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Abstract: We focus on fuzzy graphs with crisp vertex sets and fuzzy edge sets. This paper introduces
a new concept of chromatic number (crisp) for a fuzzy graph G̃(V, Ẽ). Moreover, we define the
operations of cap, join, difference, ring sum, direct product, semiproduct, strong product, and
Cartesian product of fuzzy graphs. Furthermore, the exact value or the upper boundary of the
chromatic number of these fuzzy graphs is obtained based on the α-cuts of G̃. Finally, two applications
of the chromatic number to solve the timetabling problem and the traffic light problem are analyzed.
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1. Introduction

Many real-world problems, such as those in information theory, telecommunications,
medical diagnosis, transportation, cluster analysis, traffic networks, and so on, have been
mathematically modelled by using graphs G(V, E) since Euler’s introduction of graph
theory in 1735. Although classical graph theory has been widely used in various aspects,
it still has some limitations in dealing with incomplete data and uncertain information.
For instance, the traffic congestion at an intersection is due to multiple uncertain factors
that include the number of vehicles, cycle length of the traffic light, road conditions, and
so on. Therefore, a more appropriate tool is needed to handle these vague phenomena in
real-life situations.

Many researchers have studied various types of fuzzy graphs since Zadeh [1] intro-
duced the fuzzy theory in 1965. The fuzzy graphs with crisp vertex sets and fuzzy edge
sets, also known as type 1 fuzzy graphs, were originally proposed by Kaufmann [2] in
1973. Furthermore, Rosenfeld [3] introduced type 2 fuzzy graphs with fuzzy vertex sets
and fuzzy edge sets. Subsequently, many scholars have made a lot of generalizations about
fuzzy graphs. For instance, Mordeson and Peng [4] defined the concept of complemen-
tariness in fuzzy graphs and studied some operations on fuzzy graphs in 1994. In the
same year, Craine [5] investigated the characteristics of fuzzy interval graphs. With the
development of fuzzy graph theory, R.H. Goetschel [6] first described the concept of fuzzy
hypergraphs in 1995 and gave an α-cut of a fuzzy hypergraph. It was Gong and Wang
who investigated the operations of fuzzy and strong fuzzy r-uniform hypergraphs, such
as Cartesian products, strong products, normal products, lexicographic products, unions,
and joining in [7]. Notably, in [8,9], they analyzed the equivalence relationship between
fuzzy hypergraphs and fuzzy formal concept analysis and fuzzy information systems so
as to use fuzzy hypergraphs to process fuzzy information. Thereafter, Gong and Wang
proposed a hesitant fuzzy hypergraph model and investigated some operations and the
equivalence relationship of hesitant fuzzy hypergraphs in [10]. In order to better analyze
fuzzy graphs, Blue et al. [11] discussed the classification of fuzzy graphs based on the
various types of “fuzziness” in graphs, then provided algorithmic solutions to the problems
of shortest paths and minimum cuts in fuzzy graphs with examples. The concept of bipolar
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fuzzy graphs and strong bipolar fuzzy graphs was initiated by Akram [12], who then in-
vestigated some important properties of these fuzzy graphs. Recently, Talal Alhawary [13]
defined the direct product, semistrong product, and strong product on type 2 fuzzy graphs.
Mathew et al. [14] introduced transitive blocks together with their applications in fuzzy
interconnection networks. Furthermore, Binu et al. [15] proposed a connectivity index for
a fuzzy graph and its application to human trafficking. For more information on fuzzy
graphs, readers can refer to [16–21].

Graph coloring is one of the most studied problems in combinatorial optimization.
The classical graph-coloring problem is to group objects into as few groups as possi-
ble, subject to the constraint that no incompatible objects end up in the same group.
The smallest number of groups that is needed to color a graph is called the chromatic
number. Many problems in practical situations can be modeled as coloring problems,
which are known to be NP-hard [22]. The applications of the graph-coloring problem
include wiring problems [23], printed circuits [24], frequency assignment problems [25],
resource allocation [26], a wide variety of scheduling problems [27–30], computer register
allocation [31], and so on.

Many researchers have experimented with various graph colorings. In some cases,
ambiguity is used in coloring problems of fuzzy graphs when dealing with uncertainties
such as vagueness. In the year 2005, the process of coloring the fuzzy graphs was im-
plemented by Muñoz [32], who initiated two methods by which to color the vertices of
the fuzzy graphs with a crisp vertex set and a fuzzy edge set (the type 1 fuzzy graphs)
by means of α-cut coloring of the graphs with α ∈ [0, 1] and an extension of distance
defined between colors. In that paper, Muñoz et al. also discussed the application of α-cut
chromatic numbers in arranging traffic flows at an intersection and the application of the
second coloring method in timetabling problems. Furthermore, Eslahchi and Onagh [33]
constructed this method for fuzzy graphs with fuzzy vertex sets and fuzzy edge sets (the
type 2 fuzzy graphs) based on strong adjacencies between vertices. In a similar way, Kishore
and Sunitha [34] investigated the strong coloring and chromatic number of type 2 fuzzy
graphs based on strong adjacencies between vertices. They also demonstrated how to use
strong coloring on fuzzy graphs to solve traffic light problems. Cioban [35] then proposed
a method for vertex coloring of type 2 fuzzy graphs by using delta-fuzzy independent
vertex sets with δ ∈ [0, 1], and the chromatic number was dubbed the δ-chromatic number.
Recently, an application of vertex coloring on these graphs to solve a cell site assignment
problem in a telecommunications network was given by Keshavarz [36]. Moreover, Anjaly
Kishore et al. [37] discussed the chromatic number of the resultant type 2 fuzzy graphs in
2016. In the same year, a new concept of coloring fuzzy graphs was introduced by Sovan
Samanta et al. in [38]. Sovan Samanta also described some concepts, such as the strength
cut graph and the chromatic number of fuzzy graphs.

Even though type 2 fuzzy graphs have been widely used in many research fields, it is
more adaptable and perfect to use type 1 fuzzy graphs for some real-life problems. Susana
Muñoz et al. [32], for example, used the chromatic number of a type 1 fuzzy graph to
analyze traffic lights and a timing problem. Rosyida et al. [39] proposed a new approach to
determining the fuzzy chromatic set of fuzzy graphs and verified that the fuzzy chromatic
number of fuzzy graphs is a discrete fuzzy number. In that paper, an application of the
fuzzy chromatic number of fuzzy graphs to the problem of medical virus infection at some
locations was given. Subsequently, Rosyida offered an application of the fuzzy chromatic
number to determine the number of phases of an integrated traffic light system in 2020 [40].
Due to the practicability of the type 1 fuzzy graph in real-life situations, we will continue
to study this type of fuzzy graph. To the best of our knowledge, the operations on type 1
fuzzy graphs and the relationship between the chromatic numbers of fuzzy graphs and the
resultant fuzzy graphs obtained by performing various operations on fuzzy graphs have
not been investigated until now.

