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Abstract: In this paper, we propose a two-component mixture of Akash model (TC-MAM). The
behavior of TC-MAM distribution has been presented graphically. Moment-based measures, includ-
ing skewness, index of dispersion, kurtosis, and coefficient of variation, have been determined and
hazard rate functions are presented graphically. The probability generating function, Mills ratio,
characteristic function, cumulants, mean time to failure, and factorial moment generating function
are all statistical aspects of the mixed model that we explore. Furthermore, we figure out the relevant
parameters of the mixture model using the most suitable methods, such as least square, weighted
least square, and maximum likelihood mechanisms. Findings of simulation experiments to examine
behavior of these estimates are graphically presented. Finally, a set of data taken from the real world
is examined in order to demonstrate the new model’s practical perspectives. All of the metrics
evaluated favor the new model and the superiority of proposed distribution over mixture of Lindley,
Shanker, and exponential distributions.

Keywords: mixture model; cumulative hazard rate function; Mills ratio; quantile function; least
square estimation
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1. Introduction

In most reliability scenarios, data are modelled using a single parametric model. How-
ever, in certain circumstances, a population can be split into many subgroups, each showing
a particular category of collapse. Finite mixture models serve a significant role in mod-
elling such diverse data. Biology, business, engineering, healthcare, genetics, marketing,
real-world applications, and social sciences all benefit from finite mixture models. Mixture
models are created by varying the proportions of two or more models to generate a new
distribution with novel properties. Consequently, it is essential to examine the statistical
characteristics of the suggested mixture model and employ the suitable methods for esti-
mating the unexplained parameters. Mixture models are used in a diversity of applications,
such as clustering and classification [1–4]. Sultan et al. [5] proposed a mix of inverse Weibull
models and utilized density and hazard function graphs to study some of its features. The
conventional characteristics of the concoction of Burr XII and Weibull distributions were
examined by [6]. Recently, the authors [7,8], Ateya [9], Mohammadi et al. [10], and Al-
Moisheer et al. [11] are among the scientists who study mixture modelling in a variety of
contexts.
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Many applied sciences, including medical, engineering, insurance, and finance, rely on
lifetime data modelling and analysis. Some of the continuous distributions used to explain
lifetime data are Weibull, gamma, exponential, lognormal, and Lindley, as well as their
generalizations. Since many investigators have employed Lindley distribution to predict
lifetime data, and Hussain [12] has demonstrated that Lindley model is effective for stress-
strength dependability modelling, Lindley model may not be suitable for describing real-
world data in many cases. Shanker [13] developed a novel model by using a two-component
concoction of an exponential model (ϑ) and a gamma model (3, ϑ) to have a unique
distribution that is more flexible than Lindley and exponential distribution for modelling
lifespan data in terms of dependability and hazard rate shapes. Shanker et al. [14] have
devised and addressed the concept of modelling lifetime data using one parameter families
of distributions, such as Akash, exponential, and Lindley distributions. Many lifetime
datasets are employed to exhibit its adaptability over the exponential distribution. Shanker
and Shukla [15] examined the two-parameter Akash model and determined its statistical
characteristic, estimation problem, and application to it. As a reason, the Akash distribution
can be used as an alternate lifetime model in reliability analysis.

The maximal likelihood estimation (MLE) is well-known estimation approach. Despite
the fact that MLE is efficient and has strong conceptual features, there is confirmation that
it does not work well, especially with small samples. As a result, different estimation ap-
proaches have been offered in the studies as options to conventional method. The weighted
least-squares estimation (WLSE), L-moments estimator (LME), percentile estimator (PCE)
and least squares estimator (LSE) are among the most frequently recommended. These ap-
proaches, in general, do not possess desirable theoretical features, but they can offer better
estimates of unknown parameters in specific instances than the MLE. Various estimating
approaches for many models have been investigated in the studies, as illustrations [16–21].
The goal of this research is to give a mechanism for expert statisticians to choose the best
evaluation method for the Two-Component Mixture of Akash Model (TC-MAM). In this
investigation, we estimate the TC-MAM using LSE and WLSE, in conjunction to MLE.

Our goal in this investigation is to develop a novel mixture model for modeling real
lifespan datasets from various disciplines of knowledge that is better fitting than mixture
of Shanker, exponential and Lindley distributions. The TC-MAM model has an advantage
over the Shanker and exponential models because the exponential distribution has a
constant hazard rate function and the Shanker model has an increasing hazard rate function,
whereas the failure rate function for a TC-MAM model exhibits monotonically increasing,
modified declining, decreasing–increasing–decreasing (DID), declining–increasing (DI),
and upside-down bathtub behavior. The novel TC-MAM is being developed in particular
to offer a novel flexible parametric model for modeling complex data that emerges in
dependability research, investigation of lifespan, quality control, statistical mechanics,
economics, biological investigations, and other fields. The purpose is to provide a novel
model for lifespan analysis that can handle various types of failure rates, as well as various
close form features of novel model with simple physical interpretations.

The originality of this research is due to the fact that we present a thorough explanation
of the statistical aspects of TC-MAM in the hopes of attracting more applications in lifespan
analysis. Additionally, as far as we know, no investigation has been performed to evaluate
all of these estimators of the TC-MAM, as well as their mathematical and statistical features
and assessment methods to estimate of unexplained parameters of TC-MAM. For various
sample sizes and parametric values, we demonstrate how alternative frequentist estimators
of the suggested distribution work.
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2. The Two-Component Mixture of Akash Model

A r.v. T is stated to have a TC-MAM if its PDF and CDF can be integrated as:

f ( t| v) = δ f1( t| λ1) + δ̃ f2( t| λ2), δ̃ = 1− δ, t, λi > 0, i = 1, 2. (1)

f ( t| v) = δ
λ3

1
λ2

1 + 2
(1 + t2) exp(−λ1t) + δ̃

λ3
2

λ2
2 + 2

(1 + t2) exp(−λ2t), (2)

and

F( t| v) = δF1( t| λ1) + δ̃F2( t| λ2), (3)

F( t| v) = δ

{
1−

(
1 +

λ1t(λ1t + 2)
λ2

1 + 2

)
exp(−λ1t)

}

+δ̃

{
1−

(
1 +

λ2t(λ2t + 2)
λ2

2 + 2

)
exp(−λ2t)

}
, (4)

where v = (λ1, λ2, δ) and δ is a positive mixing parameter, whereas λi are positive scale
parameters.

