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Abstract: In this paper, we consider certain quantities that arise in the images of the so-called
graph-tree indexes of graph groupoids. In text, the graph groupoids are induced by connected
finite-directed graphs with more than one vertex. If a graph groupoid G G contains at least one
loop-reduced finite path, then the order of G is infinity; hence, the canonical groupoid index [G : K]
of the inclusion K ⊆ G is either ∞ or 1 (under the definition and a natural axiomatization) for the
graph groupoids K of all “parts” K of G. A loop-reduced finite path generates a semicircular element
in graph groupoid algebra. Thus, the existence of semicircular systems acting on the free-probabilistic
structure of a given graph G is guaranteed by the existence of loop-reduced finite paths in G. The
non-semicircularity induced by graphs yields a new index-like notion called the graph-tree index Γ
of G. We study the connections between our graph-tree index and non-semicircular cases. Hence,
non-semicircularity also yields the classification of our graphs in terms of a certain type of trees. As
an application, we construct towers of graph-groupoid-inclusions which preserve the graph-tree
index. We further show that such classification applies to monoidal operads.

Keywords: graph groupoids; graph-trees; index; the semicircular law; operads
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1. Introduction

A directed graph G = (V(G), E(G)) is a combinatorial object consisting of the vertex
set V(G) of all vertices and the edge set E(G) of all directed edges (or oriented edges up to
the direction in G). In the text, we assume that all given graphs are connected, finite, and
have more than one vertex. Such a directed graph is depicted in a diagrammatic form as a
set of dots (for vertices) jointed by arrowed curves (for directed edges), where the arrows
of the curves indicate the direction on the graph (e.g., [1–4]).

Graphs are the main objects not only in pure mathematical fields, but also in related
applied areas (e.g., [5–14]).

Free probability is one of the main areas of operator algebra theory studying “noncom-
mutative” measure-theoretic and corresponding statistical analysis on operator-theoretic
structures (e.g., [15–18]). In free probability, semicircular elements whose free distributions
obey the semicircular law play key roles, as the semicircular law is the noncommutative-
analytic counterpart of the Gaussian distribution (or the normal distribution) of classical
(commutative) functional analysis by the (free) central limit theorem(s) (e.g., [16–19]).

The main results of this paper include (i) characterizing the semicircularity on (MG, τ)
by the loop-ness on G; (ii) considering a certain measure on G called the non-loop index
of G, providing the information of groupoidal elements in G that are not loop-reduced
finite paths; (iii) showing how our measuring tool of (ii) implies the non-semicircularity on
(MG, τ) with respect to (i); and (iv) constructing and studying a tower of C∗-probability
spaces that are free homomorphic from the base to the top, preserving our non-loop index.
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1.1. Motivation

Amalgamated free-probabilistic operator-algebraic structures induced by directed graphs
(which are necessarily neither connected nor finite) have been studied in [3,20–31]. In particu-
lar, algebraic structures called graph groupoids are constructed by directed graphs in [20].
These are algebraically pure groupoids equipped with multiple units, vertices generated by
the generators, and edges (e.g., [32,33]). We introduced von Neumann algebra generated
by graph groupoids preserving the graph-theoretic properties of given graphs, and such
combinatorial properties were measured and analyzed in an amalgamated free probabilistic
manner. The amalgamated freeness of the von Neumann algebra was characterized in [21],
and, under a natural representation, graph groupoids were used to generate groupoid
W∗-dynamical systems in operator algebra in [24]. As an application, graph groupoids
satisfying fractality were considered in [22,23]. Recently, certain free-probabilistic struc-
tures “over C” induced by connected finite-directed graphs were studied in [34], without
considering amalgamation, differently from the above-mentioned earlier works. The main
reason why we need a new type of free-probabilistic structure of [34] is for studying the
semicircular law induced by graphs canonically.

Recently, semicircular elements were generated by orthogonal projections in [35–38].
These studies not only showed how to construct semicircular elements from mutually
orthogonal projections (different from the usual free probabilistic methods), but also illus-
trated how the semicircular law is preserved or distorted by operator-algebraic actions
(e.g., [19,37,38]).

In [34], motivated by the main results of [19,20,22–24,34–38], the relations between
graphs and semicircular elements were studied. It is explained there that, instead of apply-
ing the amalgamated free structures of [21], it is better to consider a different type of (non-
amalgamated) free-probabilistic structure induced by directed graphs, especially where
they are connected, finite, and have more than one vertex. In this new model, the analysis
and application of the semicircularity works well without ignoring the combinatorial prop-
erties of given graphs (equivalently, the algebraic properties of the corresponding graph
groupoids). In particular, a certain algebraic object of a graph groupoid induced by the
combinatorial property of a graph implies the semicircularity under the free-probabilistic
language. In this paper, we show that the semicircularity in our setting implies the combi-
natorial property of such an object conversely; thus, we provide a characterization of the
semicircularity in terms of this combinatorial property.

All other studies of this paper are based on the above characterization. Since the semi-
circularity of our free-probabilistic structures has been characterized, it is natural to consider
how such semicircularity is preserved in bigger or smaller free-probabilistic structures than
the original. Moreover, it is important to ask how we can characterize such semicircularity-
preserving conditions, and how, if possible, we can quantize such conditions. In algebra, it
seems natural to consider some kind of “index”, such as the group index. Because of the
technical difficulties, instead of a semicircularity-preserving index, we introduce a “non-
semicircularity”-preserving index in this paper. From the study of the index preserving
non-semicircularity, we establish an abstract theory in terms of operad theory.

1.2. Overview

In the first part of this paper, Sections 1–4, we construct a C∗-probability space (MG, τ)
generated by the graph groupoid G of a connected finite-directed graph G with more than
one vertex and characterize the free distributions of free random variables induced by the
generating operators of (MG, τ). In [34], we showed that if a loop-reduced finite path w
exists in G, it will induce infinitely many semicircular elements in (MG, τ). Motivated by
this, here we fully characterize the semicircularity on (MG, τ) in terms of the “loop-ness”
on G. It is important to note that lots of graphs do exist; these are the “trees” whose
graph groupoids do not contain loop-reduced finite paths. Based on our semicircularity
characterization in terms of the loop-ness, we introduce the so-called graph-tree index of
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graph groupoids and show that these index quantities give information of elements of G,
which are “not” semicircular in (MG, τ).

In the second part of this paper, Sections 6–8, we consider how such “non-semicircularity”
in (MG, τ), determined by the “non-loop-ness” of G which is characterized by the “tree-
ness” of G, classifies the family G of all our connected finite graphs (including the single-
vertex graph “up to graph isomorphisms”) in terms of the tree-ness of graphs, equivalently;
the non-loop-ness on graph groupoids; and, hence, the non-semicircularity of the corre-
sponding C∗-probability spaces. By studying these, we obtain similar but different proper-
ties to those of the Jones index theory. Jones index theory starts from a subfactor-inclusion of
II1-factors, but ours starts from an inclusion of graphs (under some additional conditions).

