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Abstract: We consider two parametric families of special functions: One is defined by a power series
generalizing the classical Mathieu series, and the other one is a generalized Mathieu type power series
involving factorials in its coefficients. Using criteria due to Fejér and Ozaki, we provide sufficient
conditions for these functions to be close-to-convex or starlike inside the unit disk, and thus univalent.
One of our proofs is assisted by symbolic computation.
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1. Introduction and Preliminaries

Let U = {z ∈ C : |z| < 1} denote the open unit disk and A denote the class of all
analytic functions inside the unit disk U, normalized by the conditions f (0) = 0, f ′(0) = 1.
We denote by S the class of all functions f ∈ A which are univalent in U, i.e.,

S = { f ∈ A | f is one-to-one in U}.

A set Ω ⊆ C containing the origin is called starlike with respect to the origin, if, for any
point z ∈ Ω, the line segment from the origin to z lies in the interior of Ω. A function f ∈ A
that maps the unit disk U onto a starlike domain is called starlike function, and the class of
such functions is denoted by S ∗. Analytically, starlike functions are characterized by the
condition

<
(

z f ′(z)
f (z)

)
> 0, z ∈ U.

An analytic function f ∈ A is called close-to-convex if <
{

eiθz f ′(z)/g(z)
}
> 0, z ∈ U,

for some θ ∈ R and for some starlike function g ∈ S ∗. By taking θ = 0 and g = f , it
is clear that every starlike function is close-to-convex. However, the converse is not true.
The Noshiro–Warschawski theorem implies that close-to-convex functions are univalent
in U, but the converse is not true in general. Thus, it is convenient to show that f is close-
to-convex in order to check the univalency of f . There is also a geometric version of the
definition: An analytic function f is called close-to-convex in U, if the complement of f (U)
can be written as the union of non-intersecting half-lines. These classes are studied in detail
in the literature (see the books of Duren [1] and Goodman [2]). Verifying these geometric
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properties for various special functions is an active research area, we mention [3–5] and the
references therein.

The following infinite series was named after Émile Leonard Mathieu (1835–1890),
who investigated it in his 1890 monograph [6] on elasticity of solid bodies:

S(r) =
∞

∑
n=1

2n
(n2 + r2)2 , r ∈ R+. (1)

An integral representation of the series S(r) is given by (see [7])

S(r) =
1
r

∫ ∞

0

t sin(rt)
et − 1

dt.

The generalized Mathieu type power series or generalized Mathieu type power series of
fractional order µ is defined by (see [8]):

Fµ(r; z) =
∞

∑
n=1

2n
(n2 + r2)µ+1 zn, µ, r ∈ R+, |z| < 1.

In 1998, Alzer et al. [9] obtained the following bounds for Mathieu’s series (1):

1
r2 + 1

2ζ(3)

< S(r) <
1

r2 + 1/6
,

where ζ denotes the zeta function. One can refer to [9–16] about the study of Mathieu’s
series and its generalizations. In particular, series of the form

S(α,β)
µ (r; {an}∞

n=1) =
∞

∑
n=1

2aβ
n

(aα
n + r2)µ ,

for certain parametric choices of the sequence {an}, have been studied extensively. Here,
the range of the real parameters α, β depends on the growth order of the sequence {an}.
Such series give rise to a large number of different integral representations, some of which
involve the Fox–Wright function, as well as the Riemann zeta function (see [17–19]). While
a large amount of research has been devoted to integral representations, inequalities and
asymptotics, results on geometric properties of such series are scarce. In the present
investigation, our aim is to study geometric properties of generalized Mathieu type power
series. As mentioned above, both starlikeness and close-to-convexity are characterized by
geometric properties of the range of U. It is obvious that z 7→ Fµ(r; z) /∈ A , so we use the
following normalization:

Fµ(r; z) =
(r2 + 1)µ+1

2

∞

∑
n=1

2n
(n2 + r2)µ+1 zn

= z +
∞

∑
n=2

n(r2 + 1)µ+1

(n2 + r2)µ+1 zn. (2)

