ) and ‖℘‖Y = supt∈J ‖℘(t)‖;
(b) For v = 0, ‖u‖Y = supt∈J ′‖t(1+αβ)u(t)‖;
(c) Let ℘(t) = t1+αβ(1−ν)y(t), t ∈ J ′. Then ℘ ∈ Y if and only if y ∈ C(J , Y ) and

‖℘‖Y = ‖y‖.
We define Br(J ) = {y ∈ C(J , Y ) such that ‖y‖ ≤ r} and BY

r (J ′) = {u ∈
Y such that‖℘‖ ≤ r}.

We assume the following hypotheses to prove our results.

Hypothesis 1 (H1). For each fixed t ∈ J ′, E (t, ., .) : X×Y → Y is a continuous function and
for each ℘ ∈ C(J ′, Y ), E (.,℘,B℘) : J ′ → Y is strongly measurable.
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Hypothesis 2 (H2). ∃ a function k ∈ L1(J ′,R+) satisfying the following:

I−αβ
0+ k ∈ C(J ′,R), lim t(1+αβ)(1−ν) I−αβ

0+ k(t) = 0.

Hypothesis 3 (H3).

sup[0,T](t
(1+αβ)(1−nu)‖Sα,ν(t)u0

‖+ t(1+αβ)(1−ν)
∫ t

0
(t− r)−αβ−1k(r)dr) ≤ r

for a constant r > 0 and u0 ∈ D(A θ), θ > 1 + β, where Sα,ν(t) = Iν(1−α)
0+ t−1Qα(t).

Hypothesis 4 (H4). ∃ constants γk such that ‖Ik(℘)‖ ≤ γk, k = 1, 2, . . . , m for each ℘ ∈ Y .

Definition 6. By a mild solution of the Cauchy problem (1.1)–(1.3), we mean a function ℘ ∈
C(J ′, X) that satisfies the following:

℘(t) = Sα,ν(t)v̂ +
∫ t

0
Kα(t− r)E (r,℘(r), (B℘)r)dr + ∑

0<tk<t
Sα,ν(t− tk)Ik(℘(t−k )), t ∈ J ′ (6)

where

v̂ =
m

∑
k=1

ck℘(tk), Sα,ν(t) = Iν(1−α)
0+ Kα(t), Kα = tα−1Qα(t).

Now, we define an operator P : Br(J ′)→ Br(J ′) as follows:

(P℘)(t) =Sα,ν(t)v̂ +
∫ t

0
(t− r)α−1Qα(t− r)E (r,℘(r), (B℘)r)dr

+ ∑
0<tk<t

Sα,ν(t− tk)Ik(℘(t−k )).
(7)

Lemma 1 ([7]). Kα(t) and Sα,ν(t) are bounded linear operators on Y , for every fixed t ∈ S0
π
2 −ω

.
Furthermore for t > 0:

‖Kα(t)x‖ ≤ Cpt−1−αβ‖x‖, ‖Sα,ν(t)x‖ ≤
Γ(−αβ)

Γ(ν(1− α)− αβ)
Cptν(1−α)−αβ−1‖x‖.

Proposition 5 ([7]). Kα(t) and Sα,ν(t) are strongly continuous, for t > 0.

Let Ms = supt∈J

∥∥∥Sα,ν(t)

∥∥∥. Assume that ∑m
ck
≤ 1

Ms
.

We have: ∥∥∥∥∥ m

∑
ck

Sα,ν(tk)

∥∥∥∥∥ ≤ Ms.
1

Ms
< 1.

3. Main Results

Theorem 3. Let A ∈ �β
ω for −1 < β < 0 and 0 < ω < π

2 . Assuming (H1)–(H4) are satisfied,
the operators {Fy : y ∈ Br(J )} are equicontinuous provided ℘0 ∈ D(A θ) with θ > 1 + β.