In the final third part of the paper, Sections 9–11, we consider operad-theoretic proper-
ties from the main results of Sections 6–8 (see Section 9). As applications, certain discrete
statistical models are studied in Sections 10 and 11.

In summary, in Section 12 we consider the main results of the paper and explain
their connections.

1.3. Why Connected Finite Graphs with More than One Vertex?

We finish this section by explaining why we consider “connected” “finite” graphs
with “more than one vertex” as the main objects of this paper (remark that, to consider
our monoidal and operadic structures (e.g., [39–43]), we later consider a single-vertex
graph consisting of only a single vertex with no edges. However, this single-vertex graph
is added just for algebraic and categorial convenience. However, our main objects are
connected finite graphs with more than one vertex, and their “classification” needs to
include a single-vertex graph.)

First of all, we restrict our interests to connected graphs because all (connected or
disconnected) graphs have their connected components, which are connected graphs.
Thus, combinatorially, studying graphs means considering their connected components;
algebraically, studying corresponding graph groupoids means investigating the direct
summands of subgroupoids, which are the graph groupoids of connected components; and
operator-algebraically, studying corresponding graph groupoid algebra means considering
the direct-product summands of subalgebra generated by the subgroupoids of connected
components. Thus, without a great loss of generality, we focus on connected graphs
(e.g., [22,23,34]).

Secondly, we restrict our interests to finite (connected) graphs. In analyses, sometimes
“infinite” graphs play important roles in characterizing, visualizing, or explaining operator-
algebraic structures and corresponding sub-structures (e.g., [6,8,24,37,41,44–48]). However,
here, we do not focus on infinite graphs as our object. The main reason why we concentrate
on finite graphs is to follow pure-combinatorial graph-theoretic properties. For instance, in
the text, we characterize the semicircularity of free-probabilistic structures generated by
graph groupoids in terms of the “loop-ness” of (shadowed) graphs. This characterization
may not hold if a given graph is an infinite graph. Even though we have infinite graphs, the
loop-ness implies their semicircularity, but we cannot conclude that the inverse is true. In
other words, the combinatorial characterization of the semicircularity may not be obtained
in an infinite-graph setting. Additionally, our graph groupoid index and graph-tree index,
which will be considered in rgw text, are ∞, meaning the infinity in general. This means
that the quantization techniques used for our classification of graphs do not work well in
an infinite-graph setting. That is why we concentrate on finite graphs (e.g., [34]).

Finally, the reason why we focus on connected finite graphs with more than one
vertex is simple; if a finite-connected graph G has a single vertex {v}, then it is either a
single-vertex graph ({v}, φ) with its edge set φ, an empty set, or a graph

(
{v}, {li}N

i=1

)
,

for some N ∈ N, where l1, . . . , lN are the loop edges connecting v to itself. In particular, if
G is a single-vertex-N-many-loop-edge graph, then its graph groupoid G is a group that is
isomorphic to the free group FN with N-generators. Additionally, the corresponding graph
groupoid C∗-algebra is ∗-isomorphic to C∗(FN), which is studied in [22–24]. Furthermore,
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under our approach, the graph-tree of such a graph G becomes a single-vertex graph,
which is not so interesting. Thus, to avoid the difficulties of handling {C∗(FN)}N∈N and
the triviality of our classification, we focus on graphs with more than one vertex.

2. Preliminaries

In this section, we introduce basic definitions and concepts from proceeding works.
For more details, see [20–24,34].

2.1. Graph Groupoids

Throughout this paper, we automatically assume that all given graphs have more than
one vertex,

|V(G)| > 1, for all given graphs G,

where |X| is the cardinality of a set X. Even though a graph has only one vertex, an
interesting analytic and algebraic structure is constructed (e.g., [16,20–23]). However, for
our main purposes we assume that all given graphs have more than a single vertex.

Let G = (V(G), E(G)) be a directed graph with the vertex set V(G) and the edge set
E(G). If e ∈ E(G) is an edge connecting the initial vertex v1 to the terminal vertex v2 in the
direction of G, then we write e = v1e or e = ev2, or e = v1ev2 to indicate that an edge e has
an initial vertex v1 and terminal vertex v2. We can say that “v1 and e” and “e and v2” are
admissible, respectively. Note that the admissibility depends on the direction of G.

For a graph G,, one can define the oppositely directed graph G−1 of G with the
vertex set

V(G−1) =
{

v−1 = v : v ∈ V(G)
}
= V(G),

and the edge set
E(G−1) =

{
e−1 : e ∈ E(G)

}
,

where e−1 means an edge and e−1 = v2e−1v1 in E(G−1) if e = v1ev2 in E(G), with v1, v2
∈ V(G) = V(G−1). This oppositely directed edge e−1 ∈ E(G−1) is called the shadow of
e ∈ E(G), and the graph G−1 is called the shadow of G. This shadow-ness satisfies

(G−1)−1 = G, as graphs,

with (
e−1
)−1

= e, ∀e ∈ E(G).

We define the shadowed graph Ĝ of G using a new graph with the vertex set,

V(Ĝ) = V(G) ∪V(G−1) = V(G) = V
(

G−1
)

,

and edge set,
E(Ĝ) = E(G) ∪ E(G−1),

where G−1 is the shadow of G. In other words, Ĝ is the graph union of G and G−1. Recall
that if K1 and K2 are directed graphs, then the graph union K = K1 ∪ K2 is a new directed
graph with

V(K) = V(K1) ∪V(K2) and E(K) = E(K1) ∪ E(K2).

Note the difference between the graph union K and the “disjoint” graph union
K′ = K1 t K2 with

V
(
K′
)
= V(K1) tV(K2) and E

(
K′
)
= E(K1) t E(K2),

where t is the disjoint union (e.g., [21–23,34]).
Two edges, e1 = v1e1v′1 and e2 = v2e2v′2, of the shadowed graph Ĝ are said to be

admissible if v′1 = v2, equivalently, a finite path e1e2 is well-defined on Ĝ. If w is a finite path
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on Ĝ with the initial vertex v1 and rgw terminal vertex v2, then we write w = v1w, w = wv2,
or w = v1wv2; finite paths w1 and w2 are admissible if a new finite path w1w2 is well-defined
on Ĝ. By construction, every finite path can be expressed by a word in E(Ĝ). Denote the
set of all finite paths by FP(Ĝ). If w = e1e2, . . . , en ∈ FP

(
Ĝ
)

with e1, . . . , en ∈ E
(

Ĝ
)

, then

one can find the shadow w−1 of w ∈ FP
(

Ĝ
)

by:

w−1 = e−1
n . . . e−1

2 e−1
1 ∈ FPr

(
Ĝ
)

,

by the shadows e−1
k ∈ E

(
Ĝ
)

of ek for all n ∈ N.