2.1. Mode

By tackling the given non-linear equation with respect to t, the mode of the TC-
MAM(v) is derived

δ
λ3

1
λ2

1 + 2
[exp(−λ1t){t(2− λ1t)− λ1}] + δ̃

λ3
2

λ2
2 + 2

[exp(−λ2t){t(2− λ2t)− λ2}] = 0. (5)

2.2. Median

The median of TC-MAM(v) is given here. Let F( t| v) be CDF of TC-MAM(v) the
median is at 50th quantiles that is Q0.5. The median (t∗) can, therefore, be determined by
resolving given equation for t.

δ

{
1−

(
1 +

λ1t(λ1t + 2)
β2

1 + 2

)
exp(−λ1t)

}
+ δ̃

{
1−

(
1 +

λ2t(λ2t + 2)
λ2

2 + 2

)
exp(−λ2t)

}
= 0.5, (6)

δ

(
1 +

λ1t(λ1t + 2)
β2

1 + 2

)
exp(−λ1t) + δ̃

(
1 +

λ2t(λ2t + 2)
λ2

2 + 2

)
exp(−λ2t) = 0.5, (7)

Numerical strategies like Newton–Raphson approach can be utilised to find t∗ from
Equation (7).

Several graphs of PDF and CDF of TC-MAM, as well as both component densities,
for various parametric values are shown in Figures 1 and 2. It should be indicated that
input parameters were selected at random until a wide range of patterns could be ex-
amined. The PDF exemplifies its adaptability. The PDF curves of TC-MAM(v) indicate
that it can be monotonically decreasing, positively skewed, inverted U, and declining–
increasing–decreasing (DID), as well as modified monotonically decreasing with platykur-
tic, mesokurtic, and leptokurtic curves. As a result, it can be used to model a diverse set
of data.
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Fig. 1. Behaviour of f1(tj�1) (�rst component density); f2(tj�2) (second component
density) and density of TC-MAM fm(tj$) with � against t.

2.2 Median

The median of TC-MAM($) is given here. Let F (tj$) be CDF of TC-MAM($) the median
is at 50th quantiles that is Q0:5. The median (t�) can therefore be determined by resolving

5

Figure 1. Behavior of f1( t|λ1) (first component density), f2( t|λ2) (second component density) and
density of TC-MAM fm( t|v) with δ against t.
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given equation for t.

�

�
1�

�
1 +

�1t (�1t+ 2)

�21 + 2

�
exp (��1t)

�
+ ~�

�
1�

�
1 +

�2t (�2t+ 2)

�22 + 2

�
exp (��2t)

�
= 0:5;

(6)

�

�
1 +

�1t (�1t+ 2)

�21 + 2

�
exp (��1t) + ~�

�
1 +

�2t (�2t+ 2)

�22 + 2

�
exp (��2t) = 0:5; (7)

Numerical strategies like Newton-Raphson approach can be utilised to �nd t� from Eq. (7).

Fig. 2. Behaviour of F1(tj�1) (�rst component CDF); F2(tj�2) (second component CDF)
and CDF of TC-MAM (Fm(tj$)) with � against t.
Several graphs of PDF and CDF of TC-MAM, as well as both component densities,

for various parametric values are shown in Figs. 1 and 2. It should be indicated that

input parameters were selected at random until a wide range of patterns could be examined.

The PDF exempli�es its adaptability. The PDF curves of TC-MAM($) indicate that it

can be monotonically decreasing, positively skewed, inverted U, and declining increasing

decreasing (DID), as well as modi�ed monotonically decreasing with platykurtic, mesokurtic,

and leptokurtic curves. As a result, it can be used to model a diverse set of data.

6

Figure 2. Behavior of F1( t|λ1) (first component CDF), F2( t|λ2) (second component CDF) and CDF
of TC-MAM (Fm( t|v)) with δ against t.

2.3. mth Moments about Origin

For a r.v. T, the mth moments of TC-MAM(v) are as:

µ̆m = E(Tm) =

∞∫
0

tm f ( t| ∆̆)dt =
∞∫

0

tm

{
δ
(1 + t2)λ3

1
λ2

1 + 2
exp(−λ1t) + δ̃

(1 + t2)λ3
2

λ2
2 + 2

exp(−λ2t)

}
dt, (8)

E(Tm) = δ
m!
(
λ2

1 + (m + 1)(m + 2)
)

λm
1
(
λ2

1 + 2
) + δ̃

m!
(
λ2

2 + (m + 1)(m + 2)
)

λm
2
(
λ2

2 + 2
) , m = 1, 2 . . . . (9)

The mean of the TC-MAM(v) is:

µ̆1 = δ

(
λ2

1 + 6
)

λ1
(
λ2

1 + 2
) + δ̃

(
λ2

1 + 6
)

λ1
(
λ2

1 + 2
) = µ, (10)

while the variance is given by

σ̆2 = δ

(
λ4

1 + 16λ2
1 + 12

)
λ2

1
(
λ2

1 + 2
)2 + δ̃

(
λ4

2 + 16λ2
2 + 12

)
λ2

2
(
λ2

2 + 2
)2 . (11)

Graphs of the mean and variance of TC-MAM (v) for a variety of parameter values
that can be identified in Figures 3 and 4. The mean of TC-MAM (v), shows a monotonically
decreasing behavior for fixed value of λ1 and δ and varying values of λ2 (see Figure 3a).
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The escalating changes of mixing parameter δ enhanced the mean concentration, according
to this analysis. We draw mean graphs (see Figure 3b) to demonstrate the behavior of the
mean for fixed values of λ2 and δ and varying values of λ1. It reveals the characteristics
of component parameter λ1 in relation to a mean profile. The boosting attitude of δ
reduce the concentration of mean for the all varying values of λ1. The significances of the
mixing parameter versus the mean profile are defined in Figure 3c for various levels of λ1.
From these drawn lines, it can be deduced that the concentration of the mean profile is a
deteriorating function for parameter λ1. The variance exhibits the same behavior as the
mean in all scenarios (see Figure 4a–c).