The structure of this article is as follows. Section 2 discusses some basic concepts in
fuzzy set theory and the operations on fuzzy graphs, and a new definition of the chromatic
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number of fuzzy graphs is given. In Section 3, we investigate the relationship between
the chromatic numbers of fuzzy graphs and that of the resultant fuzzy graphs obtained by
performing various operations on fuzzy graphs such as union, cap, join, difference, ring
sum, and different types of products. In Section 4, an application example based on the
coloring of fuzzy graphs with crisp vertex sets and fuzzy edge sets is provided. Finally,
conclusions are given in Section 5. We discuss some terminologies in fuzzy graphs and
fuzzy graph coloring, as cited in [32,39,40].

2. Preliminaries

In this section, we first recall some definitions in graph theory, fuzzy set theory,
and fuzzy graph coloring that will be used in constructing chromatic numbers of fuzzy
graphs. Then the definitions of operations on fuzzy graphs are introduced.

2.1. k-Coloring of Crisp Graph

A classical graph G(V, E) consists of a nonempty vertex set V = V(G) and an edge
set E = E(G). An edge (u, v) is said to be incident to the vertices u and v. Two vertices
linked by an edge are called adjacent. Furthermore, we call classical graph G(V, E) as a
crisp graph.

For a crisp graph G(V, E), there are two approaches to defining the k-coloring.
In the first approach, a proper k-coloring of a graph G(V, E) with vertex set V(G) and edge
set E(G) is a mapping f from V to the set {1, 2, · · · , k} such that f (u) 6= f (v) whenever
(u, v) is an edge in E. The chromatic number of G is the smallest k for which G admits a
proper k-coloring, written by χ(G). In the second approach, a k-coloring of graph G(V, E) is
viewed as a partition of {S1, S2, · · · , Sk} of V, where Si denotes the (possibly empty) set of
vertices assigned colour i (i = 1, 2, · · · , k), Si ∩ Sj = ∅ for i 6= j, and S1 ∪ S2 ∪ · · · ∪ Sk = V.
A graph is k-colourable if it has a k-coloring. The minimum k for which a graph G is
k-colourable is called its chromatic number.

In the year 2007, Cioban [35] generalized the concept of k-coloring of crisp graph G in
fuzzy graphs by partitioning of the vertex set of G into independent vertex sets. A vertex
subset S ⊆ V is described as an independent vertex set of G(V, E) if (u, v) /∈ E for all
u, v ∈ S.

2.2. Basic Concepts in Fuzzy Sets

Definition 1 ([1]). Let X be a nonempty universal set. A fuzzy set Ã on X is defined as a mapping
µÃ : X → [0, 1], where µÃ(x) is the membership degree of x to the fuzzy set Ã. We denote by F̃(X)
the collection of all fuzzy subsets of X.

Fuzzy sets are generalizations of the classical sets represented by their characteristic
functions µÃ : X → {0, 1}. In our case Ã(x) = 1 means full membership of x in Ã, whereas
Ã(x) = 0 expresses nonmembership, but in contrary to the classical case other membership
degrees are allowed. A set h(Ã) = sup{µÃ(x)|x ∈ X} is called a height of fuzzy set Ã.
Moreover, a fuzzy set Ã is said to be a normal fuzzy set if h(Ã) = 1.

Definition 2 ([1]). Let Ã : X → [0, 1] be a fuzzy set. The level sets of Ã are defined as the
classical sets

Aα = {x ∈ X|Ã(x) ≥ α},

0 < α ≤ 1.
A1 = {x ∈ X|Ã(x) = 1}

is called the core of the fuzzy set Ã, and

suppÃ = {x ∈ X|Ã(x) > 0}

is called the support of the fuzzy set.
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Definition 3 ([1]). Let σ be a fuzzy subset of a set S and µ be a fuzzy relation on S. Then µ is
called a fuzzy relation on σ if

µ(x, y) ≤ σ(x) ∧ σ(y), for all x, y ∈ S.

A fuzzy relation µ is symmetric if µ(x, y) = µ(y, x) for all x, y ∈ X.

Definition 4 ([1]). Let Ã, B̃ ∈ F̃(X). We say that the fuzzy set Ã is included in B̃ if

Ã(x) ≤ B̃(x), for all x ∈ X.

We denote Ã ⊆ B̃.

Definition 5 ([1]). Let Ã, B̃ ∈ F̃(X). The intersection of Ã and B̃ is the fuzzy set C̃ with

C̃(x) = min{Ã(x), B̃(x)} = Ã(x) ∧ B̃(x), for all x ∈ X.

We denote C̃ = Ã ∩ B̃.

Definition 6 ([1]). Let Ã, B̃ ∈ F̃(X). The union of Ã and B̃ is the fuzzy set C̃, where

C̃(x) = max{Ã(x), B̃(x)} = Ã(x) ∨ B̃(x), for all x ∈ X.

We denote C̃ = Ã ∪ B̃.

Definition 7 ([1]). Let Ã ∈ F̃(X) be a fuzzy set. The complement of Ã is the fuzzy set
B̃ where

B̃(x) = 1− Ã(x), for all x ∈ X.

We denote B̃ = ¯̃A.

2.3. Basic Concepts of Fuzzy Graph Coloring

Kaufmann proposed the concept of fuzzy graphs G̃(V, Ẽ). Meanwhile, Rosyida initi-
ated the concept of fuzzy graphs G̃(Ṽ, Ẽ) based on the fuzzy relation.

In this paper, we consider fuzzy graphs G̃(V, Ẽ), which denote the incompatibility
graph. Every fuzzy graph is assumed to be finite, with no loops and an undirected graph.

Definition 8 ([2]). Let G(V, E) be a fuzzy graph, where V is the vertex set, the fuzzy edge set Ẽ
is characterized by the matrix µ = µ(u, v)u,v∈V : µ(u, v) = µẼ(u, v), for all u, v ∈ V such that
u 6= v, and µẼ : V ×V → I is the membership function.