Define the free semigroupoid F+(Ĝ) of Ĝ, using an algebraic structure:

F+
(

Ĝ
)

denote
=

(
F+
(

Ĝ
)

, ·
)

,

where:
F+
(

Ĝ
)
= {φ} ∪V

(
Ĝ
)
∪ FP

(
Ĝ
)

,

The binary operation (·) is the admissibility of Ĝ, where the additional element φ

of F+
(

Ĝ
)

is axiomatized to be the empty word in V
(

Ĝ
)
∪ E

(
Ĝ
)

. This empty word φ

represents the cases where two elements of F+
(

Ĝ
)

are “not admissible” or “undefined on

Ĝ up to direction”

w1w2 = φ⇐⇒ w1 and w2 are not admissible,

for w1, w2 ∈ F+
(

Ĝ
)

. Canonically, the empty word φ satisfies:

φw = φ = wφ, ∀w ∈ F+
(

Ĝ
)

.

Now, we define the reduction (RR) in the admissibility (·) of F+(Ĝ) with the rule:

(RR) w = v1wv2 ∈ F+
(

Ĝ
)
⇒ ww−1 = v1, and w−1w = v2,

on F+
(

Ĝ
)

, where v1, v2 ∈ V
(

Ĝ
)

, including the case where v = vvv in V
(

Ĝ
)

. The

admissibility of F+
(

Ĝ
)

under (RR) is called the “reduced admissibility”.

Definition 1. The algebraic pair
(
F+
(

Ĝ
)

/(RR), •
)

of the quotient set F+
(

Ĝ
)

/(RR) and the
reduced admissibility (•) is called the graph groupoid. We denote it by G.

Graph groupoids are indeed algebraic groupoids with a single binary operation with
multiple units (e.g., [3,20–23,49]).

Notation. If there is no confusion, we denote the reduced admissibility (•) by (·):

w1 • w2
denote
= w1w2, in G, ∀w1, w2 ∈ G.

With FPr

(
Ĝ
)

, we denote the set of all “reduced” finite paths of G, giving:

G = {φ} ∪V
(

Ĝ
)
∪ FPr

(
Ĝ
)

,

which is set theoretically.
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2.2. Graph Groupoid C∗ Algebra

Consider a representation of the graph groupoid G of a graph G and a corresponding
operator algebra. We define the graph Hilbert space HG of G by:

HG
de f
=

(
⊕

v∈V(Ĝ)
C ξv

)
⊕
(

⊕
w∈FPr(Ĝ)

C ξw

)
,

with the orthonormal basis
BG = {ξw : w ∈ G \ {φ}},

and the zero vector ξφ = 0HG . By definition, there is a natural vector multiplication on HG:

ξw1
ξw2

=

{
ξw1w2

if w1w2 6= φ

ξφ = 0HG if w1w2 = φ,

for all w1, w2 ∈ G. We define a canonical left action:

L : G→ B(HG),

of G by:

L(w)
de f
= Lw ∈ B(HG), for all w ∈ G,

where B(HG) is the operator algebra (which is a C∗ algebra under its operator norm) of all
(Hilbert-space) operators on HG, while Lws are the (left-)multiplication operators with their
symbols ξw, i.e.,

Lw(ξw′) = ξwξw′ = ξww′ , ∀w, w′ ∈ G,

with their adjoints, L∗w = Lw−1 , for all w ∈ G.

If v ∈ V
(

Ĝ
)

, then Lv is a projection on HG, since:

L∗v = Lv−1 = Lv = Lvv = LvLv = L2
v,

in B(HG). Hence, if w ∈ FPr

(
Ĝ
)

, then Lw is a partial isometry on HG because:

L∗wLw = Lw−1 Lw = Lw−1w

is a projection in B(HG) since w−1w ∈ V
(

Ĝ
)

by (RR). Trivially, the operator Lφ = 0G, the
zero operator in B(HG), which is a projection. Thus, the operators {Lw}w∈G are either
projections or partial isometries in B(HG) (also, see [20–24,34]).

On the graph Hilbert space HG, if w1, w2 ∈ G, then:

Lw1 Lw2 = Lw1w2 , and L∗w1
= Lw−1

1
,

Hence, the pair (HG, L) forms a well-defined Hilbert-space representation of G.

Definition 2. Let (HG, L) be the representation of the graph groupoid G of a graph G. Define the
C∗ algebra MG by:

MG
denote
= C∗(L(G))

def
= C[L(G)],

in B(HG), where C∗(X) means the C∗-subalgebra of B(HG) generated by X ∪ X∗ of a subset
X ⊆ B(HG), where X∗ = {x∗ : x ∈ X}, C[Y] is the polynomial algebra in a set Y, and Z is the
closure of a subset Z of B(HG). This groupoid C∗ algebra MG is called the graph groupoid (C∗-)
algebra of G (or of G). Define a C∗-subalgebra DG of MG by:

DG
de f
= ⊕

v∈V(Ĝ)
(C · Lv),
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which is generated by the projections {Lv}v∈V(Ĝ), where ⊕ is the direct product of C∗ algebra. We
call DG the diagonal subalgebra of MG.

Every element x of the graph groupoid algebra MG is expressed by:

x = ∑
w∈G

twLw with tw ∈ C.

The unity (or the multiplication-identity operator) 1G of MG is determined to be:

1G = ∑
v∈V(Ĝ)

Lv ∈ DG in MG,

since
1GLw = Lv1 Lw = Lv1w = Lw = Lwv2 = LwLv2 = Lw1G,

for all w = v1wv2 ∈ G, with v1, v2 ∈ V
(

Ĝ
)

, implying that:

1GT = T = T1G, ∀T ∈ MG.

Now, we define a conditional expectation,

E : MG → DG,

by:

E
(

∑
w∈G

twLw

)
de f
= ∑

v∈V(Ĝ)

tv Lv,

for all ∑
w∈G

tw Lw ∈ MG. For example, if v1, v2 ∈ V
(

Ĝ
)

and w1, w2, w3 ∈ FPr

(
Ĝ
)

, then:

E
(
2Lv1 − Lv2 + iLw1 − 3L∗w2

+ Lw3

)
= 2Lv1 − Lv2 ,

in DG ⊆ MG. This is indeed a well-defined conditional expectation in the sense of [17],
since it is a bounded operator from MG onto DG, satisfying:

E(d) = d, ∀d ∈ DG,

and
E(d1xd2) = d1E(x)d2, ∀x ∈ MG, and d1, d2 ∈ DG,

and
E(x∗) = E(x)∗, ∀x ∈ MG.

Thus, the pair (MG, E) forms an amalgamated DG-valued C∗-probability space with
amalgamation over DG (see [16–18,20,21]).

Recall that two directed graphs G1 and G2 are said to be graph-isomorphic. If there
exist bijections,

gV : V(G1)→ V(G2), gE : E(G1)→ E(G2),

such that:
gE(e) = gE(v1ev2) = gV(v1)gE(e)gV(v2),

in E(G2) for all e = v1ev2 ∈ E(G1), with v1, v2 ∈ V(G1). The pair (gV , gE) is said to be a
graph isomorphism from G1 to G2. Recall also that two groupoids G1 and G2 are said to be
groupoid isomorphic. If there exists a bijection g : G1 → G2 such that:

g(w1w2) = g(w1)g(w2) in G2,

for all w1, w2 ∈ G1.
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Proposition 1. Let G1 and G2 be directed graphs. The shadowed graphs Ĝ1 and Ĝ2 are graph-
isomorphic if and only if the graph groupoid algebra forms MG1 and MG2 are ∗-isomorphic—i.e.,

Ĝ1
graph
= Ĝ2 ⇐⇒ MG1

∗-iso
= MG2 ,

where “
graph
= ” means “being graph-isomorphic to” and “∗-iso

= ” means “being ∗-isomorphic to”.