For µ = 1, Fµ(r; z) becomes a Mathieu type power series (see [8]). Geometric properties of
the series F1(r; z) have already been discussed in [20]; there, the notation S(r; z) is used for
F1(r; z). Recently, Gerhold et al. [21] considered the following generalized Mathieu type
power series:

Qµ(r; z) =
∞

∑
n=1

2n!
((n!)2 + r2)µ+1 zn, µ, r ∈ R+, |z| < 1.
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Since Qµ(r; z) /∈ A, we define the normalization

Qµ(r; z) =
(r2 + 1)µ+1

2

∞

∑
n=1

2n!
((n!)2 + r2)µ+1 zn

= z +
∞

∑
n=2

n!(r2 + 1)µ+1

((n!)2 + r2)µ+1 zn. (3)

We are interested in starlikeness and close-to-convexity of Fµ(r; z) and Qµ(r; z). Thus,
we generalize the results of [20] on F1(r; z) from µ = 1 to more general values of µ, and
additionally provide the first results on geometric properties of Qµ(r; z).

Recall that a sequence of real numbers {an}n≥1 satisfying the condition

2an+1 ≤ an + an+2, n ≥ 1

is called a convex sequence. It is clear that, if f (x) is a convex function (of a real variable)
for x ≥ 1, then the sequence an = f (n), n = 1, 2 . . . , is convex. We need the following
lemmas to prove our main results.

Lemma 1 (Ozaki [22], Corollary 7). Let f (z) = z +
∞
∑

n=2
anzn. Suppose

1 ≥ 2a2 ≥ · · · ≥ (n + 1)an+1 ≥ · · · ≥ 0

or
1 ≤ 2a2 ≤ · · · ≤ (n + 1)an+1 ≤ · · · ≤ 2.

Then, f is close-to-convex with respect to the starlike function z/(1− z).

When comparing the preceding lemma with Lemma 1.1 of [20], note the slightly
different notation used there (see the definition of close-to-convex on p. 912 of [20]).

Lemma 2 (Fejér [23], Satz IX). If {an} is a non-negative real sequence with a1 = 1 and such
that {nan}n≥1 and {nan − (n + 1)an+1}n≥1 are non-increasing, then the function f (z) = z +

∞
∑

n=2
anzn is in S ∗.

Lemma 3. Let {an}n≥1 be a non-increasing sequence of non-negative real numbers with a1 = 1,
which is convex, i.e.,

a1 − a2 ≥ · · · ≥ ak − ak+1 ≥ · · · ≥ 0.

Then

<
( ∞

∑
n=1

anzn−1
)
>

1
2

, z ∈ U.

Proof. According to Lemma 3.4 in [24] and Lemma 1.3 in [20], this is due to Fejér [23]. As
we could not find the result in this reference, we give a proof for the reader’s convenience,
which is a simple variation of a proof found in another paper by Fejér ([25], Theorem 1), and
without claiming originality. Let z = reiθ with r ∈ (0, 1) and θ ∈ (0, 2π). (The cases r = 0
and θ = 0 are both trivial.) Define ãn = rn−1an. Since an is non-increasing and non-negative,
we have ãn = o(1). The sequence ãn is decreasing and convex (see p. 98 in [23]), and it is
easy to see that it is actually strictly convex. We define sn = 1/2 + ∑n

k=1 cos kθ and

σn =
n

∑
k=0

sk =
1
2

( sin
(
(n + 1)θ/2

)
sin(θ/2)

)2
,
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which satisfies 0 ≤ σn = O(1). Using summation by parts twice, we find, for N ≥ 3,

<
( N+1

∑
n=1

anzn−1
)
= 1 +

N

∑
n=1

ãn+1 cos nθ = 1 +
N

∑
n=1

ãn+1(sn − sn−1)

= 1 + ãN+1(σN − σN−1)− ã2s0 −
(
(ãN+1 − ãN)σN−1 − (ã3 − ã2)σ0

−
N

∑
n=3

σn−2(ãn+1 − 2ãn + ãn−1)
)

.