This type of fuzzy graph is also called a type 1 fuzzy graph.
For the sake of brevity, we declare that in this paper, each element µ(u, v) ∈ Ẽ rep-

resents the incompatible level of the edge (u, v) for all u, v ∈ V with u 6= v. µ, which is
chosen suitably in all the examples, is symmetric (i.e., µ(u, v) = µ(v, u), for any (u, v) ∈ Ẽ).
In addition, we denote the underlying crisp graph of G̃ by G∗(V, E∗), where E∗ = {(u, v) ∈
V ×V|µ(u, v) > 0, for all u, v ∈ V}.

Assume I = A ∪ {0, 1}, where A = {α1 ≤ α2 ≤ · · · ≤ αk} is the fundamental set
(level set) of G̃. In fact, a fuzzy graph G̃(V, Ẽ) can be regarded as a generalization of an
incompatibility graph G(V, E). Taking I = {0, 1}, G̃(V, Ẽ) becomes a crisp graph if matrix
µ is defined as

µ(u, v) =
{

1, if (u, v) ∈ Ẽ
0, otherwise

for any u, v ∈ V.
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Definition 9 ([2]). Let G̃1(V1, Ẽ1) be a fuzzy graph having a crisp vertex set V1 and fuzzy edge
set Ẽ1 with membership function µẼ1

: V1 × V1 → [0, 1]. The fuzzy graph G̃1 is called a fuzzy

subgraph of G̃, if V1 ⊆ V and Ẽ1 ⊆ Ẽ. Similarly, the fuzzy graph H̃(P, ẼH) is called a fuzzy
subgraph of G̃ induced by P if P ⊆ V and µẼH

(u, v) = µ(u, v) for u, v ∈ P. We write 〈P〉 to
denote the fuzzy subgraph induced by P.

The concept of chromatic number of fuzzy graphs (Definition 10) was introduced
by Muñoz et al. [32]. The authors considered fuzzy graphs with a crisp vertex set, and
edges with membership degree in [0, 1]; moreover, they showed that the fuzzy chromatic
number of a fuzzy graph is a normalized fuzzy number whose modal value is associated
with the empty edge-set graph. Its meaning depends on the sense of index α, and it can
be interpreted in the following way. For lower values of α there are many incompatible
links between vertices and, consequently, more colors are needed in order to consider these
incompatibilities. On the other hand, for higher values of α there are fewer incompatible
links between vertices and fewer colors are needed (see [32]). In order to deal with the
ambiguity problem, the chromatic number summarizes all this information.

Given a fuzzy graph G̃(V, Ẽ), which can be characterized by the family of its α-cut
graphs, and the membership function of Ẽ is µ. In order to obtain more information about
it, a natural approach is to analyze the family of the α-cut graphs. Let Gα = {(V, Eα)|α ∈ I}
be the family of α-cut sets of G̃, and the α-cut of a fuzzy graph be a crisp graph Gα(V, Eα)
with Eα = {(u, v)|u, v ∈ V, µ(u, v) ≥ α}. Hence, any (crisp) k-coloring can be defined on
Gα. The k-coloring function of G̃ is defined through this sequence. For each α ∈ I, let
χα denote the chromatic number of Gα. The chromatic number of G̃ is defined through a
monotone family of sets [32].

Definition 10 ([32]). If G̃(V, Ẽ) is such a fuzzy graph, where V = {1, 2, 3, · · · , n} and µ is a
fuzzy number on the set of all subsets of V ×V. Assume I = A ∪ {0, 1}, where A = {α1 ≤ α2 ≤
· · · ≤ αk} is the fundamental set (level set) of G̃. For each αi ∈ I, Gαi denotes the crisp graph
Gαi (V, Eαi ), where Eαi = {(u, v)|µ(u, v) ≥ αi} and χαi = χ(Gαi ) denotes the chromatic number
of crisp graph Gαi .

Based on Definition 10, we extend the chromatic number of fuzzy graph G̃(V, Ẽ) as
the max number of χ(Gαi ) as follows.

Definition 11. Let G̃(V, Ẽ) be a fuzzy graph, µ be a fuzzy number on the set of all subsets of
V × V, and A = {α1, α2, · · · , αk} be the fundamental set of G̃. For any αi ∈ A, Gαi denotes
the crisp graph Gαi (V, Eαi) with Eαi = {(u, v)|µ(u, v) ≥ αi}, and χ(Gαi ) denotes the chromatic
number of the crisp graph Gαi . The chromatic number of fuzzy graph G̃ is the number χ(G̃) =
max{χ(Gαi )|αi ∈ A}.

Definition 12 ([40]). (Union) Let V1 and V2 be finite nonempty sets, G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2)
be two fuzzy graphs where the membership functions of Ẽ1 and Ẽ2 are µ1 and µ2, respectively.
A union of G̃1 and G̃2 is a fuzzy graph G̃(V, Ẽ) = G̃1 ∪ G̃2 which has a vertex set V = V1 ∪V2
and a fuzzy edge set Ẽ = Ẽ1 ∪ Ẽ2 with µẼ(u, v) = max{µ1(u, v), µ2(u, v)}, for all u, v ∈ V.
If V1 ∩V2 = ∅, then G̃(V, Ẽ) = G̃1 ∪ G̃2 is called a disjointed union of fuzzy graphs G̃1 and G̃2.

2.4. Operations on Fuzzy Graphs

Definition 13. (Isomorphic) Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs, µ1 and µ2 be
the membership functions of Ẽ1 and Ẽ2, respectively. We will say that G̃1 and G̃2 are isomorphic,
written by G̃1

∼= G̃2, if there exists a bijection h : V1 → V2 such that µ1(u, v) = µ2(h(u), h(v))
for all u, v ∈ V1.
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Definition 14. (Complement) Let G̃(V, Ẽ) be a fuzzy graph, µ be the membership functions of

Ẽ. The complement graph of G̃(V, Ẽ) is a fuzzy graph ¯̃G(V, ¯̃E) with µ̄ =
(

µ̄(u, v)
)

, µ̄(u, v) =

1− µ(u, v) for any (u, v) ∈ Ẽ. Moreover, if G̃ ∼= ¯̃G, then G̃ is called self-complementary.

Example 1. Let G̃(V, Ẽ) be a fuzzy graph, V = {u1, u2, u3, u4, u5}, the membership function of
Ẽ be

µ =


− 0 0.6 0.2 0
0 − 0 0.8 0.4

0.6 0 − 0 0.7
0.2 0.8 0 − 0
0 0.4 0.7 0 −

.