Proof. (⇒) If Ĝ1
graph
= Ĝ2 via a graph isomorphism (gV , gE), then the graph groupoids G1

and G2 are groupoid-isomoprhic via the groupoid isomorphism g, satisfying:

g(w) = g(v1wv2) = gV(v1)(gE(e1) . . . gE(ek))gV(v2),

in G2 for all w = v1(e1 . . . ek)v2 ∈ G1 with v1, v2 ∈ V
(

Ĝ
)

and e1, . . . , ek ∈ E
(

Ĝ
)

, with the
axiomatization: g(φ) = φ—i.e.,

Ĝ1
graph
= Ĝ2 =⇒ G1

groupoid
= G2,

where “
groupoid

= ” means “being groupoid-isomorphic to”. By Definition 2, MG1 and MG2

are ∗-isomorphic as C∗-algebra.

(⇐) Assume now that Ĝ1

graph
6= Ĝ2. Then, G1

groupoid
6= G2. Hence, MG1

∗-iso
6= MG2 .

2.3. From Undirected Graphs to Graph Groupoids

In this section, motivated by Proposition 1, we re-construct graph groupoids G from
“undirected” graphs G. Without a loss of generality, one may understand that undirected
graphs represent the shadowed graphs of directed graphs by regarding each undirected
edge as two edges with opposite directions (an edge and its shadow):

•
�

•
undirected

⇐⇒
understand

•
↗↙

•
directed

.

Let G = (V(G), E(G)) be an undirected graph (with more than one vertex) with the
vertex set V(G) and its “undirected” or non-oriented edge set E(G). If e ∈ E(G) is a
undirected edge connecting the vertices v1, v2 ∈ V(G) (which are not necessarily distinct),
then one can assign two directions on e,

e+ = v1e+v2, or e− = v2e−v1.

If we carry out such an orientation process for all edges of E(G) and fix the directions
for edges, then such a undirected graph G becomes a directed graph

−→
G for a fixed direction

with the shadow
(−→

G
)−1 denote

=
←−
G . Such a directed choice

−→
G gives the corresponding

shadowed graph
−̂→
G denote

= Ĝ, inducing the graph groupoid G.
Note here that the construction of the shadowed graph Ĝ is free from the choice of

directions on G, by Proposition 1. Hence, the construction of the graph groupoid G is also
free from the choice of directions in G. If

−→
G 1 and

−→
G 2 are the directed graphs induced by a

given undirected graph G, then their shadowed graphs satisfy:

−̂→
G 1 graph

=
−̂→
G 2 say

= Ĝ,

Hence, the corresponding graph groupoids generated by these are groupoid-isomorphic
to G.
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In other words, if we regard each undirected edge e ∈ E(G) with a possible directed
edge e+ or e− in E

(
Ĝ
)

, where Ĝ is the shadowed graph in the sense of the above paragraphs,
then for any choice of directions on all edges one can have the same (or, isomorphic) graph
groupoid Gwith the reduction (RR):

e+e−, e−e+ ∈ V(G), ∀e ∈ E(G),

satisfying the set equality:
G = {φ} ∪V(G) ∪ FPr

(
Ĝ
)

.

Note again that the construction of Ĝ (and, hence, that of G) is free from the choice of
directions of all edges of G. Thus, from below, if we fix any undirected graph G, one can
identify it in the shadowed graph Ĝ in the above sense.

Under our settings, two undirected graphs G1 and G2 are said to be graph-isomorphic
if there exists a graph isomorphism (gV , gE) such that gV : V(G1) → V(G2) and
gE : E(G1)→ E(G2) are bijections and:

gE(v1e+v2) = gV(v1)gE(e+)gV(v2),

Hence, automatically,

gE(v2e−v1) = gV(v2)gE(e−)gV(v1),

in E
(

Ĝ
)

whenever e+ = v1e+v2 with v1, v2 ∈ V(G), where e+ (and e−) is an arbitrarily
fixed direction of e, satisfying:

gE(e+) = gE(e) = gE(e−).

Proposition 2. If two undirected graphs G1 and G2 are graph-isomorphic (as undirected graphs),
then the corresponding graph groupoids G1 and G2 are groupoid-isomorphic.

Proof. By definition, if two undirected graphs G1 and G2 are isomorphic, then the shad-
owed graphs Ĝ1 and Ĝ2 are isomorphic as directed graphs. Hence, the graph groupoids G1
and G2 are groupoid-isomorphic.

By Proposition 2, one can obtain the following result.

Corollary 1. If two undirected graphs G1 and G2 are graph-isomorphic, then the graph groupoid
algebra forms MG1 and MG2 are ∗-isomorphic.

Proof. This is shown by Propositions 1 and 2.

2.4. Semicircular Elements

Let (A, ψ) be a mathematical pair of a topological (noncommutative) ∗-algebra A (for
instance, a C∗-algebra, a von Neumann algebra, or a Banach ∗-algebra) and a (bounded)
linear functional ψ on A. Then, this is said to be a (noncommutative) topological (free) ∗-
probability space (resp., a C∗-probability space; resp., a W∗-probability space; resp., a Banach
∗-probability space; etc.). An operator a ∈ A is said to be a free random variable if we regard
it as an element of (A, ψ). For example, if a ∈ (A, ψ) is self-adjoint in A as an operator in the
sense that a∗ = a, then a is called a self-adjoint free random variable. It can be found that
even though A is a commutative algebra, the corresponding topological ∗-probability space
(A, ψ) is determined as a statistical-analytic structure. However, free probability generally
applies for cases where A is noncommutative. Such a free-probabilisitic structure (A, ψ) is
understood as a noncommutative counterpart of a measure space (X, µ) of a measurable
set X and a measure µ in commutative analysis. In particular, if (A, ψ) is unital in the sense
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that: (i) A has the unity 1A and (ii) ψ(1A) = 1, then it is a noncommutative version of a
probability space (Y, ρ) with the total measure ρ(Y) = 1. Thus, in general, topological
“∗-probability” spaces are the noncommutative analogue of “measure” spaces.

If a1, . . . , as ∈ (A, ψ) are free random variables for s ∈ N, then the free distribution of
a1, . . . , as is characterized by the joint free moments:

ψ

(
n

∏
k=1

ark
ik

)
= ψ

(
ar1

i1
. . . arn

in

)
,

Equivalently, the joint free cumulants are:

kψ
n

(
ar1

i1
, . . . , arn

in

)
,

for all (i1, . . . , in) ∈ {1, . . . , s}n and (r1, . . . , rn) ∈ {1, ∗}n for all n ∈ N, where kψ
n (•) is the

free cumulant on A in terms of ψ. For more details, see e.g., [17,18].
Thus, the free distribution of a “self-adjoint” free random variable a is fully character-

ized by:

the free-moment sequence (ϕ(an))∞
n=1, (1)

or:

the free-cumulant sequence
(

kϕ
n (a, . . . , a)

)∞

n=1
.