Then, N → ∞ yields

<
( ∞

∑
n=1

anzn−1
)
= 1− 1

2 ã2 +
1
2 (ã3 − ã2) +

∞

∑
n=3

σn−2(ãn+1 − 2ãn + ãn−1)

> 1− ã2 +
1
2 ã3 =

1
2
+

ã1 − 2ã2 + ã3

2
≥ 1

2
.

2. Close-to-Convexity and Starlikeness of Fµ(r; z)

Generalizing Theorem 2.2 of [20] to arbitrary µ > 0, we can state:

Theorem 1. If µ > 0 and 0 < r ≤ √µ, or µ ≥ 1 and 0 < r <
√

µ + 1, then Fµ(r; z) is
close-to-convex with respect to the starlike function z/(1− z).

Proof. In view of Lemma 1, it is sufficient to prove that the sequence {nan}n≥1 is non-
increasing. Here, the an are the coefficients in the series expansion of Fµ(r; z) given by (2).
Let

f (n) = nan =
n2(r2 + 1)µ+1

(n2 + r2)µ+1 .

Now, it is sufficient to show that the function f (x) = x2(r2+1)µ+1

(x2+r2)µ+1 decreases. Differentiating

f (x), we have

f ′(x) =
2x(r2 + 1)µ+1

(x2 + r2)µ+2 (r2 − x2µ), x ≥ 1, µ > 0.

Under the first stated condition on µ and r, this is obviously negative for x ≥ 1. In the
second case, it is negative for x ≥ 2, and it remains to show that 1 ≥ f (2). This follows
from

f (2) =
4(r2 + 1)µ+1

(r2 + 4)µ+1 ≤ 4
(µ + 2

µ + 5

)µ+1
≤ 1.

Here, we have used that (r2 + 1)/(r2 + 4) increases w.r.t. r, and that ( µ+2
µ+5 )

µ+1 decreases
w.r.t. µ.

Alternative Proof. Using the Bernoulli inequality, we can directly prove that the sequence
{nan} is non-increasing under the first stated condition. Namely, we have

nan − (n + 1)an+1 =
n2(r2 + 1)µ+1

(n2 + r2)µ+1 −
(n + 1)2(r2 + 1)µ+1

((n + 1)2 + r2)µ+1

=

[
r2 + 1

(n2 + r2)((n + 1)2 + r2)

]µ+1

bn,
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where

bn = n2((n + 1)2 + r2)µ+1 − (n + 1)2(n2 + r2)µ+1

= n2(n2 + 2n + 1 + r2)µ+1 − (n2 + 2n + 1)(n2 + r2)µ+1

= n2(n2 + r2)µ+1
(

1 +
2n + 1
n2 + r2

)µ+1
− n2(n2 + r2)µ+1 − (2n + 1)(n2 + r2)µ+1

= n2(n2 + r2)µ+1

[(
1 +

2n + 1
n2 + r2

)µ+1
− 1

]
− (2n + 1)(n2 + r2)µ+1

≥ n2(n2 + r2)µ+1 (2n + 1)(µ + 1)
n2 + r2 − (2n + 1)(n2 + r2)µ+1

= (2n + 1)(n2 + r2)µ[n2(µ + 1)− (n2 + r2)]

= (2n + 1)(n2 + r2)µ[n2µ− r2] ≥ 0,

provided µ > 0 and 0 < r ≤ √µ.

The following result generalizes Theorem 2.3 of [20] to arbitrary µ > 0.

Theorem 2. If µ > 0 and 0 < r ≤
√

(3+5µ)−
√

17µ2+26µ+9
2 , then Fµ(r; z) is starlike in U.