2.3 mth Moments about Origin

For a r. v. T , the mth moments of TC-MAM($) are as:

��m = E(Tm) =

1Z
0

tmf(tj ��)dt =
1Z
0

tm
�
�
(1 + t2)�31
�21 + 2

exp (��1t) + ~�
(1 + t2)�32
�22 + 2

exp (��2t)
�
dt;

(8)

E(Tm) = �
m!
�
�21 + (m+ 1) (m+ 2)

�
�m1
�
�21 + 2

� + ~�
m!
�
�22 + (m+ 1) (m+ 2)

�
�m2
�
�22 + 2

� ;m = 1; 2:::: (9)

The mean of the TC-MAM($) is:

��1 = �

�
�21 + 6

�
�1
�
�21 + 2

� + ~� �
�21 + 6

�
�1
�
�21 + 2

� = �; (10)

while the variance is given by

��2 = �

�
�41 + 16�

2
1 + 12

�
�21
�
�21 + 2

�2 + ~�

�
�42 + 16�

2
2 + 12

�
�22
�
�22 + 2

�2 : (11)

Fig. 3. Variations of Mean of TC-MAM.

Fig. 4. Variations of Variance of TC-MAM.
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In particular moments about origin

µ̆2 = δ
2
(
λ2

1 + 12
)

λ2
1
(
λ2

1 + 2
) + δ̃

2
(
λ2

2 + 12
)

λ2
2
(
λ2

2 + 2
) , (12)

µ̆3 = δ
6
(
λ2

1 + 20
)

λ3
1
(
λ2

1 + 2
) + δ̃

6
(
λ2

2 + 20
)

λ3
2
(
λ2

2 + 2
) , (13)

µ̆4 = δ
24
(
λ2

1 + 30
)

λ4
1
(
λ2

1 + 2
) + δ̃

24
(
λ2

2 + 30
)

λ4
2
(
λ2

2 + 2
) , (14)

and the moments about mean of the TC-MAM(v) are:

µ2 = δ

(
λ4

1 + 16λ2
1 + 12

)
λ2

1
(
λ2

1 + 2
)2 + δ̃

(
λ4

2 + 16λ2
2 + 12

)
λ2

2
(
λ2

2 + 2
)2 , (15)

µ3 = δ
2
(
λ6

1 + 30λ4
1 + 36λ2

1 + 24
)

λ3
1
(
λ2

1 + 2
)3 + δ̃

2
(
λ6

2 + 30λ4
2 + 36λ2

2 + 24
)

λ3
2
(
λ2

2 + 2
)3 , (16)

µ4 = δ
3
(
3λ8

1 + 128λ6
1 + 408λ4

1 + 576λ2
1 + 240

)
λ4

1
(
λ2

1 + 2
)4 + δ̃

3
(
3λ8

2 + 128λ6
2 + 408λ4

2 + 576λ2
2 + 240

)
λ4

2
(
λ2

2 + 2
)4 . (17)
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The ϕ̆CV (Coefficient of Variation), Ψ̆Sk (Skewness) and ψ̆K (Kurtosis) of TC-MAM(v) are:

ϕ̆CV =

√
δ
(λ4

1+16λ2
1+12)

λ2
1(λ2

1+2)
2 + δ̃

(λ4
2+16λ2

2+12)
λ2

2(λ2
2+2)

2

δ
(λ2

1+6)
λ1(λ2

1+2)
+ δ̃

(λ2
1+6)

λ1(λ2
1+2)

, (18)

ΨSk =

δ
2(λ6

1+30λ4
1+36λ2

1+24)
λ3

1(λ2
1+2)

3 + δ̃
2(λ6

2+30λ4
2+36λ2

2+24)
λ3

2(λ2
2+2)

3(
δ
(λ4

1+16λ2
1+12)

λ2
1(λ2

1+2)
2 + δ̃

(λ4
2+16λ2

2+12)
λ2

2(λ2
2+2)

2

)3/2 , (19)

ψ̆K =

δ
3(3λ8

1+128λ6
1+408λ4

1+576λ2
1+240)

λ4
1(λ2

1+2)
4 + δ̃

3(3λ8
2+128λ6

2+408λ4
2+576λ2

2+240)
λ4

2(λ2
2+2)

4(
δ
(λ4

1+16λ2
1+12)

λ2
1(λ2

1+2)
2 + δ̃

(λ4
2+16λ2

2+12)
λ2

2(λ2
2+2)

2

)2 , (20)

and Index of Dispersion (ID) is

ID =

(
δ
(λ4

1+16λ2
1+12)

λ2
1(λ2

1+2)
2 + δ̃

(λ4
2+16λ2

2+12)
λ2

2(λ2
2+2)

2

)
δ
(λ2

1+6)
λ1(λ2

1+2)
+ δ̃

(λ2
1+6)

λ1(λ2
1+2)

. (21)

The TC-MAM(v) is readily explained to be over-distributed when µ2 > µ, equi-
dispersed µ2 = µ, as well as under-dispersed µ2 < µ.

Graphs of the ID of TC-MAM (v) for various parameter settings are illustrated in
Figure 5. The boosting attitude of δ rise the concentration of mean for the all varying values
of λ2 (see Figure 5a). However, boosting attitude of δ reduces the concentration of mean for
the all varying values of λ1 (see Figure 5b). The effects of δ against the concentration of the
mean profile are shown in Figure 5c. The concentration of the mean profile is a decreasing
function for parameter λ1 according to these depicted lines. Figures 6 and 7 explain the
nature of ΨSk and ψ̆K in relation to λ1, λ2 and δ. The coefficient of skewness and kurtosis of
TC-MAM (v), shows a decreasing behavior for fixed value of λ1 and δ and varying values
of λ2 (see Figures 6a and 7a).

To expose the behavior of ΨSk and ψ̆K for fixed value of λ2 and δ and varying values
of λ1(see Figures 6b and 7b). The escalating changes of mixing parameter δ enhanced ΨSk
and ψ̆K concentration, according to this analysis. The significances of the mixing parameter
versus the coefficient of skewness and kurtosis profile are defined in Figures 6c and 7c for
various levels of λ1. From these drawn lines, it can be deduced that the concentration of
the skewness and kurtosis profile is a deteriorating function for parameter λ1.

and Index of Dispersion (ID) is

ID =

�
�
(�41+16�21+12)
�21(�21+2)

2 + ~�
(�42+16�22+12)
�22(�22+2)

2

�
�
(�21+6)
�1(�21+2)

+ ~�
(�21+6)
�1(�21+2)

: (21)

The TC-MAM($) is readily explained to be over-distributed when �2 > �, equi-dispersed

�2 = �; as well as under-dispersed �2 < �:

Fig. 5. Variations of Index of dispersion of TC-MAM($).