Definition 3. A self-adjoint free random variable x ∈ (A, ψ) is said to be semicircular if:

ψ(xn) = ωnc n
2
, ∀n ∈ N, (2)

where:

ωn =

{
1 if n is even
0 if n is odd,

for all n ∈ N and

ck =
1

k + 1

(
2k
k

)
=

(2k)!
k!(k + 1)!

are the k-th Catalan numbers for all k ∈ N0 = N∪ {0}.

By the Möbius inversion of [17], a self-adjoint free random variable x is semicircular
in (A, ψ) if and only if:

kψ
n (x, . . . , x) = δn,2 (3)

for all n ∈ N by (2), where δ is the Kronecker delta.
Therefore, according to the semicircular law, the free distributions of all semicircular

elements are characterized by the free-moment sequence:

(0, c1, 0, c2, 0, c3, 0, c4, . . . ), (4)

and, equivalently, by the free-cumulant sequence:

(0, 1, 0, 0, 0, 0,. . . ), (5)
by (2) and (3), universally.

3. Radial Operators of Graph C∗-Probability Spaces

In the rest of this paper, we assume all given directed graphs are “connected”, “finite”,
and have more than one vertex. Recall that a graph G is disconnected if there exists two
distinct vertices:

v1 6= v2 ∈ V
(

Ĝ
)
= V(G),
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in the shadowed graph Ĝ of G, such that there are no reduced finite paths w ∈ FPr

(
Ĝ
)

in
the graph groupoid G, such that either:

w = v1wv2, or w = v2wv1.

Additionally, a graph G is finite if:

|V(G)| < ∞, and |E(G)| < ∞.

By regarding the shadowed graph Ĝ as a undirected graph of Section 2.3, say Gu, the
connectedness and finiteness will be defined similarly without considering the direction in
G (up to graph isomorphisms).

Definition 4. Let MG be the graph groupoid algebra of a graph G. Define operators Tw ∈ MG by:

Tw = Lw + L∗w = Lw + Lw−1 , ∀w ∈ FPr

(
Ĝ
)

. (6)

Such operators Tw of (6) are called the w-radial operators for w ∈ FPr

(
Ĝ
)

.

By (6), every reduced-finite-path-radial operator is self-adjoint in MG. We define a
linear functional ϕ on the diagonal subalgebra DG of MG using a morphism:

ϕ

 ∑
v∈V(Ĝ)

tvLv

 = ∑
v∈(Ĝ)

tv.

Then, this is not only a well-defined bounded linear functional on DG because∣∣∣V(Ĝ
)∣∣∣ < ∞, but also a trace satisfying:

ϕ(S1S2) = ϕ(S2S1), ∀S1, S2 ∈ DG.

We define a linear functional τ on MG using:

τ
def
= ϕ ◦ E on MG. (7)

Since ϕ is a trace on DG and E is a conditional expectation from MG to DG, the
morphism τ of (7) is a well-defined bounded linear functional. Thus, a well-defined
C∗-probability space (MG, τ) is constructed by a graph G.

For example, the unity 1G = ∑
v∈V(Ĝ)

Lv ∈ DG of MG satisfies:

τ(1G) = ϕ

 ∑
v∈V(Ĝ)

Lv

 = ∑
v∈V(Ĝ)

1 = |V(G)|.

Since our graph G is assumed to be finite, |V(G)| < ∞, implying that τ is indeed
bounded on MG.

Definition 5. The C∗-probability space (MG, τ) is called the graph C∗-probability space of G (or
of G).

Two C∗-probability spaces, (A1, ψ1) and (A2, ψ2), are said to be free-isomorphic if
there exists an ∗ isomorphism:

Φ : A1 → A2,

such that:
ψ2(Φ(a)) = ψ1(a), ∀a ∈ (A1, ψ1).
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In such a case, we call the ∗ isomorphism Φ a free isomorphism. If two C∗-probability
spaces are free-isomorphic, then they have the same free-probabilistic structure.

Theorem 1. If two shadowed graphs Ĝ1 and Ĝ2 are graph-isomorphic, then the graph C∗-probability
spaces

(
MG1 , τ1

)
and

(
MG2 , τ2

)
will be free-isomorphic. Symbolically,

G1
graph
= G2 =⇒

(
MG1 , τ1

) free-iso
=

(
MG2 , τ2

)
,

where “
free-iso
= ” means “being free-isomorphic to”.

Proof. In the proofs of Propositions 1 and 2, we have:

Ĝ1
graph
= Ĝ2 ⇐⇒ G1

groupoid
= G2 ⇐⇒ MG1

∗-iso
= MG2 .

Indeed, if g : G1 → G2 is the groupoid-isomorphism induced by a graph isomorphism
(gV , gE) satisfying:

g(w) =


φ, the empty word of G2 if w = φ in G1

gV(w) if w ∈ V
(

Ĝ
)

gE(e1)...gE(en) if w = e1 . . . en ∈ FPr

(
Ĝ
)

,

in G2, for all w ∈ G1, where e1, . . . , en ∈ E
(

Ĝ
)

for n ∈ N, we have an ∗ isomorphism:

Φ : MG1 → MG2 ,

which satisfies:

Φ

(
∑

w∈G1

twL(1)
w

)
= ∑

g(w)∈G2

tg(w)L
(2)
g(w)

, in MG2 ,

for all ∑
w∈G1

twL(1)
w ∈ MG1 , where

(
HGk , L(k)

)
are the Hilbert-space representations ofGk for

k = 1, 2.
By (7), it is shown that:

τ2

(
Φ

(
∑

w∈G1

twL(1)
w

))
= τ2

(
∑

g(w)∈G2

tg(w)L
(2)
g(w)

)

= ∑
g(v)∈V(Ĝ2), v∈V(G1)

tg(v) = ∑
gV(v)∈V(G2)

tgV(v)

= ∑
v∈V(Ĝ1)

tv = τ1

(
∑

w∈G1

twL(1)
w

)
.

Therefore, Φ is a free isomorphism. Hence:(
MG1 , τ1

) free-iso
=

(
MG2 , τ2

)
.

4. Semicircular Elements of (MG, τ)

In this section, we study semicircular elements in the graph C∗-probability space
(MG, τ) of a given graph G. Let:

Tw = Lw + L∗w = Lw + Lw−1 ∈ MG
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be the w-radial operator of a reduced finite path w ∈ FPr

(
Ĝ
)

in G, which is a self-adjoint
free random variable of (MG, τ).