Proof. For y ∈ Br(J ) and t1 = 0 < t2 ≤ T, we gave the following:∥∥∥Fy(t2)− Fy(0)
∥∥∥ =

∥∥∥t(1+αµ)(1−ν)
2

(
Sα,ν(t2)

v̂ +
∫ t2

0
(t2 − r)α−1Qα(t2 − r)E (r,℘(r), (B℘)r)dr

+ ∑
0<tk<t2

Sα,ν(t2 − tk)Ik(℘(t−k ))
)∥∥∥

≤
∥∥∥t(1+αµ)(1−ν)

2 Sα,ν(t2)
v̂
∥∥∥
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+
∥∥∥t(1+αµ)(1−ν)

2

∫ t2

0
(t2 − r)α−1Qα(t2 − r)E (r,℘(r), (B℘)r)dr

∥∥∥
+
∥∥∥t(1+αµ)(1−ν)

2 ∑
0<tk<t2

Sα,ν(t2 − tk)Ik(℘(t−k ))
∥∥∥

→ 0, as t2 → 0.
Now, let 0 < t1 < t2 ≤ T:∥∥∥Fy(t2)− Fy(t1)

∥∥∥ ≤∥∥∥t(1+αµ)(1−ν)
2 Sα,ν(t2)

v̂− t(1+αµ)(1−v)
1 Sα,ν(t1)

v̂
∥∥∥

+
∥∥∥t(1+αµ)(1−v)

2

∫ t2

0
(t2 − r)α−1Qα(t2 − r)E (r,℘(r), (B℘)r)dr

− t(1+αµ)(1−ν)
1

∫ t1

0
(t1 − r)α−1Qα(t1 − r)E (r,℘(r), (B℘)r)dr

∥∥∥
+
∥∥∥t(1+αµ)(1−ν)

2 ∑
0<tk<t2

Sα,ν(t2 − tk)Ik(℘(t−k ))

− t(1+αµ)(1−ν)
1 ∑

0<tk<t1

Sα,ν(t1 − tk)Ik(℘(t−k ))
∥∥∥.

Here, using the triangle inequality, we have the following:∥∥∥Fy(t2)− Fy(t1)
∥∥∥ ≤∥∥∥t(1+αµ)(1−ν)

2 Sα,ν(t2)
v̂− t(1+αµ)(1−ν)

1 Sα,ν(t1)
v̂
∥∥∥

+
∥∥∥t(1+αµ)(1−ν)

2

∫ t2

t1

(t2 − r)α−1Qα(t2 − r)E (r,℘(r), (B℘)r)dr
∥∥∥

+
∥∥∥t(1+αµ)(1−ν)

2

∫ t1

0
(t2 − r)α−1Qα(t2 − r)E (r,℘(r), (Bu)r)dr

− t(1+αµ)(1−ν)
1

∫ t1

0
(t1 − r)α−1Qα(t2 − r)E (r,℘(r), (B℘)r)dr

∥∥∥
+
∥∥∥t(1+αµ)(1−ν)

1

∫ t1

0
(t1 − r)α−1Qα(t2 − r)E (r,℘(r), (B℘)r)dr

− t(1+αµ)(1−ν)
1

∫ t1

0
(t1 − r)α−1Qα(t1 − r)E (r,℘(r), (B℘)r)dr

∥∥∥
+
∥∥∥t(1+αµ)(1−v)

2 ∑
0<tk<t2

Sα,ν(t2 − tk)Ik(℘(t−k ))

− t(1+αµ)(1−ν)
1 ∑

0<tk<t1

Sα,ν(t1 − tk)Ik(℘(t−k ))
∥∥∥

=I1 + I2 + I3 + I4 + I5.

By the strong continuity of Sα,ν(t), we obtain I1 → 0 as t2 → t1. In addition:

I2 ≤Cpt(1+αβ)(1−ν)
2

∫ t2

t1

(t2 − r)−αβ−1κ(r)dr

≤Cp

∣∣∣t(1+αβ)(1−ν)
2

∫ t2

0
(t2 − r)−αβ−1κ(r)dr− t(1+αβ)(1−ν)

2

∫ t1

0
(t1 − r)−αβ−1κ(r)dr

∣∣∣
≤Cp

∫ t1

0

∣∣∣t(1+αβ)(1−ν)
1 (t1 − r)−αβ−1 − t(1+αβ)(1−ν)

2 (t2 − r)−αβ−1
∣∣∣κ(r)dr.