Fig. 6. Variations of Coe¢ cient of Skewness SK, of TC-MAM($).

Fig. 7. Behaviour of Coe¢ cient of Kurtosis (K) of TC-MAM($).

Graphs of the ID of TC-MAM ($) for various parameter settings are illustrated in Fig.

5. The boosting attitude of � rise the concentration of mean for the all varying values of �2
(see Fig. 5a). Whereas boosting attitude of � reduce the the concentration of mean for the

all varying values of �1 (see Fig. 5b). The e¤ects of � against the concentration of the mean

pro�le are shown in Fig.5c. The concentration of the mean pro�le is a decreasing function

9

Figure 5. Variations of index of dispersion of TC-MAM(v).
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and Index of Dispersion (ID) is

ID =

�
�
(�41+16�21+12)
�21(�21+2)

2 + ~�
(�42+16�22+12)
�22(�22+2)

2

�
�
(�21+6)
�1(�21+2)

+ ~�
(�21+6)
�1(�21+2)

: (21)

The TC-MAM($) is readily explained to be over-distributed when �2 > �, equi-dispersed

�2 = �; as well as under-dispersed �2 < �:

Fig. 5. Variations of Index of dispersion of TC-MAM($).

Fig. 6. Variations of Coe¢ cient of Skewness SK, of TC-MAM($).

Fig. 7. Behaviour of Coe¢ cient of Kurtosis (K) of TC-MAM($).

Graphs of the ID of TC-MAM ($) for various parameter settings are illustrated in Fig.
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2.4. Moment Generating Function

The MGF of TC-MAM(v) is specified as:

M̃t(υ) = E
(
etυ) = ∞∫

0

etυ

{
δ

λ3
1

λ2
1 + 2

(1 + t2) exp(−λ1t) + δ̃
λ3

2
λ2

2 + 2
(1 + t2) exp(−λ2t)

}
dt, (22)

M̃t(υ) = δ

[
λ3

1
λ2

1 + 2

(
1

λ1 − υ
+

2

(λ1 − υ)3

)]
+ δ̃

[
λ3

2
λ2

2 + 2

(
1

λ2 − υ
+

2

(λ2 − υ)3

)]
. (23)

M̃t(υ) = δ

[
∞

∑
k=0

λ2
1 + (k + 1)(k + 2)

λ2
1 + 2

(
υ

λ1

)k
]
+ δ̃

[
∞

∑
k1=0

λ2
2 + (k1 + 1)(k1 + 2)

λ2
2 + 2

(
υ

λ2

)k1
]

. (24)

2.5. Cumulants

The cumulants (CF), ξ̆(υ) = E[exp(iυt)] of TC-MAM(v) is derived by plugging υ
with ‘iυ’ in Equation (22), the following formula can be used to obtain the CF:

ξ̆(υ) = δ

[
∞

∑
k=0

λ2
1 + (k + 1)(k + 2)

λ2
1 + 2

(
iυ
λ1

)k
]
+ δ̃

[
∞

∑
k1=0

λ2
2 + (k1 + 1)(k1 + 2)

λ2
2 + 2

(
iυ
λ2

)k1
]

, (25)

where the complex unit i =
√
−1.

2.6. Probability Generating Function (PGF)

In Equation (22), the PGF by plugging υ with “ln(ω)” is:

Pt(ω) = E
(
ωt) = δ

[
∞

∑
k=0

λ2
1 + (k + 1)(k + 2)

λ2
1 + 2

(
ln(ω)

λ1

)k
]
+ δ̃

[
∞

∑
k1=0

λ2
2 + (k1 + 1)(k1 + 2)

λ2
2 + 2

(
ln(ω)

λ2

)k1
]

. (26)

2.7. Factorial Moment Generating Function

By plugging υ with ‘ln(1 + φ)’ in Equation (22), the FMGF can be shown as
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F̆t(ω) = E
(

et ln(1+φ)
)
= δ

[
∞

∑
k=0

λ2
1 + (k + 1)(k + 2)

λ2
1 + 2

(
ln(1 + φ)

λ1

)k
]

+δ̃

[
∞

∑
k1=0

λ2
2 + (k1 + 1)(k1 + 2)

λ2
2 + 2

(
ln(1 + φ)

λ2

)k1
]

. (27)

3. Reliability Measures

In reliability framework, lifetime models are classified using the reliability/survival
function and the failure/hazard rate function. TC-MAM(v) is currently being studied for
its reliability properties.

3.1. Reliability Function

The reliability function (R( t| v)) of TC-MAM(v) is.

R( t| v) = δ

(
1 +

λ1t(λ1t + 2)
λ2

1 + 2

)
exp(−λ1t) + δ̃

(
1 +

λ2t(λ2t + 2)
λ2

2 + 2

)
exp(−λ2t) (28)

3.2. Hazard Function

The failure rate function h( t| v) of the TC-MAM(v) is described as follows.

h( t| v) =
δ

λ3
1

λ2
1+2

(1 + t2) exp(−λ1t) + δ̃
λ3

2
λ2

2+2
(1 + t2) exp(−λ2t)

δ

(
1 + λ1t(λ1t+2)

λ2
1+2

)
exp(−λ1t) + δ̃

(
1 + λ2t(λ2t+2)

λ2
2+2

)
exp(−λ2t)

. (29)

In Figure 8, the HRF of TC-MAM(v) shows monotonically increasing, modified de-
creasing, decreasing–increasing–decreasing (DID), decreasing–increasing (DI), and upside
down bathtub behavior. Figure 8a,b,d signifies that the reduction in failure rate func-
tion profile and is noted by enlarging the value of mixing parameter δ, and for λ1 < λ2.
Figure 8c,e,f exhibits the diversion in the failure rate function for various values of δ. It is
found in Figure 8 that the failure rate distribution is expanding due to higher the value of
mixing parameter δ, and for λ1 > λ2.

Fig. 8. Variations in h(tj $) for �1; �1 and �.