G̃ is shown as (a) in Figure 1. For simplicity, we show only the computing of µ̄(u1, u3) and
µ̄(u1, u4). By Definition 14, we have µ̄(u1, u3) = 1 − µ(u1, u3) = 0.4, µ̄(u1, u4) = 1 −
µ(u1, u4) = 0.8. The position of µ̄(u1, u3) in matrix µ̄ is the first row and the third column, the
position of µ̄(u1, u4) in matrix µ is the first row and the fourth column. By computing, it is easy
to obtain ¯̃G(V, ¯̃E), as shown as (b) in Figure 1, V = {u1, u2, u3, u4, u5}, and the membership
function of ¯̃E is

µ̄ =


− 1 0.4 0.8 1
1 − 1 0.2 0.6

0.4 1 − 1 0.3
0.8 0.2 1 − 1
1 0.6 0.3 1 −

.

(a) (b)

Figure 1. (a) G̃ and (b) ¯̃G.

Definition 15. (Fuzzy neighbour edge set) Let G̃(V, Ẽ) be a fuzzy graph. For a given vertex u in
vertex set V, the fuzzy edge set {(u, ui)|µ(u, ui) > 0, for all ui ∈ V} is called the fuzzy neighbour
edge set of vertex u, denoted by NẼ(u).

Definition 16. (Fuzzy complete graph) A fuzzy graph G̃(V, Ẽ) is a fuzzy complete graph,
if µ(u, v) > 0, for all u, v ∈ V.

Definition 17 ((Clique) [41]). A clique of simple crisp graphs G∗ is a subset S of V, such that the
graph induced by S is complete.

Remark 1. Let G̃(V, Ẽ) be a fuzzy graph with the underlying graph G∗(V, E∗). A clique with
maximum number of vertices in G̃ is a maximal clique of the graph G∗.
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Definition 18. (Cap) Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs, µ1 and µ2 be the
membership functions of Ẽ1 and Ẽ2, respectively. The cap of G̃1 and G̃2 is a fuzzy graph G̃(V, Ẽ) =
G̃1 ∩ G̃2 which has a fuzzy edge set Ẽ = Ẽ1 ∩ Ẽ2, and µ(u, v) = min{µ1(u, v), µ2(u, v)}, for all
(u, v) ∈ Ẽ.

Definition 19. (Difference) Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs, µ1 and µ2 be
the membership functions of Ẽ1 and Ẽ2, respectively. The difference of G̃1 and G̃2 is a fuzzy graph
G̃(V, Ẽ) = G̃1 − G̃2 which has a fuzzy edge set Ẽ = Ẽ1 − Ẽ2 = {(u, v)|(u, v) ∈ Ẽ1 and (u, v) /∈
Ẽ2}, and µ(u, v) = µ1(u, v) ∧ (1− µ2(u, v)), for all u, v ∈ V1 ∪V2.

Definition 20. (Ring sum) Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs, µ1 and µ2 be the
membership functions of Ẽ1 and Ẽ2, respectively. The ring sum of G̃1 and G̃2 is a fuzzy graph

G̃(V, Ẽ) = G̃1 ⊕ G̃2 = (G̃1 ∪ G̃2)− (G̃1 ∩ G̃2)

= (G̃1 − G̃2) ∪ (G̃2 − G̃1).

Remark 2. The ring sum of two fuzzy graphs satisfies commutative law and associative law, i.e.,

G̃1 ⊕ G̃2 = G̃2 ⊕ G̃1

G̃1 ⊕ (G̃2 ⊕ G̃3) = (G̃1 ⊕ G̃2)⊕ G̃3.

Definition 21. (Join) Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs, µ1 and µ2 be the
membership functions of Ẽ1 and Ẽ2, respectively. The join of two disjoint fuzzy graphs G̃1 and G̃2
is a fuzzy graph G̃(V, Ẽ) = G̃1 + G̃2, where V = V1 ∪V2, Ẽ = Ẽ1 ∪ Ẽ2 ∪ Ẽ′, Ẽ′ is the set of all

edges joining V1 and V2, and the membership function of Ẽ is µ =
(

µ(u, v)
)

, µ(u, v) is calculated
as follows:

µ(u, v) =


µ1(u, v), (u, v) ∈ Ẽ1,
µ2(u, v), (u, v) ∈ Ẽ2,
min{µ1(NẼ1

(u)), µ2(NẼ2
(v))}, (u ∈ V1, v ∈ V2), (u, v) ∈ Ẽ′.

Example 2. Given two fuzzy graphs G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2), where V1 = {u1, u2, u3} and
V2 = {v1, v2}, the membership functions of Ẽ1 and Ẽ2 are µ1 and µ2, respectively:

µ1 =

− 0.4 0
0.4 − 0.8
0 0.8 −

, µ2 =

[
− 0.7
0.7 −

]
.

By Definition 21, we can obtain the join of fuzzy graphs G̃1 and G̃2, denoted by G̃(V, Ẽ), where
V = {u1, u2, u3, v1, v2} and the membership function of Ẽ is µ as follows.

µ =


− 0.4 0 0.4 0.4
0.4 − 0.8 0.4 0.4
0 0.8 − 0.7 0.7

0.4 0.4 0.7 − 0.7
0.4 0.4 0.7 0.7 −

.

For simplicity, we show only the computing of µ(u1, v1) and µ(u3, v1). By Definition 21, we have

µ(u1, v1) = min{µ1(NẼ1
(u1)), µ2(NẼ2

(v1))} = 0.4,

µ(u3, v1) = min{µ1(NẼ1
(u3)), µ2(NẼ2

(v1))} = 0.7.
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The position of µ(u1, v1) in matrix µ is the fourth row and the first column, the position of µ(u3, v1)
in matrix µ is the fourth row and the third column.

Fuzzy graphs G̃1(V1, Ẽ1), G̃2(V2, Ẽ2) and G̃(V, Ẽ) are shown as (a), (b), and (c) in Figure 2,
respectively.

(a) (b) (c)

Figure 2. (a) G̃1, (b) G̃2, and (c) G̃1 + G̃2.