Then, I2 → 0 as t2 → t1, by using (H2) and the dominated convergence theorem. Since

I3 ≤ Cp

∫ t1

0
(t2 − r)−α−αβ

∣∣∣t(1+αβ)(1−ν)
2 (t2 − r)α−1 − t(1+αβ)(1−ν)

1 (t1 − r)α−1
∣∣∣κ(r)dr
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and

(t2 − r)−α−αβ
∣∣∣t(1+αβ)(1−ν)

2 (t2 − r)α−1 − t(1+αβ)(1−ν)
1 (t1 − r)α−1

∣∣∣κ(r)
≤t(1+αβ)(1−ν)

2 (t2 − r)α−1κ(r) + t(1+αβ)(1−ν)
1 (t1 − r)α−1κ(r)

≤2t(1+αβ)(1−ν)
1 (t1 − r)α−1κ(r)

and
∫ t1

0 2t(1+αβ)(1−ν)
1 (t1 − r)α−1κ(r) exists, i.e., I3 → 0 as t2 → t1.

For ε > 0, we have the following:

I4 =
∥∥∥ ∫ t1

0
t(1+αβ)(1−ν)
1 [Qα(t2 − r)−Qα(t1 − r)](t1 − r)α−1E (r,℘(r), (B℘)r)dr

∥∥∥
≤
∫ t1−ε

0
t(1+αβ)(1−ν)
1

∥∥∥Qα(t2 − r)−Qα(t1 − r)
∥∥∥

L(X)
(t1 − r)α−1κ(r)

+
∫ t1

t1

t(1+αβ)(1−ν)
1

∥∥∥Qα(t2 − r)−Qα(t1 − r)
∥∥∥

L(X)
(t1 − r)α−1κ(r)

≤t(1+αβ)(1−ν)
1

∫ t1

0
(t1 − r)α−1κ(r)dr sups∈[0,t1−ε]

∥∥∥Qα(t2 − r)−Qα(t1 − r)
∥∥∥

L(X)

+ Cp

∫ t1

t1

t(1+αβ)(1−ν)
1 ((t2 − r)−α−αβ + (t1 − r)−α−αβ)(t1 − r)α−1κ(r)dr

≤t(1+αβ)(1−ν)+α(1+β)
1

∫ t1

0
(t1 − r)−αβ−1κ(r)dr sups∈[0,t1−ε]

∥∥∥Qα(t2 − r)−Qα(t1 − r)
∥∥∥

L(X)

+ 2Cp

∫ t1

t1−ε
t(1+αβ)(1−ν)
1 (t1 − r)−αβ−1κ(r)dr.

Since Qα(t) is uniformly continuous and limt2→t1 I2 = 0, then I4 → 0 as t2 → t1,
i.e., independent of y ∈ Br(J ).

Clearly, by the strong continuity of Sα,ν(t), we obtain the following:

I5 =
∥∥∥t(1+αµ)(1−v)

2 ∑
0<tk<t2

Sα,ν(t2 − tk)Ik(℘(t−k ))

−t(1+αµ)(1−ν)
1 ∑

0<tk<t1

Sα,ν(t1 − tk)Ik(℘(t−k ))
∥∥∥→ 0 as t2 → t1.

Hence,
∥∥∥Fy(t2) − Fy(t1)

∥∥∥ → 0 independently of y ∈ Br(J ) as t2 → t1; therefore,

{Fy : y ∈ Br(J )} is equicontinuous.

Theorem 4. Let −1 < β < 0 and 0 < ω < π
2 and A ∈ �β

ω. Then, under Assumptions
(H1)–(H3) the operator {Fy : y ∈ Br(J )} is continuous and bounded provided ℘0 ∈ D(A θ)
with θ > 1 + β.