If w = v1wv2 ∈ FPr

(
Ĝ
)

with v1 6= v2 in V
(

Ĝ
)

, then:

wn = φ = w−n =
(
w−1)n

= (wn)−1 in G, (8)

for all n ∈ N \ {1}, because v1 and v2 are distinct in G. Therefore:

Tn
w = (Lw + Lw−1)

n = ∑
(e1,...,en)∈{±1}n

(
n
∏
l=1

Lwel

)

=


L
(ww−1)

n−1
2 w

+ L
(w−1w)

n−1
2 w−1

+ 0G if n is odd

L
(ww−1)

n
2
+ L

(w−1w)
n
2
+ 0G if n is even

by (8)

=


Lw + Lw−1 = Tw if n is odd

Lv1 + Lv2 if n is even,
(9)

for all n ∈ N.

Theorem 2. Let w = v1wv2 ∈ FPr

(
Ĝ
)

with v1 6= v2 ∈ V
(

Ĝ
)

. If Tw is the w-radial operator of
(MG, τ), then the free distribution of Tw is characterized by the free moments:

τ(Tn
w) = 2ωn, for all n ∈ N, where: ωn =

{
1 if n is even
0 if n is odd.

(10)

Proof. With (9), one has that:

T2k−1
w = Tw in (MG, τ),

Hence:
τ
(

T2k−1
w

)
= τ(Tw) = ϕ(E(Tw)) = ϕ(0G) = 0,

for all k ∈ N. Meanwhile:
T2n = Lv1 + Lv2 in (MG, τ),

This implies that:

τ
(

T2n
w

)
= ϕ(E(Lv1 + Lv2)) = ϕ(Lv1 + Lv2) = 2,

for all n ∈ N. Thus, the free-distributional data (10) hold.

By (10), if w = v1wv2 is a reduced finite path with distinct vertices v1 and v2 in G,
then the free distribution of the w-radial operator Tw ∈ (MG, τ) is characterized by the free
moment sequence:

(τ(Tn
w))

∞
n=1 = (0, 2, 0, 2, 0, 2, 0, 2, . . . ) = (2ωn)

∞
n=1.

for all n ∈ N, where ωn are in the sense of (10).

Lemma 1. Let w = vwv ∈ FPr

(
Ĝ
)

be a “loop” reduced finite path with the identical initial and

terminal vertices v ∈ V
(

Ĝ
)

in G. Additionally, let Tw ∈ (MG, τ) be the w-radial operator. Then:

τ(Tn
w) = ωnc n

2
, ∀n ∈ N, (11)

where ωn are in the sense of (10) for all n ∈ N and ck are the k-th Catalan numbers for all k ∈ N0.
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Proof. If w is a loop-reduced finite path adjacent to the vertex v in G, then wn and w−n are
“non-empty” loop-reduced finite paths of G whose adjacent vertices are v for all n ∈ N. For
n ∈ N:

τ(Tn
w) = ∑

(e1,...,en)∈{±1}n
τ

L n
∏

l=1
wel

,

and each summand satisfies:

τ

L n
∏

l=1
w

el
l

 =


1 if

n
∑

l=1
εl = 0

0 otherwise,

since
n
∏
l=1

wel = v in G if and only if
n
∑

l=1
el = 0; equivalently,

n
∏
l=1

wel ∈ FPr

(
Ĝ
)

in G if and

only if
n
∑

l=1
el 6= 0. Thus, one has:

τ(Tn
w) = ∑

(e1,...,en)∈{±1}n ,
n
∑

l=1
el=0

1,

Equivalently: τ(Tn
w) =

∣∣∣∣{(ε1, . . . , εn) ∈ {±1}n :
n
∑

l=1
εl = 0

}∣∣∣∣.
(12)

It is well-known that:∣∣∣∣∣
{
(ε1, . . . , εn) ∈ {±1}n :

n

∑
l=1

εl = 0

}∣∣∣∣∣ =


c n
2

if n is even

0 if n is odd,

where ck are the k-th Catalan numbers for all k ∈ N (e.g., [17–19,35–38]). Therefore, the
free-distributional data (11) hold by (12).

For convenience, we say “w is a loop” if w is a loop-reduced finite path.

Theorem 3. A w-radial operator Tw is semicircular in (MG, τ) if and only if w ∈ FPr

(
Ĝ
)

is a
loop in G.

Proof. (⇐) Since a w-radial operator Tw is self-adjoint in MG by definition, the free distri-
bution of Tw is characterized by its free-moment sequence in (MG, τ). If w is a loop, then:

(τ(Tn
w))

∞
n=1 = (0, c1, 0, c2, 0, c3, . . . ) =

(
ωnc n

2

)∞

n=1
,

by (11). Therefore, it is semicircular in (MG, τ) by (2) or (4).
(⇒) Conversely, if w is not a loop inG, then the free distribution of Tw is characterized

by (10), implying that it is not semicircular in (MG, τ) by (2).

The above theorem characterizes the semicircular law of “reduced-finite-path-radial”
operators in (MG, τ). The semicircularity of (MG, τ) induced by the generators {Lw}w∈G
of MG is fully characterized by the combinatorial property, the “loop-ness” on the graph
groupoid G. Theorem 3 generalizes the semicircularity necessary condition of [34]. More
generally, we can obtain the following result.

Theorem 4. Let (MG, τ) be the graph C∗-probability space of a graph G, and let T = ∑
w∈G

twLw

be an arbitrary non-zero “self-adjoint” free random variable of (MG, τ). Then, T is semicircular in
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(MG, τ) if and only if there exists a loop w0 ∈ G, such that T = Tw0 , where Tw0 = Lw0 + Lw−1
0

is
the w0-radial operator of (MG, τ).

Proof. (⇐) If T = Tw0 ∈ (MG, τ) for a loop w0 ∈ G, then it is semicircular in (MG, τ)
according to Theorems 2 and 3.

(⇒) Assume that T 6= Tw0 for some loops w0 of G in (MG, τ). We already know that if
T = Tw with a non-loop-reduced finite path w of G, then T is not semicircular in (MG, τ)
according to (10). Additionally, if T = Lv for v ∈ V(G), then it is not semicircular either.

Suppose now a given self-adjoint free random variable T that is not a reduced-finite-
path-radial operator of MG. Then, by the self-adjointness of T, this can be re-expressed by:

T =

 ∑
v∈V(Ĝ)

tvLv

+

 ∑
w∈FPr(Ĝ)

(
twLw + twLw−1

),

in (MG, τ), where tv ∈ R for all v ∈ V
(

Ĝ
)

and tw ∈ C for all w ∈ FPr

(
Ĝ
)

. These have

conjugates tw in C (e.g., [23]). For convenience, denote:

TV = ∑
v∈V(Ĝ)

tvLv, and TFP = ∑
w∈FPr(Ĝ)

(
twLw + twLw−1

)
,

decomposing
T = TV + TFP in MG,

as a self-adjoint free random variable of (MG, τ).
Clearly, if TV 6= 0G and TFP = 0G, then T is not semicircular in (MG, τ) because:

τ(T) = ϕ(TV) = ∑
v∈V(Ĝ)

tv 6= 0,

This implies that the first (and, hence, odd) free moment of T is non-zero. Therefore, if
TV 6= 0G in T, then T is not semicircular in (MG, τ).