Definition 22. (Direct product) Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs, µ1 and µ2 be
the membership functions of Ẽ1 and Ẽ2, respectively. The direct product of two fuzzy graphs G̃1 and
G̃2 is a fuzzy graph G̃(V, Ẽ) = G̃1 u G̃2, where V = V1 ×V2, and Ẽ = {(u1v1, u2v2)|(u1, u2) ∈
Ẽ1, (v1, v2) ∈ Ẽ2},

µ(u1v1, u2v2) = µ1(u1, u2) ∧ µ2(v1, v2) = min{µ1(u1, u2), µ2(v1, v2)}.

Definition 23. (Semiproduct) Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs, µ1 and µ2 be
the membership functions of Ẽ1 and Ẽ2, respectively. The semiproduct of two fuzzy graphs G̃1
and G̃2 is a fuzzy graph G̃(V, Ẽ) = G̃1♦G̃2, where V = V1 × V2, and Ẽ = {(uv1, uv2)|u ∈
V1, (v1, v2) ∈ Ẽ2} ∪ {(u1v1, u2v2)|(u1, u2) ∈ Ẽ1, (v1, v2) ∈ Ẽ2},

µ(uv1, uv2) = µ2(v1, v2), µ(u1v1, u2v2) = µ1(u1, u2) ∧ µ2(v1, v2).

Definition 24. (Strong product) Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs, µ1 and µ2 be
the membership functions of Ẽ1 and Ẽ2, respectively. The strong product of two fuzzy graphs G̃1 and
G̃2 is a fuzzy graph G̃(V, Ẽ) = G̃1 ⊗ G̃2, where V = V1 × V2, and Ẽ = {(uv1, uv2)|u ∈
V1, (v1, v2) ∈ Ẽ2} ∪ {(u1w, u2w)|(u1, u2) ∈ Ẽ1, w ∈ V2} ∪ {(u1v1, u2v2)|(u1, u2) ∈ Ẽ1,
(v1, v2) ∈ Ẽ2},

µ(uv1, uv2) = µ2(v1, v2), µ(u1w, u2w) = µ1(u1, u2), µ(u1v1, u2v2) = µ1(u1, u2)∧µ2(v1, v2).

Definition 25. (Cartesian product) Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs, µ1 and µ2
be the membership functions of Ẽ1 and Ẽ2, respectively. The Cartesian product of two fuzzy graphs
G̃1 and G̃2 is a fuzzy graph G̃(V, Ẽ) = G̃1 × G̃2, where V = V1 ×V2, and Ẽ = {(u1v, v1v)|v ∈
V2, (u1, v1) ∈ Ẽ1} ∪ {(uu2, uv2)|u ∈ V1, (u2, v2) ∈ Ẽ2},

µ(u1v, v1v) = µ(u1, v1), for all v ∈ V2, for all (u1, v1) ∈ Ẽ1,

µ(uu2, uv2) = µ(u2, v2), for all u ∈ V1, for all (u2, v2) ∈ Ẽ2.

Example 3. Consider two fuzzy graphs G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) with the underlying graph
G∗1 (V1, E∗1 ) and G∗2 (V2, E∗2 ), respectively, such that V1 = {u1, u2, u3}, Ẽ1 = {(u1, u2), (u2, u3)}
and V2 = {v1, v2, v3}, Ẽ2 = {(v1, v2), (v2, v3)}, the µi corresponding to G̃1 and G̃2 are shown
as follows:

µ1 =

− 0.4 0
0.4 − 0.8
0 0.8 −

, µ2 =

− 0.6 0
0.6 − 0.7
0 0.7 −

.

Then the direct product G̃1 u G̃2, the semiproduct G̃1♦G̃2, the strong product G̃1⊗ G̃2 and the Carte-
sian product G̃1 × G̃2 of above two fuzzy graphs G̃1 and G̃2 as shown in
Figure 3a–d, respectively.
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(a) (b)

(c) (d)

Figure 3. (a) G̃1 u G̃2, (b) G̃1♦G̃2, (c) G̃1 ⊗ G̃2, and (d) G̃1 × G̃2.

3. Chromatic Number of Fuzzy Graphs

Lemma 1. Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs, G∗1 and G∗2 be the underlying
graphs of G̃1 and G̃2, respectively. If G̃1

∼= G̃2 then G∗1 ∼= G∗2 .

Proof. Suppose that G̃1
∼= G̃2, and then there exists a bijection h : V1 → V2 such that

µ1(u, v) = µ2(h(u), h(v)) for all u, v ∈ V1. It is obvious that there exists a bijection h′ : V1 →
V2 such that (u, v) = (h′(u), h′(v)) for all u, v ∈ V1, i.e., G∗1 ∼= G∗2 .

Lemma 2. For two fuzzy graphs G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2), if G̃1
∼= G̃2 then χ(G̃1) = χ(G̃2).

Proof. Obviously, this lemma can be obtained from Lemma 1, and the definition of the
chromatic number of fuzzy graphs.

Theorem 1. Let G̃(V, Ẽ) be a self-complementary fuzzy graph, and the chromatic number of fuzzy
graph ¯̃G is the same with the fuzzy graph G̃.

Proof. By the definition of the self-complementary fuzzy graph, it is obvious that G̃ ∼= ¯̃G.
Furthermore, based on Lemma 2, it is obvious that χ(G̃) = χ( ¯̃G).

Lemma 3. Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs. If G̃1 ⊆ G̃2 then χ(G̃1) ≤ χ(G̃2).

Proof. It is clear that χ(G̃1) ≤ χ(G̃2) if G̃1 ⊆ G̃2.

Corollary 1. For two fuzzy graphs G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2). If G̃1 ⊆ G̃2, then χ(G̃1 ∩ G̃2) =
χ(G̃1).

Theorem 2. Let G̃(V, Ẽ) be a fuzzy graph. If A = {α1, α2, · · · , αn} is the fundamental set of G̃,
then for αi, αj ∈ A such that αi ≤ αj, we have χ(G̃αj) ≤ χ(G̃αi ).

Proof. For the fuzzy graph G̃(V, Ẽ), if 0 ≤ αi ≤ αj ≤ 1, then Gαi (V, Eαi ) is a crisp graph,
where Eαi = {(u, v)|µ(u, v) ≥ αi, u, v ∈ V}. Meanwhile, Gαj(V, Eαj) is a crisp graph, where
Eαj = {(u, v)|µ(u, v) ≥ αj, u, v ∈ V}.

Let (u, v) ∈ Eαj , then µ(u, v) ≥ αj ≥ αi, i.e., (u, v) ∈ Eαi . Therefore, Gαj ⊆ Gαi , and by

Lemma 3, χ(G̃αj) ≤ χ(G̃αi ).