Proof. Firstly, we prove that F maps Br(J ). Taking y ∈ Br(J ) and define ℘(t) =

t−(1+αβ)(1−ν)y(t), we have ℘ ∈ BY
r (J ′). Let t ∈ [0, T]:

‖F‖ ≤ ‖t(1+αβ)(1−ν)Sα,ν(t)v̂‖+ t(1+αβ)(1−ν)
∥∥∥ ∫ t

0
(t− r)α−1Qα(t− r)E (r,℘(r), (B℘)r)dr

∥∥∥
From (H2) and (H3), we obtain the following:

‖Fy(t)‖ ≤t(1+αβ)(1−ν)‖Sα,ν(t)v̂‖+ t(1+αβ)(1−ν)
∫ t

0
(t− r)−αβ−1κ(r)dr
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≤ sup[0,T] t(1+αβ)(1−ν)
∫ t

0
(t− r)−αβ−1κ(r)dr

≤r.

Hence, ‖Fy‖ ≤ r, for any y ∈ Br(I).
Now, to verify F is continuous inBr(I), let yn, y ∈ B(I), n = 1, 2, · · · , with limn→∞ yn =

y. Hence, limn→∞ yn(t) = y(t) and limn→∞ t−(1+αβ)(1−v) yn(t) = t−(1+αβ)(1−v) y(t)
and limn→∞ t−(1+αβ)(1−ν)yn(t) = t−(1+αβ)(1−ν)y(t), on J ′ (H1) implies the following:

E (t,℘n(t),B(℘n(t))) =E (t, t−(1+αβ)(1−ν)yn(t), t−(1+αβ)(1−ν)B(yn(t)))

→ E (t, t−(1+αβ)(1−ν)y(t), t−(1+αβ)(1−ν)B(y(t))),

as n→ ∞.
We use (H2) to obtain the inequality (t − r)−αβ−1|E (r,℘n(r),B(℘n(r)))| ≤ 2(t −

r)−(αβ)(1−ν)κ(r), i.e.,∫ t

0
(t− r)−αβ−1‖E (r,℘n(r),B(℘n(r)))− E (r,℘(r),B(℘(r))‖dr → 0, as n→ ∞.

Let t ∈ [0, T]. Now:

‖Fyn(t)− Fy(t)‖ ≤ t(1+αβ)(1−ν)
∥∥∥ ∫ t

0
(t− r)α−1Qα(t− r)(E (r,℘n(r),B(℘n(r))− E (r,℘(r),B(℘(r)))dr

∥∥∥.

Applying Theorem (1), we have the following:

‖Fyn(t)− Fy(t)‖ ≤ Cpt(1+αβ)(1−ν)
∫ t

0
(t− r)−αβ−1‖E (r,℘n(r),B(℘n(r))− E (r,℘(r),B(℘(r))‖dr

→ 0 as n→ ∞.
that is, Fyn → Fy pointwise on J . In addition, Theorem (3) implies that Fyn → Fy
uniformly on J as n→ ∞. Hence, F is continuous.

4. =(t) Is Compact

We can assume that, for t > 0, the semigroup T(t) is compact on Y . Hence, the
compactness of Qα(t) is as follows:

Theorem 5. Let −1 < β < 0, 0 < ω < π
2 and A ∈ Θβ

ω. If T(t)(t > 0) is compact and
(H1)–(H4) hold, then ∃ a mild solution of (1.1)–(1.3) in BYr (I′) for every ℘0 ∈ D(A θ) with
θ > 1 + β.

Proof. Since we have assumed =(t) is compact, it gives the equicontinuity of =(t)(t > 0).
Moreover, from Theorems (3) and (4), we know that F : BYr (J′) → BY

r (J′) is continuous
and bounded and ε : Br(J) → Br(J) is bounded, continuous, and {εy : y ∈ Br(J)}
equicontinuous. We can write ε : Br(J)→ Br(J) as follows:

(εy)(t) = (ε1y)(t) + (ε2y)(t)

where:

(ε1y)(t) = t(1+αβ)(1−ν)Sα,ν(t)℘0 = t1+αβ)(1−ν)Iν(1−α)
0+ tα−1Qα(t)v

=
t(1+αβ)(1−ν)

Γ(ν(1− α))

∫ t

0
(t− r)ν(1−α)−1rα−1

∫ ∞

0
αθMα(θ)=(rαθ)vdθ dr

=
αt(1+αβ)(1−ν)

Γ(ν(1− α))

∫ t

0

∫ ∞

0
(t− r)ν(1−α)−1rα−1θMα(θ)=(rαθ)vdθdr
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and

(ε2y)(t) =t(1+αβ)(1−ν)
∫ t

0
(t− r)α−1Qα(t− r)E (r,℘(r)(B℘)r)dr

+ ∑
0<tk<t

Sα,ν(t− tk)Ik(℘(t−k )).