Proof. We already proved in Theorem 1 that {nan} is non-increasing for all 0 < r ≤ √µ. To
show that Fµ(r; z) is starlike in U, using Lemma 2, it is sufficient to show that the sequence
{nan − (n + 1)an+1} is also non-increasing. That is,

nan − 2(n + 1)an+1 + (n + 2)an+2 ≥ 0

⇐⇒ (r2 + 1)µ+1
[

n2

(n2 + r2)µ+1 − 2
(n + 1)2

((n + 1)2 + r2)µ+1 +
(n + 2)2

((n + 2)2 + r2)µ+1

]
≥ 0

⇐⇒ f (n)− 2 f (n + 1) + f (n + 2) ≥ 0,

where

f (x) =
x2

(x2 + r2)µ+1 , x ≥ 1, µ > 0.

To show f (n)− 2 f (n + 1) + f (n + 2) ≥ 0, n = 1, 2, 3, 4, . . ., it is sufficient to prove that f (x)
is a convex function, i.e., f ′′(x) ≥ 0, x ≥ 1. Differentiating twice, we have

f ′′(x) =
2[x4(µ + 2µ2)− x2(3 + 5µ)r2 + r4]

(x2 + r2)µ+3 , x ≥ 1, µ > 0.

The denominator is positive for all x ≥ 1 and r > 0. Let φ(x) = x4(µ + 2µ2) − x2(3 +
5µ)r2 + r4. Obviously, φ′(x) = 4x3(2µ2 + µ) − 2(3 + 5µ)r2x ≥ 0 for all x ≥ 1, µ > 0

and 0 < r ≤
√

2(2µ2+µ)
5µ+3 . Thus, f ′′(x) ≥ 0 provided φ(1) ≥ 0, which in turn gives

0 < r ≤
√

(5µ+3)−
√

17µ2+26µ+9
2 . This completes the proof.

We can also generalize Theorem 2.4 of [20]:
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Theorem 3. For µ > 0 and 0 < r ≤
√

2µ+1
3 , we have

<
(Fµ(r; z)

z

)
>

1
2

, z ∈ U.

Proof. First, we prove that

{an}∞
n=1 =

{
n(r2 + 1)µ+1

(n2 + r2)µ+1

}∞

n=1

is a decreasing sequence, i.e.,

an − an+1 ≥ 0, n ∈ N.

Note that

an − an+1 ≥ 0

⇐⇒ (r2 + 1)µ+1
[

n
(n2 + r2)µ+1 −

n + 1
((n + 1)2 + r2)µ+1

]
≥ 0

⇐⇒ (r2 + 1)µ+1[ f (n)− f (n + 1)] ≥ 0,

where
f (x) =

x
(x2 + r2)µ+1 , x ≥ 1, µ > 0. (4)

To show f (n)− f (n+ 1) ≥ 0, n = 1, 2, 3, . . . , it is sufficient to prove that f (x) is a decreasing
function , i.e., that f ′(x) < 0, x ≥ 1. We have

f ′(x) =
r2 − (1 + 2µ)x2

(x2 + r2)µ+2 ≤ 0, x ≥ 1, µ > 0 and 0 < r ≤
√

1 + 2µ.

Next, we prove that {an}∞
n=1 is a convex decreasing sequence. For this, we show

an+2 − an+1 ≥ an+1 − an, n ∈ N.

Now,

an − 2an+1 + an+2 ≥ 0

⇐⇒ (r2 + 1)µ+1
[

n
(n2 + r2)µ+1 − 2

n + 1
((n + 1)2 + r2)µ+1 +

n + 2
((n + 2)2 + r2)µ+1

]
≥ 0

⇐⇒ (r2 + 1)µ+1[ f (n)− 2 f (n + 1) + f (n + 2)] ≥ 0,

where f (x) is given by (4). To show f (n) + f (n + 2)− 2 f (n + 1) ≥ 0, n = 1, 2, 3, 4, . . ., it
suffices to prove that f (x) is a convex function or that f ′′(x) ≥ 0, x ≥ 1. It can be easily
verified that

f ′′(x) =
2x[(2µ2 + 3µ + 1)x2 − 3(µ + 1)r2]

(x2 + r2)µ+3 ≥ 0

for all

x ≥ 1, µ > 0 and 0 < r ≤
√

2µ + 1
3

.