Theorem 3. Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs, the chromatic numbers of G̃1 and
G̃2 be χ(G̃1) and χ(G̃2), respectively. If fuzzy graph G̃(V, Ẽ) is the union of two fuzzy graphs G̃1
and G̃2, then the chromatic number of G̃ satisfies max{χ(G̃1), χ(G̃2)} ≤ χ(G̃) ≤ χ(G̃1)+χ(G̃2).
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Proof. We will construct the union of fuzzy graphs G̃1 and G̃2. We consider the following
two cases.

Case 1. V1 ∩ V2 = ∅. Assume that µ, µ1 and µ2 are the membership functions of Ẽ,
Ẽ1 and Ẽ2, respectively. Because V1 ∩ V2 = ∅, it is clear that G̃ = G̃1 ∪ G̃2 = (V1 ∪ V2, Ẽ)
with µ(u, v) > 0 for all u, v ∈ V1 ∪V2 if and only if µ1(u, v) > 0 or µ2(u, v) > 0. For each
αi in the fundamental set of G̃, either αi belongs to the fundamental set of G̃1 or to the
fundamental set of G̃2. Hence, the minimum value of αi in the fundamental set of G̃ is the
minimum among that in the fundamental sets of G̃1 and G̃2. Let it be αk, the minimum
value of αi in the fundamental set of G̃1. Then (G̃1 ∪ G̃2)αk has all the adjacencies of G̃1 and
G̃2. By Definition 4, χ(G̃1 ∪ G̃2) = χ(G̃1 ∪ G̃2)αk = max{χ(G̃1), χ(G̃2)}.

Case 2. V1 ∩V2 6= ∅.
In this case, there are two possibilities as follows.

(i) There do not form new cycles in fuzzy graphs G̃(V, Ẽ). It is obvious that χ(G̃) =

max{χ(G̃1), χ(G̃2)}.
(ii) There are new cycles formed in the fuzzy graph G̃(V, Ẽ). In order to satisfy f (u) 6= f (v),

new colors may be required in G̃. It is obvious that max{χ(G̃1), χ(G̃2)} ≤ χ(G̃) ≤
χ(G̃1) + χ(G̃2).

Combining the above results, we obtain that max{χ(G̃1), χ(G̃2)} ≤ χ(G̃) ≤ χ(G̃1) +
χ(G̃2).

Corollary 2. For two fuzzy graphs G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2). If G̃1 ⊆ G̃2, then χ(G̃1 ∪ G̃2) =
χ(G̃2).

Theorem 4. Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs, the chromatic numbers of G̃1
and G̃2 be χ(G̃1) and χ(G̃2), respectively. If G̃(V, Ẽ) is the difference of two fuzzy graphs G̃1 and
G̃2, then the chromatic number of G̃ satisfies χ(G̃) ≤ χ(G̃1).

Proof. By the definition of the difference between fuzzy graphs, we have G̃ = G̃1 − G̃2 ⊆
G̃1. Moreover, based on Lemma 3, it is obvious that χ(G̃) = χ(G̃1 − G̃2) ≤ χ(G̃1).

Theorem 5. Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs, the chromatic numbers of G̃1
and G̃2 be χ(G̃1) and χ(G̃2), respectively. If G̃(V, Ẽ) is the cap of two fuzzy graphs G̃1 and G̃2,
then the chromatic number of G̃ satisfies χ(G̃) ≤ min{χ(G̃1), χ(G̃2)}.

Proof. By the definition of the cap of two fuzzy graphs, G̃ = G̃1 ∩ G̃2, Ẽ = Ẽ1 ∩ Ẽ2. Also,
G̃ ⊆ G̃1 and G̃ ⊆ G̃2. By Lemma 3, it is clear that χ(G̃) ≤ min{χ(G̃1), χ(G̃2)}.

Theorem 6. Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs, the chromatic numbers of G̃1
and G̃2 be χ(G̃1) and χ(G̃2), respectively. If G̃(V, Ẽ) is the ring sum of two fuzzy graphs G̃1 and
G̃2, then the chromatic number of G̃ satisfies χ(G̃) ≤ χ(G̃1) + χ(G̃2).

Proof. By the definition of the ring sum in fuzzy graphs, we know G̃1 ⊕ G̃2 = (G̃1 ∪
G̃2) − (G̃1 ∩ G̃2) ⊆ G̃1 ∪ G̃2. Based on the proof of Theorem 3 and Lemma 3, there are
χ(G̃) = χ(G̃1 ⊕ G̃2) ≤ χ(G̃1 ∪ G̃2) ≤ χ(G̃1) + χ(G̃2).

Theorem 7. Let G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) be two fuzzy graphs, the chromatic numbers of G̃1 and
G̃2 be χ(G̃1) and χ(G̃2), respectively. If G̃(V, Ẽ) is the join of two fuzzy graphs G̃1 and G̃2, then
the chromatic number of G̃ satisfies χ(G̃) = χ(G̃1 + G̃2) ≤ n where n = |V1|+ |V2|. Equality
holds if G∗1 and G∗2 are complete graphs, where G∗1 and G∗2 are the underlying graphs of G̃1 and
G̃2, respectively.

Proof. By the definition of join in fuzzy graphs, the underlying graph G∗ of join graph G̃
becomes a complete graph if and only if both G∗1 and G∗2 are complete graphs.
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Remark 3. Let G̃1 and G̃2 be two fuzzy graphs, the fuzzy graph G̃ is the join of G̃1 and G̃2, then G̃
is a fuzzy complete graph if G̃1 and G̃2 are both fuzzy complete graphs.

Theorem 8. For two fuzzy graphs G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2), the chromatic number of the direct
product χ(G̃1 u G̃2) = min{χ(G̃1), χ(G̃2)}.

Proof. By the definition of direct product of fuzzy graphs, any two vertices are adjacent if
and only if the corresponding vertices in G̃1 and G̃2 are adjacent. Because the chromatic
number depends on adjacency, the number of colors required to color the vertices of G̃1 u G̃2
is the minimum of χ(G̃1) and χ(G̃2).

Theorem 9. For two fuzzy graphs G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2), the chromatic number of the
semiproduct χ(G̃1♦G̃2) = |VC|. Where C is a maximal clique of (G̃1♦G̃2)

∗.