For σ > 0 and ζ ∈ (0, t), we define an operator ε1
ζ,σ on Br(J) by

(ε1
ζ,σy)(t) =

t(1+αβ)(1−ν)

Γ(ν(1− α))

∫ t

ζ

∫ ∞

σ
(t− r)(1−α)ν−1rα−1θMα(θ)=(rαθ)vdθ dr

=
αt(1+αβ)(1−ν)

Γ(ν(1− α))
T(ζασ)

∫ t

ζ

∫ ∞

σ
(t− r)(1−α)ν−1rα−1θMα(θ)=(rαθ − ζασ)vdθdr.

Since T(εαδ) is compact V1
ζ,σ(t) = {ε1

ζ,σy)(t), y ∈ Br(J)} is precompact in X ∀ζ ∈ (0, t)
and δ > 0. Moreover, for any y ∈ Br(J)

‖(ε1y)(t)− (ε1
ζ,σy)(t)‖ ≤ K (α, ν)

∥∥∥∥t(1+αβ)(1−ν)
∫ t

0

∫ σ

0
(t− r)ν(1−α)−1rα−1θMα(θ)=(rαθ)vdθdr

∥∥∥∥
+K (α, ν)

∥∥∥∥t(1+αβ)(1−ν)
∫ ζ

0

∫ ∞

σ
(t− r)ν(1−α)−1rα−1θMα(θ)=(rαθ)vdθdr

∥∥∥∥
≤ K (α, ν)t(1+αβ)(1−ν)

∫ t

0

∫ σ

0
(t− r)ν(1−α)−1rα−1θMα(θ)r−αγ−α‖v‖θ−β−1dθ dr

+K (α, ν)t(1+αβ)(1−ν)
∫ ζ

0

∫ ∞

σ
(t− r)ν(1−α)−1rα−1θMα(θ)r−αβ−αθ−β−1‖v‖dθ dr

= K (α, ν)t(1+αβ)(1−ν)
∫ t

0
(t− r)ν(1−α)−1r−αβ−1‖v‖dr

∫ σ

0
θ−β Mα(θ)dθ

+K (α, ν)t(1+αβ)(1−ν)
∫ ζ

0
(t− r)ν(1−α)−1r−αβ−1‖v‖dr

∫ ∞

η
θ−β Mα(θ)dθ

≤ K t−αν(1+β)‖v‖
∫ η

0
θ−β Mα(θ)dθ

+K t−αν(1+β)‖v‖
∫ ζ

0
(1− s)ν(1−α)−1r−αβ−1dr

∫ ∞

η
θ−β Mα(θ)dθ,

→ 0, as ζ → 0, σ→ 0,

where, K (α, ν) = α
Γ(ν(1−α))

.

Therefore, V1
ζ,σ(t) = {ε1

ζ,σy)(t), y ∈ Br(J)} are arbitrarily close to V1(t) = {ε1y)(t), y ∈
Br(I)} , for t > 0. Hence, V1(t), for t > 0, is precompact in Y .

For ζ ∈ (0, t) and σ > 0, we can present an operator ε2
ζ,σ on Br(I) by

(ε2
ζ,σy)(t) =αt(1+αβ)(1−ν)

∫ t−ζ

0

∫ ∞

σ
θMα(θ)(t− r)α−1=((t− r)αθ)E (r,℘(r), (B℘)r)dθdr

+ ∑
0<tk<t

Sα,v(t− tk)Ik(℘(t−k ))

=αt(1+αβ)(1−ν)T(ζασ)
∫ t−ζ

0

∫ ∞

σ
θMα(θ)(t− r)α−1=((t− r)αθ − ζασ)E (r,℘(r), (B℘)r)dθdr

+ ∑
0<tk<t

Sα,ν(t− tk)Ik(℘(t−k )).