Thus, {an}∞
n=1 is a convex decreasing sequence. Applying Lemma 3 to {an}∞

n=1, we obtain

<
( ∞

∑
n=1

anzn−1
)
>

1
2

, z ∈ U,
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which is equivalent to

<
(Fµ(r; z)

z

)
>

1
2

, z ∈ U.

We conclude this section with a generalization of Theorem 2.5 of [20].

Theorem 4. For µ > 0 and 0 < r ≤
√

(5µ+3)−
√

17µ2+26µ+9
2 , we have

<
(
F′µ(r; z)

)
>

1
2

, z ∈ U.

Proof. From (2), we infer

F′µ(r; z) = 1 +
∞

∑
n=2

n2(r2 + 1)µ+1

(n2 + r2)µ+1 zn−1.

We have shown in Theorems 1 and 2 that the sequence

n2(r2 + 1)µ+1

(n2 + r2)µ+1

is convex and non-increasing, and so the result follows from Lemma 3.

3. Close-to-Convexity and Starlikeness of Qµ(r; z)

It turns out that close-to-convexity of the series Qµ(r; z), which has not been studied
before, can be inferred from Ozaki’s criterion too.

Theorem 5. If µ > 0 and 0 < r ≤ √µ, then Qµ(r; z) is close-to-convex w.r.t. the starlike function
z/(1− z).

Proof. Again, we apply Lemma 1. Let

Cn =
n!(r2 + 1)µ+1

((n!)2 + r2)µ+1 .

Using the Bernoulli inequality, we can directly prove that the sequence {nCn} is non-
increasing under the stated condition. We have

nCn − (n + 1)Cn+1 =
n n!(r2 + 1)µ+1

[(n!)2 + r2]µ+1 −
(n + 1) (n + 1)!(r2 + 1)µ+1

[((n + 1)!)2 + r2]µ+1

=

[
(r2 + 1)

((n!)2 + r2)(((n + 1)!)2 + r2)

]µ+1

Bn,
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where

Bn = n n![((n + 1)!)2 + r2]µ+1 − (n + 1)(n + 1)!((n!)2 + r2)µ+1

= n n![((n2 + 2n + 1)(n)!)2 + r2]µ+1 − (n2 + 2n + 1) n! ((n!)2 + r2)µ+1

= n n![(n2 + 2n)((n)!)2 + ((n)!)2 + r2]µ+1 − (n2 + 2n + 1) n! ((n!)2 + r2)µ+1

= n n![(n!)2 + r2]µ+1
[

1 +
(n2 + 2n)((n)!)2

(n!)2 + r2

]µ+1

− (n2 + 2n + 1) n! ((n!)2 + r2)µ+1

≥ n n![(n!)2 + r2]µ+1
[

1 +
(µ + 1)(n2 + 2n)((n)!)2

(n!)2 + r2

]
− (n2 + 2n + 1) n! ((n!)2 + r2)µ+1

= n n![(n!)2 + r2]µ+1 + n(n2 + 2n)(µ + 1)((n)!)3[(n!)2 + r2]µ

− (n2 + 2n + 1) n! ((n!)2 + r2)µ+1

≥ n![(n!)2 + r2]µ+1 + (n2 + 2n)(µ + 1)((n)!)3[(n!)2 + r2]µ

− (n2 + 2n + 1) n! ((n!)2 + r2)µ+1

= (n2 + 2n)(µ + 1)((n)!)3[(n!)2 + r2]µ − (n2 + 2n) n! ((n!)2 + r2)µ+1

= (n)!(n2 + 2n)((n!)2 + r2)µ(µ(n!)2 − r2) ≥ 0,

provided that µ− r2 ≥ 0 or 0 < r ≤ √µ.

The application of Fejér’s criterion (Lemma 2) carries over to Qµ(r; z) as well. In a part
of the following proof, we use a symbolic computation technique that seems not to have
been used in this context before.

Theorem 6. If µ ≥ 2 and 0 < r ≤ √µ, then Qµ(r; z) is starlike in U.

