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Abstract: We prove some results in set theory as applied to general topology and model theory. In
particular, we study ℵ1-collectionwise Hausdorff, Chang Conjecture for logics with Malitz-Magidor
quantifiers and monadic logic of the real line by odd/even Cantor sets.
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1. Introduction

In §2 we prove a result in general topology saying: if ♦∗ℵ1
then any normal space is

ℵ1 −CWH (= collectionwise Hausdorff ); done independently of and in parallel to Fleisner
and Alan D. Taylor.

In §3 we prove the Chang Conjecture for Magidor-Malitz Quantifiers. A recent related
piece of work is [1].

In §4 we prove the Monadic Theory of the tree ω>2 is complicated under a quite
weak set theoretic assumption. Earlier [2] proved this (i.e., the result on the monadic logic)
assuming CH or at least a consequence of it.

The present note was circulated in the Spring of 1979 in a collection; it include each of
the sections (as well as other preprints) but those three were not published. However, Ref. [3].
have results related to Section 3; in particular it was conjectured there (in Remark 2.15) that
there are two non-principal ultrafilters of ω with no common lower bound in the Rudin
Keisler order; a conjecure which had been refuted in [4].

Later, Gurevich-Shelah [5] proved undecidability in ZFC, with further developments
then more in Shelah [6], still the older proof gives information not covered by them. For
more see [4,7,8].

The results are old, still in particular, §2 gives a direct proof of the result compared to
others and §4 gives a considerably more transparent easier proof of the later result of [5]
but with an extra weak hypothesis.

The author would like to thank Shai Ben David for stimulating discussions on part §3.
We thank the referee for his help, well beyond than the call of duty.

2. A Note in General Topology If �∗ℵ1
Then Any Normal Space is ℵ1−CWH

(=Collectionwise HAUSDORFF)

The normal Moore space problem has been a major theme in general topology, see the
recent survey Dow-Tall [9]. In this connection, Fleissner ([10], p. 6) proved: (V = L) every
normal first countable (topological) space is CWH (CWH means collectionwise Hausdorff).
He used a strengthening of diamond. The author proved Fleissner strengthening (for ℵ1)
does not follow from ZFC +♦+

ℵ1
(see [11], Th. 5, p. 31). Here we prove nevertheless ♦∗ℵ1

implies every normal first countable space is ℵ1 −CWH.
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The central idea of the proof in §2 is inspired by one key idea in Fleissner [10]. Fleissner
implicitly used a stronger combinatorial principle ♦SS. In 1979, the author and indepen-
dently both Fleissner and Alan D. Taylor all saw (as mentioned in [12,13] that a weaker
principle, ♦∗ω1

, would suffice. Later Smith and Szeptycki [12] derive better results. On
more recent results on diamond and strong negation, see [14] and references there.

Definition 1. Below δ always denotes a limit ordinal (< ω1). For transparency, below we refer to
the following equivalent form of ♦∗ω1

.

Definition 2. Let ♦∗ℵ1
mean that there exist a sequence 〈gδ : δ < ω1〉 where gδ = 〈ḡδ,k : k < ω〉

is of the form ḡδ,k = 〈gδ,k
n : n < ω〉, where gδ,k

n : δ → ω has the property that, for any sequence
ḡ = 〈gn : n < ω〉 with gn : {δ : δ < ω1} → ω, there is a club (closed unbounded) set C ⊆ ω1
such that, for each γ ∈ C, there is k = k(γ) ∈ ω with

ḡ�γ := 〈gn�γ : n < ω〉 = ḡγ,k = 〈gγ,k
n : n < ω〉.

Theorem 1. Assume ♦∗ℵ1
. If X is Hausdorff first countable normal and |X| = ℵ1 then X is CWH.