Hence, V2
ζ,σ(t) = {ε2

ζ,σy)(t), y ∈ Br(J)} is precompact in X ∀ζ ∈ (0, t) and σ > 0 due
to the compactness of =(ζασ). For every y ∈ Br(J), we obtain the following:



Axioms 2021, 10, 313 10 of 14

‖(ε2y)(t)− (ε2
ζ,σy)(t)‖ ≤

∥∥∥∥αt(1+αβ)(1−ν)
( ∫ t

0

∫ σ

0
θMα(θ)(t− r)α−1=((t− r)αθ)E (r,℘(r), (B℘)r)dθdr

+ ∑
0<tk<t

Sα,ν(t + σ− tk)Ik(℘(t−k ))
)∥∥∥∥

+

∥∥∥∥αt(1+αβ)(1−ν)
( ∫ t

t−ζ

∫ ∞

σ
(t− r)α−1θMα(θ)=((t− r)αθ)E (r,℘(r), (B℘)r)dθdr

+ ∑
0<tk<t

Sα,ν(t + ζ − tk)Ik(℘(t−k ))
)∥∥∥∥

≤αC0t(1+αβ)(1−ν)
( ∫ t

0
(t− r)−αβ−1k(r)dr

∫ σ

0
θ−β Mα(θ)dθ + ∑

0<tk<σ

γk

)
+ αC0t(1+αβ)(1−ν)

( ∫ t

t−ζ
(t− r)−αβ−1k(r)dr

∫ ∞

0
θ−β Mα(θ)dθ + ∑

0<tk<ζ

γk

)
≤αC0t(1+αβ)(1−ν)

( ∫ t

0
(t− r)−αβ−1k(r)dr

∫ σ

0
θ−β Mα(θ)dθ + ∑

0<tk<η

γk

)
+

αC0Γ(1− β)

Γ(1− αβ)
t(1+αβ)(1−ν)

( ∫ t

t−ζ
(t− r)−αβ−1k(r)dr + ∑

0<tk<ζ

γk

)
→ 0 as σ→ 0.

Therefore, V2
ζ,σ(t) = {ε2

ζ,σy)(t), y ∈ Br(J)} are arbitrarily close to V2(t) = {ε2y)(t), y ∈
Br(J)}, t > 0. This gives the relative compactness of V2(t), t > 0 in Y . Moreover,
V(t) = {εy)(t), y ∈ Br(J)} is relatively compact in Y ∀t ∈ [0, T]. Hence, {εy, y ∈ Br(J)}
is relatively compact by using the Arzela–Ascoli Theorem.

Now ε is continuous and {εy, y ∈ Br(J)} is relatively compact. Hence, by the Schauder
fixed point theorem, ∃ a fixed point y∗ ∈ Br(J) of ε. Let ℘∗(t) = t(1+αβ)(ν−1)y∗(t). Then,
℘∗ is a mild solution of (1.1)–(1.3).

5. =(t) Is Noncompact

We consider as follows,

Hypothesis 5 (H5). ∃ a constant k > 0 satisfying the following

ψ(E (t,E1,E2)) ≤ kψ(E1,E2) for a.e t ∈ [0, T]

for every bounded subset E1,E2 ⊂ Y .

Theorem 6. Let −1 < β < 0, 0 < ω < π
2 and A ∈ Θβ

ω . Assume that (H1)–(H5) hold. Then the
Cauchy problem (1.1)–(1.3) has a mild solution in BYr (I′) for every u0 ∈ D(E θ) with θ > 1 + β.

Proof. By Theorems (3) and (4), we obtain ε : Br(I) → Br(I) as continuous, boundedm
and {εy : y ∈ Br(I)} is equicontinuous. Now, we verify that there is a subset of Br(I) such
that ε is compact in it.

For any bounded set P0 ⊂ Br(I), set the following:

ε(1)(P0) = ε(P0), ε(n)(P0) = ε(c̄o(ε(n−1)(P0))), n = 2, 3, . . .