In the Fig. 8 the HRF of TC-MAM($) shows monotonically increasing, modi�ed decreas-

ing, decreasing increasing-decreasing (DID), decreasing increasing (DI), and upside down

bathtub behavior. Fig. 8 (a,b and d) signi�es that the reduction in failure rate function

pro�le and is noted by enlarging the value of mixing parameter �; and for �1 < �2. The

Fig. 8 (c,e and f) exhibits the diversion in the failure rate function for various values of �. It

is found in Fig. 8 that the failure rate distribution is expanding due to higher the value of

mixing parameter �; and for �1 > �2:

3.3 Mills Ratio

Mills Ratio is an another method of quantifying reliability due to its relation to failure rate.

Mills Ratio �� (tj $) of TC-MAM($) is

�� (tj $) = R (tj $)
f (tj $) =

�
�
1 + �1t(�1t+2)

�21+2

�
exp (��1t) + ~�

�
1 + �2t(�2t+2)

�22+2

�
exp (��2t)

� �31
�21+2

(1 + t2) exp (��1t) + ~� �32
�22+2

(1 + t2) exp (��2t)
: (30)

3.4 Cumulative Hazard Rate Function

The CHRF of TC-MAM($) is

H (tj $) =
tZ
0

h(yj $)dy = � log [R(tj $)] : (31)

12

Figure 8. Variations in h( t| v) for λ1, λ1 and δ.
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3.3. Mills Ratio

Mills ratio is an another method of quantifying reliability due to its relation to failure
rate. Mills ratio Υ̌( t| v) of TC-MAM(v) is

Υ̌( t| v) =
R( t| v)

f ( t| v)
=

δ

(
1 + λ1t(λ1t+2)

λ2
1+2

)
exp(−λ1t) + δ̃

(
1 + λ2t(λ2t+2)

λ2
2+2

)
exp(−λ2t)

δ
λ3

1
λ2

1+2
(1 + t2) exp(−λ1t) + δ̃

λ3
2

λ2
2+2

(1 + t2) exp(−λ2t)
. (30)

3.4. Cumulative Hazard Rate Function

The CHRF of TC-MAM(v) is

H( t| v) =

t∫
0

h(y| v)dy = − log[R( t| v)]. (31)

It is a risk indicator: the stronger the H( t| v) estimate, the greater the chance of failure
by t-time. It must be stated that

R( t| v) = e−H( t| v) and f ( t| v) = h( t| v)e−H( t| v). (32)

So,

H( t|v) = − log

[
δ

(
1 +

λ1t(λ1t + 2)
λ2

1 + 2

)
exp(−λ1t) + δ̃

(
1 +

λ2t(λ2t + 2)
λ2

2 + 2

)
exp(−λ2t)

]
. (33)

3.5. Reversed Hazard Rate Function

The RHRF of a random life of TC-MAM(v) is defined as

h̆( t| v) =
δ

λ3
1

λ2
1+2

(1 + t2) exp(−λ1t) + δ̃
λ3

2
λ2

2+2
(1 + t2) exp(−λ2t)

1− δ

(
1 + λ1t(λ1t+2)

λ2
1+2

)
exp(−λ1t)− δ̃

(
1 + λ2t(λ2t+2)

λ2
2+2

)
exp(−λ2t)

. (34)

3.6. Mean Time to Failure (MTTF)

The expected time for which the device performs efficiently is given by the mean time
to failure (MTTF). If TC-MAM(v) then reliability function is used to express MTTF, which
is as follows:

M̆( t| v) =

+∞∫
0

R( t| v)dt, (35)

and R(t) is provided in Equation (28). Thus

M̆( t| v) = δ

(
λ2

1 + 6
)

λ1
(
λ2

1 + 2
) + δ̃

(
λ2

1 + 6
)

λ1
(
λ2

1 + 2
) . (36)

4. Estimation Inference via Simulation

Given that the parametric vector v is undetermined, certain statistical properties of
the TC-MAM(v) are presented to this section. The evaluation of parametric vector v is
accomplished by three widely known estimation mechanisms, such as MLE, LSE, and
WLSE. From now, t1, t2, . . . , tn signify n determined values from T and their ascending
sorting values t(1) ≤ t(2) ≤ . . . ≤ t(n).
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4.1. Maximum Likelihood Estimation (MLE)

The MLE method is the best methodology for parameter assessment. The popularity
of the approach stems from its many advantageous characteristics, such as consistency,
normality, and asymptotic efficiency. Let t1, t2, . . . , tn be n determined values from the
Equation (2) and v be the vector of undetermined parameters. The evaluations of MLEs of
v can be given by optimizing the likelihood function with respect to λ1, λ2, and δ given by

L( t|v) =
n
∏
i=1

f (ti; v) or likewise the log-likelihood function for v is

l( t|v) = ln
n

∏
i=1

f (ti; v) (37)

l( t|v) =
n

∑
i=1

ln

{
δ

λ3
1

λ2
1 + 2

(1 + t2
i ) exp(−λ1ti) + δ̃

λ3
2

λ2
2 + 2

(1 + t2
i ) exp(−λ2ti)

}
. (38)

So, by partially differentiating l( t|v) in terms of each parameter (λ1, λ2, δ) and placing
the results to zero, the MLEs of the relevant parameters are determined as

∂l( t|v)

∂λ1
=

n

∑
i=1

δ(1 + t2
i )λ

2
1 exp(−λ1ti)

{
3

(λ2
1+2)

− λ1ti
(λ2

1+2)
− 2λ2

1

(λ2
1+2)

2

}
{

δ
λ3

1
λ2

1+2
(1 + t2

i ) exp(−λ1ti) + δ̃
λ3

2
λ2

2+2
(1 + t2

i ) exp(−λ2ti)

} , (39)

∂l( t|v)

∂λ2
=

n

∑
i=1

δ̃(1 + t2
i )λ

2
2 exp(−λ2ti)

{
3

(λ2
2+2)

− λ2ti
(λ2

2+2)
− 2λ2

2

(λ2
2+2)

2

}
{

δ
λ3

1
λ2

1+2
(1 + t2

i ) exp(−λ1ti) + δ̃
λ3

2
λ2

2+2
(1 + t2

i ) exp(−λ2ti)

} , (40)

∂l( t|v)

∂δ
=

n

∑
i=1

λ3
1

λ2
1+2

(1 + t2
i ) exp(−λ1ti)−

λ3
2

λ2
2+2

(1 + t2
i ) exp(−λ2ti){

δ
λ3

1
λ2

1+2
(1 + t2

i ) exp(−λ1ti) + δ̃
λ3

2
λ2

2+2
(1 + t2

i ) exp(−λ2ti)

} . (41)

As a consequence, the MLE is found by evaluating this non-linear set of equations.
However such equations cannot be handled analytically, we can use statistical software
to solve them using an iterative methodology namely the Newton method or fixed point
iteration methods.