Proof. We have shown in the preceding proof that {nCn}n≥1 is non-increasing. Now,
we prove that it is convex, provided that µ ≥ 2, in order to apply Lemma 2. We have
nCn = g(n), where

g(x) =
xΓ(x + 1)(1 + r2)µ+1(

Γ(x + 1)2 + r2
)µ+1 , x ≥ 0.

Define
h(x) = g(x)− g(x + 1).

Our goal is to show that {h(n)}n≥1 is non-increasing. We have (cf. the proof of Theorem 1)

h(1)− h(2) = 1− 8
( r2 + 1

r2 + 4

)µ+1
+ 18

( r2 + 1
r2 + 36

)µ+1

> 1− 8
( r2 + 1

r2 + 4

)µ+1

≥ 1− 8
(µ + 1

µ + 4

)µ+1
≥ 0,

where the last estimate follows from µ ≥ 2 and the fact that
(

µ+1
µ+4

)µ+1
decreases w.r.t. µ.

(This is the only step where µ ≥ 2 is used; the rest of the proof works for µ > 0.) Very
similarly, it can be shown that

h(2) ≥ h(3) ≥ h(4).

To complete the proof, we show that g(x) is a convex function for x ≥ 4. We have

g′′(x) = Γ(x + 1)
(
Γ(x + 1)2 + r2)−µ−3

(1 + r2)µ+1 A(x),
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where

A(x) = 2(r2 + Γ(x + 1)2)
[
r2 − (2µ + 1)Γ(x + 1)2]ψ(x + 1)

+ x
[
r4 − 2r2(4µ + 3)Γ(x + 1)2 + (2µ + 1)2Γ(x + 1)4]ψ(x + 1)2

+ x
(
r2 + Γ(x + 1)2)(r2 − (2µ + 1)Γ(x + 1)2)ψ′(x + 1), (5)

and ψ = Γ′/Γ denotes the digamma function. We will apply the following estimates:

− 2r2(4µ + 3)c + (2µ + 1)2c2 ≥ 0, µ > 0, 0 ≤ r ≤ √µ, c ≥ 2, (6)

ψ(x) < log x− 1
2x

, x > 1, (7)

ψ(x) > log x− 1
x

, x > 1, (8)

ψ′(x) <
1
x
+

1
x2 , x > 0, (9)

log(x + 1)− 1
2(x + 1)

≤
√

x, x ≥ 1, (10)

(
log(x + 1)− 1

x + 1

)2
≥ 19

10
, x ≥ 4, (11)

2(r2 + c)(r2 − (2µ + 1)c)
√

x + x
(
r4 − 2r2(4µ + 3)c + (2µ + 1)2c2)19

10

+ x(r2 + c)(r2 − (2µ + 1)c)
( 1

x + 1
+

1
(x + 1)2

)
≥ 0,

x ≥ 4, c ≥ Γ(5)2, µ > 0, 0 ≤ r ≤ √µ. (12)

Note that (6) and (12) are polynomial inequalities with polynomial constraints, which can
be proven by cylindrical algebraic decomposition (CAD), using a computer algebra system.
The inequalities (10) and (11) are very easy to show. The estimates (7) and (8) are found on
p. 288 of [26], and (9) is an easy consequence of (26) in [27].

For the rest of the proof, we may assume x ≥ 4. The factors in front of ψ(x + 1) and
ψ′(x + 1) in (5) are clearly negative, whereas the factor in front of ψ(x + 1)2 is non-negative,
by (6). Thus, (7)–(9) imply

A(x) ≥ 2(r2 + Γ(x + 1)2)(r2 − (2µ + 1)Γ(x + 1)2)
(

log(x + 1)− 1
2(x + 1)

)
+ x(r4 − 2r2(4µ + 3)Γ(x + 1)2 + (2µ + 1)2Γ(x + 1)4)

(
log(x + 1)− 1

x + 1

)2

+ x(r2 + Γ(x + 1)2)(r2 − (2µ + 1)Γ(x + 1)2)
( 1

x + 1
+

1
(x + 1)2

)
.