Proof. By the definition of semiproduct, the largest complete subgraph of G̃ is the graph
with corresponding adjacent vertices uivj and uivk, where ui ∈ V1 and (vj, vk) ∈ Ẽ2, i.e.,
the largest complete subgraph is the graph with edges of the form (u1vj, u1vk) with u1 as a
vertex of maximum degree in V1 and edges of the form (u1vj, umvk), where (u1, um) ∈ Ẽ1

and (vj, vk) ∈ Ẽ2. Hence the chromatic number of the semiproduct is the chromatic number
corresponding to this largest complete subgraph.

Theorem 10. For two fuzzy graphs G̃1(V1, Ẽ1) with the membership function µ1 and G̃2(V2, Ẽ2)
with the membership function µ2. If µ1(u1, u2) > 0 and µ2(v1, v2) > 0, for all u1, u2 ∈ V1 and
v1, v2 ∈ V2, the chromatic number of the strong product χ(G̃1 ⊗ G̃2) = n1n2, where n1 = |V1|
and n2 = |V2|.

Proof. By the definition of strong product, if µ1(u1, u2) > 0 and µ2(v1, v2) > 0, for all
µ1, µ2 ∈ V1 and v1, v2 ∈ V2, then (G̃1 ⊗ G̃2)

∗ is a complete graph with n1n2 vertices. Hence,
χ(G̃1 ⊗ G̃2) = n1n2.

Theorem 11. For two fuzzy graphs G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2), the chromatic number of the
Cartesian product max{χ(G̃1), χ(G̃2)} ≤ χ(G̃1 × G̃2) ≤ n2χ(G̃1) + n1χ(G̃2), where n1 = |V1|
and n2 = |V2|.

Proof. The Cartesian product graph G̃1× G̃2 decomposes into n1 copies of G̃2 and n2 copies
of G̃1, where |V1| = n1 and |V2| = n2. By the definition of Cartesian product, G̃1 × G̃2 has
two types of edges: those with vertices that have the same first coordinate, and those with
vertices that have the same second coordinate. The edges joining vertices with a given
value of the first coordinate form a copy of G̃2, so the edges of the first type form n1G̃2.
Similarly, the edges of the second type form n2G̃1, and the union is as follows:

(G̃1 ∪ G̃1 · · · ∪ G̃1︸ ︷︷ ︸
n2

) ∪ (G̃2 ∪ G̃2 · · · ∪ G̃2︸ ︷︷ ︸
n1

).

Based on the proof of Theorem 3, it is obvious that max{χ(G̃1), χ(G̃2)} ≤ χ(G̃1 × G̃2) ≤
n2χ(G̃1) + n1χ(G̃2).

4. Application of Chromatic Number of Fuzzy Graphs

In this section, we describe a couple of example applications of the chromatic number
of fuzzy graphs.

4.1. The Examination Problem

The examination scheduling problem consists of assigning a number of exams to a
number of slots within the examination period, taking into account that students cannot
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take more than one exam at the same time. This problem can be modeled as a classical
coloring problem. Each exam is a vertex of the graph, and the edges link those incompatible
exams in the sense that at least one student shares both of them. Each color represents a
slot, and all equally colored vertices are assigned to the same slot. The minimum chromatic
number has the same property of minimizing the overall exam period.

Now, we take into account the difficulty and the implied specialties or profiles and
other factors of the examination subjects. The incompatibility between the exams is valued
in the following way: n if they are compatible, and l, m and h if the incompatibility degree
is, respectively, low, medium, and high. The incompatibility degree can be interpreted in
the following way: any compatible exams can share the same slot; if the incompatibility
degree between exams i and j is l, m, or h, then both exams must be scheduled, leaving
at least 1, 2, or 3 slots between them, respectively (to ensure that students have relatively
sufficient review time). Then, this problem can be modeled by means of fuzzy graphs.

Example 4. Suppose there are eight exams {A, B, C, D, E, F, G, H}. The model of this examination
scheduling problem is a fuzzy graph G̃(V, µ), where V = {A, B, C, D, E, F, G, H},

µ =



− l m n n l n n
l − m n n n n n
m m − l n h n n
n n l − m n n l
n n n m − l n n
l n h n l − m n
n n n n n m − l
n n n n n n l −


.

The corresponding fuzzy graphs is depicted in Figure 4.

Figure 4. Fuzzy graph G̃ of Example 4 (A–H represent different exams respectively).

The problem is to schedule the eight exams with these constraints and minimizing
the overall exam period. For the above data, the minimum number of slots is four and
an optimum schedule (in other words we need 4 colours to dye the vertices in this fuzzy
graph) by Table 1.

Table 1. Examination scheduling.

Slots 1 2 3 4

Scheduled
exams H,F,D,B A E,G C
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4.2. The Traffic Light System Problem

Let us consider a four-way crossroad at two intersections, as illustrated in Figure 5.
There are four directions on the left side intersection, i.e., A on the north, B on the south, C
on the west, and D on the east. Moreover, there are four directions at the right side of the
intersection, i.e., E, F, C, and D. Thus, there are traffic movements in different directions,
i.e., AB, AD, BA, BC, CD, CA, DC, DB, ED, DF, and EF. Certain routes, such as AD and
BC, CD and DC, and AD and CD, are compatible with one another, whereas others, such
as AB and BC, EF and CD, are not.

Figure 5. A traffic light system on two intersections (A–F represent one direction of the intersection
respectively).

A vertex represents the movement of traffic from one direction to another. Two ver-
tices that represent incompatible traffic movements should be connected with an edge.
The traffic light system will be modified by the vertex coloring of fuzzy graphs.
The minimum chromatic number has the same property of minimizing the traffic
light phases.

One can represent the two signaled intersections through the union of two fuzzy
graphs. A membership degree of a fuzzy edge represents the incompatibility of two
vertices, which is a possibility for traffic incidents to occur between vehicles from both
traffic movements.

The first stage in research is to divide the data on traffic flows into three groups of
fuzzy sets, i.e., low, medium, or high flows, as shown in Table 2.

Table 2. Data of traffic flows (vehicles/h).