4.2. Least Square Estimators (LSE)

The ordinary least square approach [22] is widely used for assessing undetermined pa-
rameters. The LSEs of λ1, λ2, and δ, indicated by λ̃1LSE, λ̃2LSE, and δ̃LSE, can be determined
by minimizing Equation (42)

LS(v) =
n

∑
i=1

[
F( t(i)

∣∣∣v)− i
n + 1

]2
, (42)

with respect to λ1, λ2, and δ, where F(·)is given by Equation(4). They may be determined
in the similar way by solving the non-linear equations below:

∂LS(v)

∂λ1
=

n

∑
i=1

[
F( t(i)

∣∣∣v)− i
n + 1

]
Ψ̆1( t(i)

∣∣∣λ1) = 0, (43)

∂LS(v)

∂λ2
=

n

∑
i=1

[
F( t(i)

∣∣∣v)− i
n + 1

]
Ψ̆2( t(i)

∣∣∣λ2) = 0, (44)
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and
∂LS(v)

∂δ
=

n

∑
i=1

[
F( t(i)

∣∣∣v)− i
n + 1

]
Ψ̆3( t(i)

∣∣∣δ) = 0, (45)

where

Ψ̃1( t(i)
∣∣∣λ1) =

δt(i)λ2
1 exp

(
−λ1t(i)

){
6 + λ2

1 + 2λ1t(i) +
(
2 + λ2

1
)
t(i)
}

(
λ2

1 + 2
)2 , (46)

Ψ̃2( t(i)
∣∣∣λ2) =

δ̃t(i)λ2
2 exp

(
−λ2t(i)

){
6 + λ2

2 + 2λ2t(i) +
(
2 + λ2

2
)
t(i)
}

(
λ2

2 + 2
)2 , (47)

Ψ̃3( t(i)
∣∣∣δ) =

1 +
λ2t(i)

(
2 + λ2t(i)

)
λ2

2 + 2

 exp
(
−λ2t(i)

)
−

1 +
λ1t(i)

(
2 + λ1t(i)

)
λ2

1 + 2

 exp
(
−λ1t(i)

)
. (48)

4.3. Weighted Least Squares Estimators (WLSE)

Take a look at the following weighted function (see [23])

κ̆i =
(n + 1)2(n + 2)

i(n− i + 1)
. (49)

The WLSEs λ̃1WLSE, λ̃2WLSE, and δ̃WLSE, can be obtained by minimizing Equation (50)

WLS(v) =
n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
F( t(i)

∣∣∣v)− i
n + 1

]2
, (50)

One can also obtain these estimators by solving:

∂WLS(v)

∂λ1
=

n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
F( t(i)

∣∣∣v)− i
n + 1

]
Ψ̆1( t(i)

∣∣∣λ1) = 0, (51)

∂WLS(v)

∂λ2
=

n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
F( t(i)

∣∣∣v)− i
n + 1

]
Ψ̆2( t(i)

∣∣∣λ2) = 0, (52)

and
∂WLS(v)

∂δ
=

n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

[
F( t(i)

∣∣∣v)− i
n + 1

]
Ψ̆3( t(i)

∣∣∣δ) = 0, (53)

where Ψ̃1( t(i)
∣∣∣λ1), Ψ̃2( t(i)

∣∣∣λ2) and Ψ̃3( t(i)
∣∣∣δ) are given in Equations (46)–(48).

4.4. Simulation Study

The simulation study is used to evaluate the various estimating methodologies out-
lined in the preceding subsection. Monte Carlo simulations are performed with a variety
of mixing proportion δ and distribution parameters. The performance of MLE, LSEs, and
WLSEs of the TC-MAM(v) parameters is evaluated using four simulation experiments. The
proficiency of the MLEs, LSEs, and WLSEs is discussed using the bias and MSE indicators.
In terms of n, the efficiency of each parameter estimation strategy for the TC-MAM(v)
model is examined. The simulation algorithm is subdivided into six steps:

1. Byadjustingthemixingproportionandmodelparameters (λ1, λ2, δ) = Set-I(0.15, 0.30, 0.40),
Set-II(0.25, 0.5, 0.6) and Set-III(0.5, 0.2, 0.6), generaterandomsamplesofsizes 25, 30, . . . , 500
from TC-MAM(v). The random samples for the simulation are obtained as specified
in the upcoming stage.
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2. Generate a random variable u from uniform distribution U(0, 1), employing R uniform
generator (runif).

3. If u ≤ δ, then generate a random variable from the first component, which is a Akash
distribution (λ1). If u > δ, the second component, Akash distribution (λ2), is utilized
to produce a random variate.

4. Follow (2 and 3) till you have the prescribed sample size n.
5. Employing 1000 iterations, continue steps 1–4 each time. Evaluate MLEs, LSEs, and

WLSEs for the 1000 samples, say κ̃j for j = 1, 2, . . . , 1000, having optima function and
the Nelder–Mead technique in R to compute estimates.

6. Determine biases and MSEs. The two metrics are utilized to meet these targets:

Biasκ(n) =
1

1000

1000

∑
j=1

(
κ̃j − κ

)
,

MSEκ(n) =
1

1000

1000

∑
j=1

(κ̃ − κ)2,

where κ = (λ1, λ2, δ).

The empirical findings are depicted in Figures 9–14. These results suggest that the
proposed estimation methods are effective at estimating the TC-MAM parameters. We can
deduce that the estimators display asymptotic unbiasedness because the bias goes to zero
as n rises. On the other hand, MSE behavior implies consistency because the errors trend to
zero as n increases. The following conclusions can be drawn from Figures 9–14.

1. By adjusting the mixing proportion and model parameters (�1; �2; �) =Set-I(0:15; 0:30; 0:40) ;

Set-II(0:25; 0:5; 0:6) and Set-III(0:5; 0:2; 0:6), generate random samples of sizes 25; 30; :::; 500

from TC-MAM($): The random samples for the simulation are obtained as speci�ed

in the upcoming stage.