Proof. Let 〈gδ : δ < ω1〉 be as in Definition 2.
Without loss of generality X∗ = {δ : δ < ω1} ⊆ X and X∗ is closed discrete in the

space X. Let Uδ
n(n < ω) be a basis of open neighborhoods of δ (for δ < ω1). We shall

define by induction on α < ω1 a limit ordinal γα < ω1 and 〈 fn(γ) : n < ω, γ < γα〉 such
that γα is increasing continuous with α and γ0 = 0. For α = 0 choose γα = ω; fn(γ) = 0.
For limit α let γα be ∪{γβ : β < α}. For α = β + 1 if γα > α then we let γα = γβ + ω and
let fn(γ) = 0 for γ ∈ [γβ, γα). Finally assume that α = δ∗, γδ∗ = δ∗ so δ∗ ∈ X∗.

We have chosen above the functions 〈gδ∗ ,k
n : n < ω, k < ω〉 with gδ∗ ,k

n : δ∗ → ω; now
for each n, k < ω let Aδ∗ ,n,k

` = ∪{Uδ

gδ∗ ,k
n (δ)

: δ < δ∗, fn(δ) = `} (for n < ω, ` < 2). Call

k < ω good for δ∗ when for infinitely many (pairs) n, ` we have

Bδ∗ ,n,k
` := cl(Aδ∗ ,n,k

` ) ∩ (X∗ \ δ∗) 6= ∅.

We let γα = γδ∗+1 = min{δ : δ > δ∗ and if ` < 2 and n, k < ω and Bδ∗ ,n,k
` 6= ∅ then

(δ∗, δ) ∩ Bδ∗ ,n,k
` 6= ∅}.

Now we choose fn�[δ∗, γα) such that for any k good for δ∗, for some n, `, δ ≥ δ∗ we
have

fn(δ) = 1− `( for δ ∈ cl(Aδ∗ ,n,k
` )).

Then we complete arbitrarily the fn so that its domain is γα.
Thus we have defined fn(n < ω) with fn : ω1 → 2. For each n the sets f−1

n {1} ∩
X∗, f−1

n {0} ∩ X∗ form a partition of X∗, both are closed and discrete subsets of X. But X is
normal. So there are functions gn : X∗ → ω for n < ω so that letting for ` = 0, 1

An
` = ∪{Uδ

gn(δ)
: δ ∈ X∗, fn(δ) = `}

we have

An
0 ∩ An

1 = ∅.

Let g+n be any function from ω1 to ω extending gn. For some closed unbounded
set C ⊆ X∗ we have: δ∗ ∈ C ⇒ (∃k)(〈g+n �δ∗ : n < ω〉 = 〈gδ∗ ,k

n : n < ω〉). Let the
first such k be denoted k(δ∗). Without loss of generality every δ∗ ∈ C satisfy γδ∗ = γ

hence if δ∗ ∈ C ∧ n < ω ∧ k < ω ∧ ` < 2 and Bδ∗ ,n,k
` = cl(Aδ∗ ,n,k

` ) ∩ (X∗\δ∗) 6= ∅ then
min(Bδ∗ ,n,k

` ) < min(C\(δ∗ + 1)).
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For δ∗ ∈ C now k(δ∗) cannot be good for δ∗, (by the definition).
Now for at least one n (in fact, for infinitely many n-s) we have cl(An

` |δ
∗)∩ (X∗ \ δ∗) =

∅ for ` ∈ {0, 1}, let n(δ∗) be the first such n.
Define

Bn = {δ : for some δ∗ ∈ C ∪ {0} we have δ∗ ≤ δ < min(C\δ) and n = max{n(δ∗), n(δ)}

Now
⋃
n
(gn�Bn) almost exhibits X∗ has the right sequence of neighborhoods. Now we

can deal with each Bn separately (just choose Un by induction on n such that Un is open,
Un ∩ X∗ = Bn and Un ⊆ X\c`( ⋃

`<n
U`), possible by normality).

By dealing as follows with each interval [δ∗, min(C\(δ∗ + 1)) for δ∗ ∈ C ∪ {0} we
have Uδ

gn(δ)
(δ ∈ Bn) as required.

That is, for γ ∈ C ∪ {0} with γ+ its successor in C, choose a (countable) family of
pairwise disjoint open sets Uγ(β) for β ∈ X∗ ∧ γ ≤ β < γ+, with β ∈ Uγ(β), this is
possible as in the choice of the Un’s.