AB AD BA BC CD CA DC DB ED DF EF

n 536 350 476 425 582 396 678 313 275 317 465
Degree (l) 0.10 0.33 0.08
Degree (m) 0.43 0.33 0.83 0.83 0.12 0.64 0.09 0.11 0.9
Degree (h) 0.07 0.47

The symbols l, m, and h mean low, medium, and high, respectively. The notation n
denotes the number of vehicles per hour (vehicles/h) involved in a traffic movement. A
trapezoidal membership function at intervals of [300, 600] is used to present the fuzzy set
of low traffic flow, a triangular membership function at intervals of [300, 600] is used to
present the fuzzy set of medium traffic flow, and a trapezoidal membership function at
intervals of [570, 900] is used to present the fuzzy set of high traffic flow. Figure 6 depicts
the fuzzification of traffic flow data in Table 2. Displaying the membership degree of an
edge is helpful in order to understand the incompatibility of two traffic flows.



Axioms 2022, 11, 697 14 of 18

Figure 6. Membership functions of low, medium, and high traffic flows.

The second step is to determine the degrees of membership of all edges by using a
rule as follows.

(i) If traffic movements AB and CD are incompatible, then there is an edge (AB, CD).
In addition, we choose a maximum value of membership degree of AB and CD to
determine the membership degree of the fuzzy edge (AB, CD).

(ii) If the traffic movements AB and CD are compatible, which means they can move at
the same time, then there is no (AB, CD) edge. This indicates that the fuzzy edge’s
membership degree is 0.

Therefore, traffic flows on the left and right intersection in Figure 5 can be mod-
elled as two fuzzy graphs G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) based on the given rules, respec-
tively, where the vertex sets are V1 = {AB, AD, BA, BC, CD, CA, DC, DB} and V2 =
{DC, ED, DF, CD, EF, AD, DB}.

The membership degrees of edges in fuzzy edge set Ẽ is presented in Table 3. One can
obtain the fundamental set A = {0.12, 0.33, 0.43, 0.47, 0.64, 0.83, and 0.9} of fuzzy graph G̃
from Table 3. It can be known that routes DC and EF are more incompatible than routes
DC and CA. The fuzzy graphs G̃1(V1, Ẽ1) and G̃2(V2, Ẽ2) are shown as Figure 7.

Table 3. Fuzzy edge sets.

Movements AB AD BA BC CD CA DC DB ED DF EF

AB - - - 0.83 0.43 0.64 0.47 - - - -
AD - - 0.83 - - 0.64 0.47 0.33 - - 0.9
BA - 0.83 - - 0.83 - 0.83 0.83 - - -
BC 0.83 - - - 0.83 0.83 - 0.83 - - -
CD 0.43 - 0.83 0.83 - - - 0.12 - 0.12 0.9
CA 0.64 0.64 - 0.83 - - 0.64 0.64 - - -
DC 0.47 0.47 0.83 - - 0.64 - - 0.47 - 0.9
DB - 0.33 0.83 0.83 0.12 0.64 - - - - 0.9
ED - - - - - - 0.47 - - 0.33 -
DF - - - - 0.12 - - - 0.33 - -
EF - 0.9 - - 0.9 - 0.9 0.9 - - -
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G̃1(V1, Ẽ1)

G̃2(V2, Ẽ2)

Figure 7. Fuzzy graph models for traffic light system in Figure 5.

There exist some methods of colouring in fuzzy graphs. It is not difficult to get chro-
matic numbers of fuzzy graphs G̃1 and G̃2 by using any chromatic algorithm.
The chromatic numbers of G̃1 and G̃2 are as follows: χ(G̃1) = 4 and χ(G̃2) = 3.

Furthermore, two intersections in Figure 5 can be modelled into an integrated traffic
light system by using a union of fuzzy graphs G̃ = G̃1 ∪ G̃2 as illustrated in Figure 8.
According to Definition 11 and Theorem 3, we get chromatic number of union in Figure 7
as follows: χ(G̃) = max{χ(Gαi )|αi ∈ A} = χ(G̃1 ∪ G̃2) = 4.

Figure 8. The model of union of fuzzy graphs in Figure 7.

The chromatic number of crisp graphs χ(Gαi ) = k can be interpreted as follows:
the number k represents the number of phases needed on the integrated system and degree
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of membership αi represents the possibility that there may occur traffic incidents when we
use k phases.

Based on chromatic number k of αi-cut graph of fuzzy graph G̃(V, Ẽ), traffic flows in
Figure 5 could be arranged in particular patterns as shown in Table 4. For higher values of
αi (i.e., the higher degree of incompatibility), there are fewer colors needed and less safety.
For example, when we make use of k = 3 phases, then 0.64 degree of incompatibility is
reached. Traffic flows allowed to move simultaneously (i.e., get the green light) on the first
phase are AD, DB, AB, CD and DC, BC, BA, EF on the second phase, CA, DF and ED on
the third phase.

Finally, one can obtain an optimal arrangement. The optimality is reached when
maximum safety level is attained (i.e., the minimum degree of incompatibility) whereas
the number of phases is minimum (i.e., minimum cycle time of traffic light). When k = 4,
the objective is reached, traffic flows allowed to move simultaneously on the first phase
are AD, CD and ED, BA, CA, DF, and EF on the second phase, BC and DC on the third
phase, and DB and AB on the fourth phase. Only in this way can the maximum avoid
traffic incidents.

Table 4. Traffic light arrangements by using k phases.

αi k Arrangements (Partitions of Vertex Set V )

0.12 4 {AD, CD, ED}, {BA, CA, DF, EF}, {BC, DC, }, {DB, AB}
0.33 4 {AD, CD, ED}, {BA, CA, DF, EF}, {BC, DC, }, {DB, AB}
0.43 4 {AD, CD, ED}, {BA, CA, DF, EF}, {BC, DC, }, {DB, AB}
0.47 3 {AD, DB, AB, EF, ED}, {BA, BC, DC}, {DF, CD, CA}
0.64 3 {AD, DB, AB, CD, DC}, {BC, BA, EF}, {CA, DF, ED}
0.83 2 {AD, CD, DC, DB, AB}, {BA, BC, DF, ED, EF}
0.9 2 {AD, CD, DC, DB, AB}, {BA, BC, DF, ED, EF}

5. Conclusions

In this paper, the concepts of complement, cap, join, difference, ring sum, and various
categories of products of fuzzy graphs with a crisp vertex set and a fuzzy edge set are de-
fined, and the corresponding chromatic number or upper bound is obtained. Furthermore,
the chromatic number is used to solve the problems of the exam schedule and traffic
light system. Finally, we get the optimal arrangement by finding the minimum chromatic
number of a fuzzy graph.

In our upcoming research, we will define the fuzzy acyclic coloring of fuzzy graphs. In
addition, we will verify some properties of fuzzy acyclic chromatic numbers of fuzzy graphs.
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