2. Generate a random variable u from uniform distribution U(0; 1), employing R uniform

generator (runif).

3. If u � �, then generate a random variable from the �rst component, which is a Akash

distribution (�1). If u > �, the second component, Akash distribution (�2), is utilized

to produce a random variate.

4. Follow (2 and 3) till you have the prescribed sample size n.

5. Employing 1000 iterations, continue steps 1�4 each time. Evaluate MLEs, LSEs and

WLSEs for the 1000 samples, say ~�j for j = 1; 2; :::; 1000; having optima function and

the Nelder - Mead technique in R to compute estimes.

6. Determine biases and MSEs. The two metrics are utilized to meet these targets:

Bias� (n) =
1

1000

1000X
j=1

(~�j � �) ;

MSE� (n) =
1

1000

1000X
j=1

(~�� �)2 ;

where � = (�1; �2; �) :

The empirical �ndings are depicted in Figs. 9�14. These results suggest that the proposed

estimation methods are e¤ective at estimating the TC-MAM parameters. We can deduce that

the estimators display asymptotic unbiasedness because the bias goes to zero as n rises. On

the other hand, MSE behaviour implies consistency because the errors trend to zero as n

increases. The following conclusions can be drawn from Figs 9-14.

16

Fig. 9. Behaviour of bias of estimators with di¤erent methods under parametric set I

against n.

Fig. 10. Behaviour of MSE of estimators with di¤erent methods under parametric set I

17

Figure 9. Behavior of bias of estimators with different methods under parametric set I against n.
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Fig. 9. Behaviour of bias of estimators with di¤erent methods under parametric set I

against n.

Fig. 10. Behaviour of MSE of estimators with di¤erent methods under parametric set I

17

Figure 10. Behavior of MSE of estimators with different methods under parametric set I against n.
against n.

Fig. 11. Behaviour of bias of estimators with di¤erent methods under parametric set II

against n.

18

Figure 11. Behavior of bias of estimators with different methods under parametric set II against n.
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against n.

Fig. 11. Behaviour of bias of estimators with di¤erent methods under parametric set II

against n.

18

Fig. 12. Behaviour of MSE of estimators with di¤erent methods under parametric set II

against n.

Fig. 13. Behaviour of bias of estimators with di¤erent methods under parametric set III

against n.

19

Figure 12. Behavior of MSE of estimators with different methods under parametric set II against n.
Fig. 12. Behaviour of MSE of estimators with di¤erent methods under parametric set II

against n.

Fig. 13. Behaviour of bias of estimators with di¤erent methods under parametric set III

against n.

19

Figure 13. Behavior of bias of estimators with different methods under parametric set III against n.
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Fig. 14. Behaviour of MSE of estimators with di¤erent methods under parametric set III

against n.

� Under all three estimation procedures, the estimated bias of parameters �1; �2; � reduces
as n grows.

� For parametric set-I, the estimated bias of parameter �1 under LSE, WLSE is negative,
for Set II �1 and � under all three estimation methods and for set III, the estimated

bias of parameter � is negetive (see Fig. 9, 11 and 13).

� Figs. 9 and 10 show the bias and MSE of ~�1; ~�2; and ~�, for parametric Set-I and the
WLSE always has the smallest value of bias and MSE of all estimators.

� In the second scenario, the MLE estimators of �2 is over-estimated, while MSE of �2 is
highest among the three considered estimators (see Figs. 11-12).

� The estimators of �1 are over-estimated in the third scenario, however the over and
under estimation of �2 and � are seen among the three investigated estimators, and the

WLSE always has the minimum value of bias of all estimators (see Fig. 13).

20

Figure 14. Behavior of MSE of estimators with different methods under parametric set III against n.

• Under all three estimation procedures, the estimated bias of parameters λ1, λ2, δ
reduces as n grows.

• For parametric set-I, the estimated bias of parameter λ1 under LSE, WLSE is negative,
for Set II λ1 and δ under all three estimation methods and for set III, the estimated
bias of parameter δ is negative (see Figures 9, 11 and 13).

• Figures 9 and 10 show the bias and MSE of λ̃1, λ̃2, and δ̃, for parametric Set-I and the
WLSE always has the smallest value of bias and MSE of all estimators.

• In the second scenario, the MLE estimators of λ2 is over-estimated, while MSE of λ2 is
highest among the three considered estimators (see Figures 11 and 12).

• The estimators of λ1 are over-estimated in the third scenario, however the over and
under estimation of λ2 and δ are seen among the three investigated estimators, and
the WLSE always has the minimum value of bias of all estimators (see Figure 13).

• Among the three estimators evaluated, the MSE of λ1 is the greatest (see Figure 14).
• The MSE of λ̃2 is strongly stimulated and higher under MLE and LSE estimation

methods when n < 50 (see Figure 10).
• Figures 13 and 14 demonstrate the influence of choice of parameters on the estima-

tion approaches, here bias and MSEs are comparatively low among the selected set
of parameters.

• Some big shifts in MSEs of considered estimators under MLE, LSE, and WLSE are
observed when n < 50.

• In terms of bias, the WLSE’s performance is relatively favorable.
• Furthermore, when n increases, the MSE for all three estimating strategies decreases,

satisfying the consistency criteria (Figures 10, 12 and 14).
• In all estimating methodologies, the difference between estimates and stated parame-

ters reduces as n rises.
• As n approaches infinity, WLSE estimation is frequently better in terms of bias and

MSE when likened to other estimation methods for all given parameter values.
• The estimated MSEs of parameters λ̃1, λ̃2, and δ̃ under the MLE estimation technique

decrease quickly as n increases, demonstrating the effectiveness of the MLE procedure.



Axioms 2022, 11, 516 17 of 20

The final conclusion drawn from the foregoing figures is that, as n rises, estimated
bias and MSE graphs for estimators λ̃1, λ̃2, and δ̃ finally approach zero for all estimating
methods. This demonstrates the accuracy of both the estimating methods and the numerical
computations for the TC-MAM parameters.