Now for β ∈ X∗ we let Wβ = Un(β) ∩Uγ(β)(β) ∩U
β

gn(β)(β)
where:

• γ(γ) = max(C ∩ (β + 1))
• m(β) = max{n(δ∗), n((δ∗)+) : δ∗ = max(C ∩ β) ≤ β < (δ∗)+}

Finally 〈Wβ : β ∈ X∗〉 is a sequence of pairwise disjoint open sets of X with β ∈ X∗ ⇒
β ∈Wβ, so we are done.

Remark 1. As in [10] it suffices to assume every point in the space has a neighborhood basis of
cardinality ℵ1.

3. Chang Conjecture for Magidor-Malitz Quantifiers

Silver (see [15]) had proved the consistency of Chang conjecture, i.e.,

⊕ any model M with universe ℵ2 (and countable signature = vocabulary) τ, has an
elementary submodel N, (‖N‖ = ℵ1, |N ∩ω1| = ℵ0)

Silver did this by starting with a model V with κ Ramsey (in fact, something weaker
suffices), forcing MA and then collapsing κ to ℵ2 by Pκ

Set = { f : Dom( f ) ⊆ {µ : ℵ1 <
µ < κ, µ a cardinal} has cardinality ≤ ℵ1, and for some α < ω1, (∀µ ∈ Dom f )( f (µ) is a
function from α to µ)}. See also Koszmider [16] for a topological application.

We can ask whether this submodel N can inherit more properties from M.

Definition 3. Let us define a (technical variant of) Magidor-Malitz quantifiers. M |= (Qn x̄)ϕ(x1,
. . . , xn) means that there is a set A ⊆ M, A is of cardinality ‖M‖ such that (∀a1 . . . an ∈
A)ϕ(a1 . . . an).

The result is that:

Claim 1. In⊕ above, we can have N an elementary submodel of M even for the logicL(Q0, Q1, . . .)n<ω .
So e.g., Suslinity of trees is preserved.

For this we need the following.

Definition 4. Call a forcing P suitable when for any sequence 〈pi : i < ω1〉 of members of P
there is a set U ⊆ ω1 of cardinality ℵ1 such that: for any finite u ⊆ U there is q ∈ P such that∧
i∈u

q ≥ pi.

Claim 2. Forcing by suitable forcing preserves satisfaction of sentences of Magidor-Malitz quanti-
fiers for models of power ℵ1.
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See ([17], 1.5–13, p. 34).

Claim 3. There is a suitable forcing P, |P| = 2ℵ1 , such that in VP: if Q is a suitable forcing of power
ℵ1, M

˜
a Q-name of a model of power ℵ1, in a language L ∈ V, universe ℵ1, then there is a directed

G ⊆ P, which determines M
˜

as M and such that for any sentence ψ from the L(Q0, Q1, . . .) (the
variant of Magidor-Malitz logic from Definition 3)


Q “M
˜
|= ψ” implies M |= ψ.

Proof. Just iterate the required forcing notions, with direct limit (i.e., finite support) and
remember it is known that suitability is preserved under iteration, i.e., Claim 2.

Proof of Main result Claim 1:
Do as Silver, start with V |= “κ Ramsey”, force by P from Claim 3, and then use Pκ

Set.
The rest is as in his proof.

But we have to choose G as in Definition 3, and notice that more is reflected to the
submodel he uses, (just check the definition carefully) and work a little, and remember
that ℵ1-complete forcing preserves satisfaction of sentences in L(Q0, . . .) (and Pκ

Set is ℵ1-
complete).

4. A Remark on the Monadic Theory of Order

In [2] we prove the undecidability of the monadic theory of (the order) R, assuming
CH, or the weaker Baire-like hypothesis that R is not the union of fewer than continuum
sets of first category sets. This condition is weaken below to ‘‘not (St) at least for T where
a closely related theory is the monadic theory T of M = (ω≥2, /) where ω≥2 is the set of
sequences of zeros and ones of length ≤ ω, / is the (partial) order of being initial segment.
T is closely related to Rabin’s monadic theory of (ω>2, /) which he proved decidable [18].
We prove here that the statement “¬(St)” implies the undecidability of T (and all results
on its complexity, see [2] and the paper of Gurevich on the subject) but it was not clear (at
that time) whether (St) is consistent with ZFC.