For any ε > 0, we can obtain from Propositions (1)–(3), a subsequence {y(1)n }∞
n=1 ⊂ P0

satisfying:
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ψ(ε(1)(P0(t))) ≤2ψ

(
t(1+αβ)(1−ν)

∫ t

0
(t− r)α−1Qα(t− r)E (r, {r−(1+αβ)(1−ν)(y(1)n (r),By(1)n (r))}∞

n=1)dr

+ ∑
0<tk<t

γk

)
≤4Cpt(1+αβ)(1−ν)

( ∫ t

0
(t− r)−αβ−1ψ(E (r, {r−(1+αβ)(1−ν)(y(1)n (r),By(1)n (r))}∞

n=1))dr

+ ∑
0<tk<t

γk

)
≤4Cpkt(1+αβ)(1−ν)ψ(P0)

( ∫ t

0
(t− r)−αβ−1r−(1+αβ)(1−ν)dr

+ ∑
0<tk<t

γk

)
= 4Cpkt−αβψ(P0)

(Γ(−αβ)Γ((−αβ + ν(1 + αβ))

Γ(−2αβ + ν(1 + αβ))
+ ∑

0<tk<t
γk

)
.

From ε is arbitrary, we obtain the following:

ψ(ε(1)(P0(t))) ≤ 4Cpkt−αβψ(P0)
(Γ(−αβ)Γ((−αβ + ν(1 + αβ))

Γ(−2αβ + ν(1 + αβ))
+ ∑

0<tk<t
γk

)
.

Again, for any ε > 0, we can obtain from Propositions (1)–(3) a subsequence
{y(2)n ,By(2)n }∞

n=1 ⊂ c̄o(ε(1)(P0)) that implies the following:

ψ(ε(2)(P0(t))) = ψ(ε(c̄o(ε(1)(P0(t)))))

≤ 2ψ

(
t(1+αβ)(1−ν)

∫ t

0
(t− r)α−1Qα(t− r)E (r, {r−(1+αβ)(1−ν)(y(2)n (r),By(2)n (r))}∞

n=1)dr

+ ∑
0<tk<t

γk

)
≤ 4Cpt(1+αβ)(1−ν)

( ∫ t

0
(t− r)−αβ−1ψ(E (r, {r−(1+αβ)(1−ν)(y(2)n (r),By(2)n (r))}∞

n=1)dr

+ ∑
0<tk<t

γk

)
≤ 4Cpkt(1+αβ)(1−ν)

( ∫ t

0
(t− r)−αβ−1ψ(r−(1+αβ)(1−ν)({y(2)n (r),By(2)n (r)}∞

n=1))dr

+ ∑
0<tk<t

γk

)
≤ 4Cpkt(1+αβ)(1−ν)

( ∫ t

0
(t− r)−αβ−1r−(1+αβ)(1−ν)ψ({y(2)n (r),By(2)n }∞

n=1)dr + ∑
0<tk<t

γk

)
≤

(4Cpk)2t(1+αβ)(1−ν)Γ(−αβ)Γ(−αβ + ν(1 + αβ))

Γ(−2αβ + ν(1 + αβ))
ψ(P0)

×
( ∫ t

0
(t− r)−αβ−1r−(1+αβ)(1−ν)−αβdr + ∑

0<tk<t
γk

)
=
( (4Cpk)2t−2αβΓ2(−αβ)Γ(−αβ + ν(1 + αβ))

Γ(−3αβ + ν(1 + αβ))
+ ∑

0<tk<t
γk

)
ψ(P0).
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We can verify the following by the mathematical induction:

ψ(ε(n)(P0(t))) ≤
(4Cpk)nt−nαβΓn(−αβ)Γ(−αβ + ν(1 + αβ))

Γ(−(n + 1)αβ + ν(1 + αβ))
ψ(P0), n ∈ N.

Let M = 4CpkT−αβΓ(−αβ). We can find m, k ∈ N big enough such that 1
k < αβ < 1

k−1
and n+1

k > 2 for n > m. Γ(−(n + 1)αβ + ν(1 + αβ)) > Γ( n+1
k ). That is:

(4Cpk)nT−nαβΓn(−αβ)Γ(−αβ + ν(1 + αβ))

Γ(−(n + 1)αβ + ν(1 + αβ))
<

(4Cpk)nT−nαβΓn(−αβ)Γ(−αβ + ν(1 + αβ))

Γ
(

n+1
k

) .