Using (10) and (11), we thus obtain

A(x) ≥ 2(r2 + Γ(x + 1)2)(r2 − (2µ + 1)Γ(x + 1)2)
√

x

+ x(r4 − 2r2(4µ + 3)Γ(x + 1)2 + (2µ + 1)2Γ(x + 1)4)
19
10

+ x(r2 + Γ(x + 1)2)(r2 − (2µ + 1)Γ(x + 1)2)
( 1

x + 1
+

1
(x + 1)2

)
.

This is non-negative by (12). The convexity of g(x) for x ≥ 4 is established, which completes
the proof.

Theorem 3 also has a variant for the series Qµ(r; z):
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Theorem 7. For µ > 0 and 0 < r ≤ √µ, the following inequality holds:

<
(Qµ(r; z)

z

)
>

1
2

, z ∈ U.

Proof. We use Lemma 3. To show that

{Cn}∞
n=1 =

{
n!(r2 + 1)µ+1

((n!)2 + r2)µ+1

}∞

n=1

is a decreasing sequence, we define

g̃(x) =
Γ(x + 1)

((Γ(x + 1))2 + r2)µ+1 , x ≥ 1, µ > 0.

We have

g̃′(x) =
Γ′(x + 1)

[
r2 − (2µ + 1)(Γ(x + 1))2]

[(Γ(x + 1))2 + r2]
µ+2 ≤ 0

when x ≥ 1, µ > 0 and 0 < r ≤
√

2µ + 1. Next, we prove that {Cn} is a convex sequence.
Define

h̃(x) = g̃(x)− g̃(x + 1).

We first show that h̃(1) ≥ h̃(2) ≥ h̃(3). We have

h̃(1)− h̃(2) >
1

(r2 + 1)µ+1 −
4

(r2 + 4)µ+1 ≥ 0

because the map x 7→ x/(r2 + x)µ+1 decreases for x ≥ r2/µ. For the same reason,

h̃(2)− h̃(3) >
1
2

( 4
(r2 + 4)µ+1 −

24
(r2 + 36)µ+1

)
>

1
2

( 4
(r2 + 4)µ+1 −

36
(r2 + 36)µ+1

)
> 0.

We complete the proof by showing that the function g̃(x) is convex for x ≥ 3, similarly as
in the proof of Theorem 6. We have

g̃′′(x) = Γ(x + 1)(r2 + Γ(x + 1)2)−µ−3 Ã(x),

where

Ã(x) :=
(

r4 − 2r2(4µ + 3)Γ(x + 1)2 + (2µ + 1)2Γ(x + 1)4
)

ψ(x + 1)2

+
(
r2 + Γ(x + 1)2)(r2 − (2µ + 1)Γ(x + 1)2)ψ′(x + 1).

We state the following inequalities:

− 2r2(4µ + 3) + (2µ + 1)2c ≥ 0, µ > 0, 0 ≤ r ≤ √µ, c ≥ 2, (13)(
log(x + 1)− 1

x + 1

)2
≥ 1, x ≥ 3, (14)

1
x + 1

+
1

(x + 1)2 ≤
1
2

, x ≥ 3, (15)

(2µ + 1)2 − 2r2(4µ + 3)
c

− 2µ + 1
2

(
1 +

r2

c

)
> 0, µ > 0, 0 ≤ r ≤ √µ, c ≥ 5. (16)
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It is very easy to show (14). The estimate (15) is obvious, and (13) and (16) can be proven
by computer algebra (see above). From now on, we assume x ≥ 3. Since ψ2(x + 1) and
ψ′(x + 1) are non-negative, we have

Ã(x) ≥
[
−2r2(4µ + 3)Γ(x + 1)2 + (2µ + 1)2Γ(x + 1)4]ψ(x + 1)2

−
(
r2 + Γ(x + 1)2)(2µ + 1)Γ(x + 1)2ψ′(x + 1).