Definition 5. A Cantor [set] C is a non-empty subset of ω≥2 with the properties

(a) C is closed under initial segments,

(b) if η has length ω then η ∈ C ≡ (∀n)(η�n ∈ C),

(c) η ∈ C ∩ ω>2 implies η _ 〈0〉 ∈ C or η _ 〈1〉 ∈ C,

(d) for every η ∈ C ∩ ω>2, there is ν ∈ C ∩ ω>2 η / ν and ν _ 〈0〉 ∈ C, ν _ 〈1〉 ∈ C.

Definition 6. (1) For a Cantor C, the set of its splitting points is Sp(C) = {η ∈ ω>2 : η _
〈0〉 ∈ C and η _ 〈1〉 ∈ C}.
(2) For a set A ⊆ ω>2, C is an A-Cantor, if Sp(C) ⊆ A.
(3) For a set S ⊆ ω, C is called an S-Cantor, if

Sp(C) ⊆
⋃

n∈S

n2.

(4) An odd Cantor is one that is an {2n + 1 : n < ω}-Cantor. An even Cantor is one that is an
{2n : n < ω}-Cantor.

Now the statement we speak about is

Definition 7. Let (St) mean: the set ω2 is the union of less than 2ℵ0 Cantors each of them odd
or even.

Problem 1. Is (St) consistent with ZFC?; solved in [4].
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Claim 4. Let {Ci : i < α} be a family of odd and even Cantors, ω≥2 =
⋃

i<α
Ci. Then 2ℵ0 ≤ |α|+.

Proof. Let for η, ν ∈ ω2, ρ = p(η, ν) be defined by ρ(2n) = η(n), ρ(2n + 1) = ν(n), and
then let η = pr1(ρ), ν = pr2(ρ).

Now for any even C, and η there is at most one ν such that p(η, ν) ∈ C; why?
if ν0, ν1 are such ν’s, ρ` = p(η, ν`), then, by the definition of p(−,−), for some m <
ω, ρ0�m = ρ1�m, ρ0(m) 6= ρ1(m). If m = 2n then ρ`(m) = ρ`(2n) = η(n) so they are equal,
contradiction. If m = 2n + 1, then (ρ0(m) 6= ρ1(m) and) ρ0�m = ρ1�m is a splitting point of
C, however m is odd and C is an even Cantor, a contradiction. So really there is at most
one ν, and let $(η, C) be the unique ν p(η, ν) ∈ C if there is one and η otherwise.

Similarly if C is odd and η ∈ ω2, then for at most one ν, p(ν, η) ∈ C and let $(η, C)
be ν for this η, and let $(η, C) = η otherwise. Our definition of the function $ does not
contradict, because no Cantor is odd and even.

Let for η ∈ ω2, Dp(η) = {$(η, Ci) : i < α}. So clearly Dp(η) is a subset of ω2 of
cardinality ≤ |α|.

Now if η, ν ∈ ω2, by hypothesis ρ = p(η, ν) belongs to some Ci. If Ci is odd this
implies ν = $(η, Ci) ∈ Dp(η) and if Ci is even this implies η = $(Ci, ν) ∈ Dp(ν).

If |α|+ < 2ℵ0 we can easily find a counterexample.

Definition 8. Assume ¬(St).
If Sn ⊆ ω are infinite pairwise almost disjoint (for n ∈ {0, 1, 2}), Ci(i < α < 2ℵ0) are

Cantors, each an Sn-Cantor for some n (or just an Sn ∪ S2-Contor for some n), C is a Cantor for
every η ∈ C ∩ ω>2, ` ∈ {0, 1}, there is ν, such that η / ν ∈ Sp(C), ν ∈ ⋃

k∈S`

k2.

Then there is η ∈ C \ ⋃
i<α

Ci \ ω>2.

(2) Similarly for Sn ⊆ ω>2

Proof. (1) We can find a Cantor C′ ⊆ C, and 0 = k(0) < k(1) < . . . < k(n) < . . . < ω:

(∗) if η ∈ k(n)2, then there are exactly two ν ∈ k(n+1)2 ∩ C′, η / ν, and if they are ν1, ν2
and m := min{m : ν1(m) 6= ν2(m)} then m ∈ S0 ∪ S1 but /∈ S2 ∪ (S0,∩S1). Moreover
m ∈ S0 if n is even.