Now, let TV = 0G and TFP 6= 0G, which is not a radial operator containing a summand,

Sw
denote
= twLw + twLw, for some w ∈ FPr

(
Ĝ
)

.

First of all, if tw 6= 1 in C, then the summand Sw is not semicircular. Hence, T is not
semicircular in (MG, τ); secondly, if tw = 1 and w is not a loop, the summand Sw is not
semicircular. Hence, T is not semicircular in (MG, τ) either (see [34]). Finally, if tw = 1
and w is a loop, then the summand Sw is semicircular. However, since T contains other
summands according to our assumption that T is not a radial operator, the free moments
of T are not identical to those of Sw (see [34]); hence, T cannot be semicircular in (MG, τ).
In conclusion, if T is not a reduced-finite-path-radial operator, then it is not semicircular
in (MG, τ).

Therefore, if an arbitrary self-adjoint free random variable T satisfies T 6= Tw0 for
some loops w0 ∈ G, then it is not semicircular in (MG, τ). Equivalently, if a self-adjoint
free random variable T is semicircular in (MG, τ) then there exists a loop w ∈ G, such that
T = Tw in (MG, τ).

The above theorem fully characterizes the semicircularity in (MG, τ) according to the
“loop-ness” of G!

Now, let K be a graph:

V(K) = {v1, v2, v3}, and E(K) = {e12, e23},
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where eij are the edges connecting vertex vi to vertex vj for i, j ∈ {1, 2, 3}. Then, the
corresponding graph groupoid K does not contain a loop adjacent to each vertex, because:

K = {φ} ∪ {v1, v2} ∪
{

e12, e−1
12 , e23, e−1

23
e12e23, e−1

23 e−1
12

}
.

This example demonstrates that there are (connected finite-directed) graphs (with
more than one vertex) that do not induce semicircular elements in their graph C∗-probability
spaces by the semicircularity characterization, Theorem 4.

Recall that an “undirected” graph K (in the sense of Section 2.3) is a finite-connected
tree if it is does not contain (undirected) loops. Equivalently, its graph groupoidK does not
contain loops.

Corollary 2. Let Gu be a (finite-connected) undirected tree as the shadowed graph Ĝ of G. Then,
the corresponding graph C∗-probability space (MG, τ) does not contain semicircular elements.

Proof. Let Gu be a tree understood as the shadowed graph Ĝ of the finite-connected “di-
rected graph” G. Then, the corresponding graph groupoid G and the graph C∗-probability
space (MG, τ) can be well-determined (see Section 2.3). By Theorem 4, (MG, τ) does not
contain semicircular elements because the graph groupoid G does not contain loops.

For our purpose, we finish this section with the following concept.

Definition 6. LetG be a graph groupoid of a graph G. A loop w ∈ G is called a loop-diagram if no
loop wo ∈ G exists, such that w = wk

o for all k ∈ N \ {1}.

Note that, if w ∈ G is a loop, then there will always exist unique loop-diagrams
wo ∈ G and k ∈ N, such that w = wk

o in G. In particular, if w = w1
o in G, then w itself is a

loop-diagram in G according to Definition 6. Additionally, if wo ∈ G is a loop-diagram,

then one can take infinitely many loops
{

wk
o

}∞

k=1
in G. For instance, if:

G =

•
e2 ↗ ↓e3

• → • ←
e1

•
↓
•

then one can take the loop-diagrams of G:

d1 = e1e2e3, d2 = e2e3e1, and d3 = e3e1e2,

and their shadows:
d−1

1 , d−1
2 , and d−1

3 ,

in the graph groupoid G of G. Additionally, this verifies that:(
3
∪

k=1

{
d±n

k : n ∈ N
})
⊂ G

are the infinitely many loops of G. Note that, if the finiteness assumption exists, there
are only finitely many loop-diagrams in a given graph (even though there are infinitely
many loops).

As we discussed in [34], even though the graph groupoid G does not contain loops,
a graph G whose undirected graph Gu is a tree can induce certain semicircular elements
(artificially but naturally) from its so-called the fractal cover Goo, which is a fractal graph
generating the graph fractaloid Goo, a groupoid satisfying the fractality. Every fractal
groupoid G has loop-diagrams adjacent to all its vertices; hence, G has infinitely many
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loops at all vertices. Thus, even though (MG, τ) of a graph such as G does not contain
semicircular elements according to Corollary 2, the graph C∗-probability space (MGoo , τoo)
contains infinitely many semicircular elements. For more details, see [34].

We note that the main results of Section 4 show that the existence of the semicircular
elements in (MG, τ) is determined by the existence of loops in G, which is characterized by
the fact that the undirected graph Gu of a graph G is a tree, meaning that the semicircularity
in (MG, τ) is the loop-ness of G, which is characterized by the tree-ness of the undirected
graph of G.

Notation and Assumption. From below, if we say “a graph G is a tree”, then this means
that “the undirected graph Gu of G is a tree”.

By the above assumption, one can summarize this section as that the semicircularity
of (MG, τ) is the loop-ness of G, which is the “tree-ness” of G.

5. Graph Groupoid Index and Graph-Tree Index

In this section, we define the graph groupoid index and the graph-tree index on graph
groupoids as a function from G × G to R∞

1 , where G is the family of all graphs and R∞
1 is

the set of all positive real numbers greater than or equal to 1. These quantities measure how
a certain graph groupoid K is embedded in a graph groupoid G. For our purposes, we
restrict our interests to connected finite-directed graphs with more than one vertex, whose
shadowed graphs are understood as undirected graphs up to graph isomorphisms in the
sense of Section 2.3. Additionally, for algebraic convenience, we include the single-vertex
graph I in our scope, where |V(I)| = 1, and E(I) = φ, with φ being the empty set.

5.1. The Graph Groupoid Index

Let G be a (connected finite-directed) graph (with more than one vertex) with the
graph groupoid G, and let Gu be the corresponding undirected graph regarded as the
shadowed graph Ĝ of G. Recall that J is a subgraph of G if it is a graph with:

V(J) ⊆ V(G),

and
E(J) = {e ∈ E(G) : e = v1ev2, for v1, v2 ∈ V(J)}.

Recall also that U is a full subgraph of G if it is a graph with:

E(U) ⊆ E(G),

and
V(U) = {v ∈ V(G) : e = ve, or e = ev for e ∈ E(U)}.

Undirected versions of subgraphs and full subgraphs are canonically defined.
Recall that, according to our assumption, a undirected graph Gu is connected. Even

though Gu is connected, it is possible that a subgraph Ju or a full-subgraph Ku is discon-
nected. More generally, we next define the following general concept.

Definition 7. Let Gu be the undirected graph of G. A combinatorial structure Ku = (V(Ku), E(Ku))
is said to be a undirected part of Gu if Ku is a (connected or disconnected) graph with:

V(Ku) ⊆ V(Gu), and E(Ku) ⊆ E(Gu),

This includes the case where either:

V(Ku) = φ, or E(Ku) = φ,
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where φ is the empty set. We denote a relation “Ku as part of Gu” by “Ku ⊆ Gu.” In particular,
if φ 6= V(Ku) ⊆ V(Gu) and E(Ku) = φ, then the part Ku is said to be a vertex part of Gu (or
a vertex graph independently). The “directed” version of a part is similarly defined according to
the direction.