By (13), the term [. . . ] is ≥ 0. We then use (8) and (9) and obtain

Ã(x) ≥
[
−2r2(4µ + 3)Γ(x + 1)2 + (2µ + 1)2Γ(x + 1)4]( log(x + 1)− 1

x + 1

)2

−
(
r2 + Γ(x + 1)2)(2µ + 1)Γ(x + 1)2

( 1
x + 1

+
1

(x + 1)2

)
.

By (14) and (15), we further obtain

Ã(x) ≥
[
− 2r2(4µ + 3)Γ(x + 1)2 + (2µ + 1)2Γ(x + 1)4]

− 1
2
(
r2 + Γ(x + 1)2)(2µ + 1)Γ(x + 1)2

= Γ(x + 1)4
([

(2µ + 1)2 − 2r2(4µ + 3)
Γ(x + 1)2

]
− 2µ + 1

2

[
1 +

r2

Γ(x + 1)2

])
.

This is positive by (16), for x ≥ 3.

Theorem 8. For µ ≥ 2 and 0 < r ≤ √µ, we have

<
(
Q′µ(r; z)

)
>

1
2

, z ∈ U.

Proof. From (3),

Q′µ(r; z) = 1 +
∞

∑
n=2

n n!(r2 + 1)µ+1

((n!)2 + r2)µ+1 zn−1.

We have shown in Theorems 5 and 6 that the sequence

n n!(r2 + 1)µ+1

((n!)2 + r2)µ+1

is convex and non-increasing, and so the result follows from Lemma 3.

4. Two Further Examples

We conclude the paper with two more examples of starlike Mathieu-type power series.
Here, we apply the following criterion; see Goodman [28] and the references given there.

Proposition 1. The function

f (z) = z +
∞

∑
n=2

anzn, |z| < 1,

is starlike if ∑∞
n=2 n|an| ≤ 1.

Example 1. Consider the series

z + 4
∞

∑
n=2

2zn

(n2 + 1)3 =
∫ z

0

F2(1; t)
t

dt, (17)
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which is related to

F2(1; z) = z +
∞

∑
n=2

8n
(n2 + 1)3 zn. (18)

While Theorem 2 is not applicable for r = 1 and µ = 2, which are the parameter values chosen
in (18), we can show that (17) is starlike, using Proposition 1 and an inequality due to Diananda.
Indeed, by Theorem 1 in [11],

4
∞

∑
n=2

2n
(n2 + 1)3 = 4

( ∞

∑
n=1

2n
(n2 + 1)3 −

1
4

)
< 4

(1
2
− 1

4

)
= 1.

Example 2. The power series

z + 4
∞

∑
n=2

(2n− 1)!!
[(2n + 1)!! + 1]2

zn, |z| < 1,

is starlike. Recall that the double factorial is defined by (2n + 1)!! = 1× 3× · · · × (2n + 1).
Starlikeness follows from Proposition 1 and the estimate

∞

∑
n=1

4n(2n− 1)!!
[(2n + 1)!! + 1]2

< 2
∞

∑
n=1

(2n + 1)(2n− 1)!!− (2n− 1)!!
[(2n + 1)!! + 1][(2n− 1)!! + 1]

= 2
∞

∑
n=1

[ 1
(2n− 1)!! + 1

− 1
(2n + 1)!! + 1

]
= 2 · 1

(2 · 1− 1)!! + 1
= 1,

i.e.,
∞

∑
n=2

4n(2n− 1)!!
[(2n + 1)!! + 1]2

< 1− 1
4
< 1.

5. Conclusions

We have provided conditions under which two generalized Mathieu power series
are close-to-convex resp. starlike. One of them, involving factorials in its coefficients, was
introduced in [21]. The aim of that paper was at asymptotic expansions for large r, and it
turned out that the series with the factorials was more difficult to handle than the classical
Mathieu series and its immediate extensions. This is not the case for the problems studied
in the present paper, which highlights the versatility of the classical criteria we apply,
and suggests that geometric results for even more general Mathieu power series might lie
behind what we have proved.
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