Let A = {η�k(n) : n < ω, η ∈ C′}, so A ⊆ C′. Clearly there is an isomorphism f , of
the models (ω≥2, /), (C′, /).

Let C′i = { f (η) : η ∈ C′, η ∈ Ci}, it is easy to check that each C′i is countable, or the
union of a countable set and a Cantor which is odd or is even.

We can find odd Cantor C′i(α ≤ i < αω) all countable sets we mentioned are covered
by them. Now by—“¬(St)" there is η ∈ ω≥2 η /∈ ⋃

i<αω
C′i (as αω < 2ℵ0) and f−1(η) is the

required elements.
(2) Similarly.

(Now we have added Claim 5 and Definition 9 in 2019).

Claim 5. Assume ¬(St). (1) The monadic theory T is undecidable.

Proof. Below let P vary on Cantors and note that we can repeat the proof of [2] with small
adaptation (and prove T is undecidable). That is, the change needed is in ([2], (7.4)) which
has a set-theoretic hypothesis (CH or the Baire-like hypothesis mentioned above), so we
repeat it with the needed changes below.

Definition 9. Assume ¬(St) and let J be an index-set of cardinality at most 2ℵ0 , (1) Assume the
Di(i ∈ J) countable dense subsets of ω>2 and D =

⋃
i∈J

Di and D̄ = 〈Di : i ∈ J〉 (The main case
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is that the Di-s are pairwise almost disjoint). Then there is Q ⊆ ω2\D, Q = Q[D̄] such that for
every Cantor P :

(A) if P ∩ D ⊆ Di(i ∈ J) and Di is dense in P then |P ∩Q| < 2ℵ0

(B) if for some i ∈ J the sets P ∩ Di, P \ Di are dense in P then P ∩Q 6= ∅.

(2) For some such D̄ we can strengthen clause (B) above to

(B) if P is a Cantor and for every i ∈ J the set Di ∩ P is nowhere-dense in P then for every, dense
subsets D∗1 , D∗2 of P ∩ D we can find D•1 ⊆ D∗1 , D•2 ⊆ D∗2 satisfying for any P we have: is
P ∩ D•1 , P ∩ D•2 are dense in P then P ∩Q 6= ∅.

Proof. (1) Let {Pα : 0 < α < 2ℵ0} be any enumeration of the Cantor sets. We define
xα, α < 2ℵ0 by induction on α.

For α = 0, xα ∈ R is arbitrary.
For any α > 0, if Pα does not satisfy the assumptions of (B) then let xα = x0 and if P

satisfies the assumptions of (B) (hence in particular D is dense in P) let xα ∈ Pα −
⋃{Pβ :

β < α, (∃i ∈ J)(Pβ ∩ D ⊆ Di and D is dense in Pβ)} = D.
This is possible; to prove this let U = {β < α : there is i ∈ J such that Pβ ∩ D ⊆ Di}

and for β ∈ U let iβ ∈ J be such that Pβ ⊆ Diβ
Let i(∗) ∈ J be such that P ∩ Di(∗), P \ Di(∗)

are dense in P. Now we apply Definition 8(2), (or Definition 8(1) if we restrict the Di-s,
does not matter).

So by (St) and the hypothesis |Pα ∩ D| < 2ℵ0 there exists such xα.
Now let Q = {xα : α < 2ℵ0}. If P satisfies the assumptions of (A), then P ∈ {Pα : 0 <

α < 2ℵ0}. So for some α, P = Pα, hence P ∩ D ⊆ {xβ : β < α}, so |P ∩ D| < 2ℵ0 . If P = Pα

satisfies the assumption of (B) then xα ∈ Pα, xα ∈ Q, hence Pα ∩Q 6= ∅.
(2) Similarly.
So we have proved the lemma.

Definition 10. We can interpret the monadic theory of (R,<) in T, but the converse was not clear
at the time, but looking at it again probably we can carry the proof for R.
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