Replace (n + 1) by (j + 1)k. Then, the R.H.S of the inequality given above becomes
the following:

M(j+1)k−1Γ(−αβ + ν(1 + αβ))

Γ(j + 1)
=

(Mk)j Mk−1Γ(−αβ + ν(1 + αβ))

j!
→ 0 as j→ ∞.

Therefore, there exists a constant n0 ∈ N such that

(4Cpknt−nαβΓn(−αβ)Γ(−αβ + ν(1 + αβ)

Γ(−(n + 1)αβ + ν(1 + αβ))
≤
(4Cpk)n0 T−n0αβΓn0(−αβ)Γ(−αβ + ν(1 + αβ))

Γ(−(n0 + 1)αβ + ν(1 + αβ))

=p < 1.

Now:

ψ(ε(n0)(P0(t))) ≤ pψ(P0).

From ε(n0)(P0(t)) is bounded and equicontinuous, applying Proposition (1), we obtain
the following:

ψ(ε(n0)(P0)) = max
t∈[0,T]

ψ(εn0(P0(t))).

Hence:

ψ(εn0(P0)) ≤ pψ(P0),

where p < 1. Now applying a similar technique as applied in Theorem 4.2 [14], we obtain
a nonempty, convex, and compact subset C in Br(J) with ε(C) ⊂ C and ε(C) is compact.
By applying the Schauder fixed point theorem, we obtain a fixed point y∗ in Br(J) of ε. Let
℘∗(t) = t(1+αβ)(ν−1)y∗(t). Then, ℘∗(t) is a mild solution of (1.1)–(1.3).

6. Example

We consider the following impulsive system:

Dα,ν
0+℘(t, x)− ∂2

x℘(t, x) =E (t,℘(t, x),B℘(t, x)) t ∈ [0, T], x ∈ [0, a]

℘(t, 0) = ℘(t, a) =0 on t ∈ [0, T]

I (1−α)(1−ν)
0+ ℘(0, x) =

m

∑
k=1

ck℘(tk, x), x ∈ [0, a]

∆℘|t=1/2 =I1
(
℘
(1

2

−))
,

(8)
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in Banach space Y = Cα([0, a])(0 < α < 1) of all Holder continuous functions, where
α = 1

4 , ν = 1
2 , E (t,℘,B℘) = t−

1
5 cos2℘, ck ∈ R, k = 1, 2, ..., m, such that ∑m

k=1|ck| < 1
Ms

.
Here, we can convert the above problem (1.1–1.3) in abstract form as follows:

Dα,ν℘(t) +A ℘(t) =E (t,℘(t),
∫ t

0
ς(t, s)ϑ(s,℘(s))ds) t ∈ (0, T] = J

∆℘|t=tk =Ik(℘(t−k )), k = 1, 2, 3, ...m

I(1−α)(1−ν)
0+ ℘(0) =

m

∑
k=1

ck℘(tk, x).

(9)

Here, A = −∂2
x with D(A ) = {℘ ∈ C2+α([0, a]) such that ℘(t, 0) = 0 = ℘(t, a)}. It

follows from the work in [20] ∃ constants δ, ε > 0, such that A + δ ∈ �
π
2 −1
π
2 −ε

(Y ). To verify

the compactness of semigroup =(t), it is enough to prove that R(α,−(A + δ) is compact
for every α > 0 (see Lemma 4.66 [15]). Since D(A ⊂ C2+α([0, a])) and C2+α([0, a]) are
compactly embedded in Cα([0, a]), the compactness of the resolvent operator follows for
every α > 0. We choose l(t) = t−

1
5 :

r = sup[0,T](t
(1+αβ)(1−ν)‖Sα,ν(t)u0‖) +

T
17
20 Γ(− β

4 )Γ(
4
5 )

Γ( 4
5 −

β
4 )

.

Then, the Hypotheses (H1)–(H5) are satisfied. According to Theorem 5, the
Problem (6.1) has a mild solution in BY

r ((0, T]).

7. Conclusions

In this paper, we proved the mild solutions of Hilfer fractional integro-differential
equation with impulsive almost sectorial operator, by applying the fixed point theory. We
will find to investigate stability of similar problem in our future research work.
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