5. Applications

We demonstrate the flexibility of the TC-MAM in this section by examining a real
dataset. The TC-MAM distribution is compared to competing models, such as the two
component mixture of Shanker distribution (2C-MSM), the two component mixture of
exponential model (2-CMEM), and the two component mixture of Lindley distribution
(2C-MLM) using the R function maxLik(). The -Log-likelihood (-LL), the AIC, BIC, and
AICC have all been used to compare these models. The model having the least quantities
of above-mentioned goodness-of-fit (GoF) measures may be the best fit for the real dataset.

Dataset: There are 56 observations in this dataset pertaining to the burning velocity
of various chemical substances. The laminar flame speed at the specified composition,
temperature, and pressure circumstances is the burning speed/velocity. It lowers as the
inhibitor concentration rises, and it may be observed directly by analysing the pressure
distribution in the spherical vessel and monitoring the flame propagation. We consider
a real-life dataset which represents the burning velocity (cm/s) of several chemical com-
pounds to show the TC-MAM distribution’s suitability. This dataset is extracted from
https://www.cheresources.com/mists.pdf (accessed on 4 September 2022) and the data
are as follows: 68, 61, 64, 55, 51, 68, 44, 50, 82, 60, 89, 61, 54, 166, 66, 50, 87, 48, 42, 58,
46, 67, 46, 46, 44, 48, 56, 47, 54, 47, 89, 38, 108, 46, 40, 44, 312, 41, 31, 40, 41, 40, 56, 45, 43,
46, 46, 46, 46, 52, 58, 82, 71, 48, 39, and 41 [24–27] contains further data applications. The
MLEs for the TC-MAM and GoF measures are shown in Table 1. The TC-MAM clearly
outperforms the 2-CMSM, 2-CMEM, and 2-CMLM, as shown in Table 1. The profiles of the
log-likelihood function (PLLF) based on the dataset that confirm the conclusions of Table 1
are shown in Figure 15. Figures 15 and 16 show a graphical illustration of MLE existence
and uniqueness, respectively. To summarize, the TC-MAM emerges as the better model
for the dataset, indicating its usefulness in a real-world setting. We can deduce from this
graphical representation and results obtain from Table 1 that the TC-MAM is a better fit for
the dataset in consideration.

Table 1. MLEs, and GoF statistics for the Dataset I.

Distributions MLEs −LL AIC BIC AICC

TC-MAM λ̃1 0.011647 260.0557 526.1114 532.1875 526.5729
λ̃2 0.053562
δ̃ 0.024836

2C-MSM λ̃1 0.008656 269.2051 544.4102 550.4863 544.8717
λ̃2 0.035161
δ̃ 0.023762

2C-MLM λ̃1 0.008684 270.0022 546.0045 552.0805 546.4659
λ̃2 0.034539
δ̃ 0.023282

2C-MEM λ̃1 0.016401 286.1761 578.3523 584.4283 578.8137
λ̃2 0.016396
δ̃ 0.746712

https://www.cheresources.com/mists.pdf
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Fig. 15. The Plots of PLLF for for Dataset

Fig. 16. The graphs of Score functions cross the horizontal axis at ~�1; ~�2; and ~� of Dataset.

6 Conclusion

In this investigation, we used three estimated techniques: MLE, LSE, and WLSE to work on

two component mixtures of Akash models. In particular, the Akash mixing model�s statistical

and reliability features were achieved like central moments, Cumulants, Cumulant Generat-

ing Function, Probability Generating Function, Mean Time to Failure, Factorial Moment

Generating Function, Coe¢ cient of variation, Mills Ratio, skewness and kurtosis, Reversed

Hazard Rate Function and Mean Residual Life. To investigate and assess the estimating

approaches�performance, a simulation study with 1000 iterations was done and it was noted

that when n increases, the estimated MSEs of parameters ~�1; ~�2; and ~� under the MLE es-

timation technique rapidly decrease, illustrating the e¢ ciency of the MLE procedure. As a

result, we found that estimating model unknown parameters with regards of accuracy and

consistency, the MLE approach surpassed the rest. Furthermore, we used real datasets to

explain the utility of the underlying mixture model.
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6. Conclusions

In this investigation, we used three estimated techniques: MLE, LSE, and WLSE to
work on two component mixtures of Akash models. In particular, the Akash mixing model’s
statistical and reliability features were achieved, such as central moments, Cumulants,
Cumulant Generating Function, Probability Generating Function, Mean Time to Failure,
Factorial Moment Generating Function, Coefficient of variation, Mills ratio, skewness and
kurtosis, Reversed Hazard Rate Function, and Mean Residual Life. To investigate and
assess the estimating approaches’ performance, a simulation study with 1000 iterations was
performed and it was noted that when n increases, the estimated MSEs of parameters λ̃1, λ̃2,
and δ̃ under the MLE estimation technique rapidly decrease, illustrating the efficiency of
the MLE procedure. As a result, we found that estimating model unknown parameters with
regards of accuracy and consistency, the MLE approach surpassed the rest. Furthermore,
we used real datasets to explain the utility of the underlying mixture model.
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S.A.L.; writing—review and editing, A.S., M.K.H.H. and K.N. All authors have read and agreed to
the published version of the manuscript.
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Nomenclature
Symbols
Υ̌( t|v) Mills Ratio
Pt(v) PGF
H( t|v) CHRF
f ( t|v) PDF
M̃t(v) MGF
R( t|v) RF
K̆(v) CGF
M̆( t| v) MTTF
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F( t|v) CDF
h( t|v) HRF
Q(q; v) QF
ξ̆t(υ) CF
F̆t(ω) FMGF
h( t| v) RHRF
M̆R( t| v) MRL
Abbreviations
CHRF Cumulative Hazard Rate Function
MGF Moment Generating Function
PDF Probability Density Function
CGF Cumulant Generating Function
CDF Cumulative Distribution Function
FMGF Factorial Moment Generating Function
RHRF Reversed Hazard Rate Function
PGF Probability Generating Function
WLSE Weighted Least Square Estimator
MLE Maximum likelihood Estimator
AICC Akaike Information Criterion Corrected
AIC Akaike Information Criterion
TTF Time-To-Failure
QF Quantile Function
RF Reliability Function
CF Characteristic Function
MSE Mean square error
MRL Mean Residual Life
LSE Least Square Estimator
r.v. Random Variable
HRF Hazard Rate Function
MTTF Mean Time to Failure
GoF Goodness-of-Fit
BIC Bayesian Information Criterion
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