Notation and Assumption. Note that if Gu is the undirected graph of G, and Ku ⊆ Gu is
a part, then there exists a “directed” part K of G whose shadowed graph K̂ induces Ku as in
Section 2.3. Therefore, from below, we can simply say that “Ku ⊆ Gu” and “K ⊆ G” are
parts without considering whether they are undirected or directed.

By definition, all subgraphs and full subgraphs of G are parts of G. Note that, according
to Definition 7, if a part K1 of G satisfies that V(K1) = φ, then E(K1) = φ automatically,
because the part K1 must be a graph combinatorially (which means “no vertices, no edges
connecting vertices”). In such a case, we axiomatize such a part K1 to be the empty part of
G (or the empty graph independently). However, if K2 is a part of G satisfying E(K2) = φ,
then V(K2) is not necessarily empty. It can simply be a subset of V(G) and, hence, K2 could
form either the empty graph or the vertex graph embedded in G.

Now, let G be a given directed graph and K ⊆ G be a part. Suppose that K has
n-many connected components K1, . . . , Kn, where each Ki is a connected part of G (such as
a connected graph) with:

V(Ki) ⊆ V(K), and E(Ki) ⊆ E(K),

for all i = 1, . . . , n, with:

V(K) =
n
t

i=1
V(Ki) and E(K) =

n
t

i=1
E(Ki),

where t is the disjoint union. Then, we “collapse” the connected parts K1, . . . , Kn to the
vertices x1, . . . , xn by identifying each Ki in the collapsed vertex xi for all i = 1, . . . , n. For
instance, if:

G0 =

• •
↑ ↗ ↓
• → • ← •
↑ ↓
• •

,

and

K0 =

• •
↑ ↗ ↓
• • ← •
↑
•

,

is a part of G with rgw connected components:

K0,1 =

•
↑
•
↑
•

, and K0,2

•
↗ ↓

= • ← • ,

in G, then we collapse K0,1 and K0,2 to the vertices x1 and x2,

x1 = ? and x2 = ×.
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Then, by identifying all the connected components K1, . . . , Kn on the collapsed vertices
x1, . . . , xn, we construct a new graph GK using a graph with:

V(GK) = (V(G) \V(K)) ∪ {x1, . . . , xn},
and E(GK) = E(G) \ E(K),

(13)

with the identification rule. If either e = ev or e = ve for e ∈ E(G) \ E(K) with v ∈ V(Ki) ⊆
V(K), for some i = 1, . . . , n, then we identify e with e = exi and e = xie, respectively, where
xi is the collapsed vertex of Ki for i = 1, . . . , n. For example, if K0 ⊆ G0 are given as in the
above paragraph, then:

(G0)K0
= ? → × .

↓
•

Proposition 3. If G is a given graph and K ⊆ G is a part of it, then the corresponding new graph
GK of (13) is a connected finite-directed graph. Equivalently, if Gu is the undirected graph of G and
Ku ⊆ Gu is a undirected part, then the undirected graph GK:u of GK is connected and finite.

Proof. If K is a part of G with its connected components K1, . . . , Kn for n ∈ N, there
always exists a reduced finite path w = vwx or w = xwv for all v ∈ V(G) \ V(K)

and x ∈
n
∪

i=1
V(Ki) = V(K) due to the connectedness of G. This guarantees that, for

all v ∈ V(G) \V(K), there always exists a reduced finite path y of the graph groupoid
GK of the new graph GK of (13), such that y = vyxi or y = xiyv for any collapsed ver-
tices {x1, . . . , xn} in GK. This implies that the graph GK of (13) is connected. Clearly, the
finiteness is satisfied.

As we can see in the above example, the graph (G0)K0
is indeed connected and finite.

Definition 8. The graph GK of (13) induced by the part inclusion K ⊆ G of a given graph G is
called the quotient graph of G by K. If K is the empty part of G, then the corresponding quotient
graph GK is axiomatized to be G itself. Equivalently, the corresponding undirected graph GK:u of
GK is called the (undirected) quotient graph GK.

Note that, if GK:u is the undirected quotient graph of the quotient graph GK, then it is
not difficult to check that GK:u is isomorphic to (Gu)Ku

, where Ku ⊆ Gu are the undirected
counterparts of K ⊆ G.

According to Definitions 8 and 9, if a given graph G is finite and connected, then the
quotient graphs GK are finite and connected too for all parts K ⊆ G. As an independent
graph, the quotient graphs GK have their graph groupoidsGK for all parts K ⊆ G. It is easy
to verify that if K is a vertex part of G then GK = G by (13); if K = G, then GG is the vertex
graph {x} with V(GG) = {x}, and E(GG) = φ, where x is the collapsed vertex of G in G.

Definition 9. Let GK be the graph groupoid of the quotient graph GK of a graph G according to
part K ⊆ G. Then, the cardinality |GK| is called the index of the part inclusion K ⊆ G. We denote
this by [G : K]. Suppose that Ku ⊆ Gu is the undirected part-inclusion induced by the inclusion
K ⊆ G. Then, the (undirected) index [Gu : Ku] is also defined as the index [G : K] = |GK|:

[Gu : Ku]
def
= [G : K] = |GK|.

For example, if K0 ⊆ G0 is given as above in the text, then:

[G0 : K0] = 1 + 3 + 2 · 2 + 2 · 2 = 12,
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where 1 = |{φ}|, 3 =
∣∣∣V((̂G0)K0

)∣∣∣, 2 · 2 =
∣∣∣E((̂G0)K0

)∣∣∣, and the next 2 · 2 are the cardinality
of the reduced-length-2 finite paths of (G0)K0

.
It must be noted that the single-vertex graph I, with V(I) = {v} and E(I) = φ, has its

graph groupoid, which is also denoted by I, with:

|I| = 1,

since the empty word does not exist in I (because the single vertex x is admissible to itself,
meaning that xn = x for all n ∈ Z). This implies that:

[G : G] = |GG| = |I| = 1,

for all graphs G according to Definition 9.

5.2. Graph-Tree Index

Let G be a graph with its graph groupoid G and Gu be the corresponding undirected
graph understood as the shadowed graph Ĝ of G. Suppose that wo = e1 . . . ek ∈ G is a
loop-diagram with:

e1 = v1e1v2, e2 = v2e2v3, . . . , ek = vkekv1 ∈ E
(

Ĝ
)

,

where v1, . . . , vk ∈ V
(

Ĝ
)

,
(14)

for some k ∈ N, inducing infinitely many loops {wn
o }

∞
n=1 in G adjacent to the vertex

v1. For this loop-diagram wo = v1wov1, define a part Wo ⊆ G by a graph with:

V(Wo) = {v1, . . . , vk},
and E(Wo) = {e1, . . . , ek},

(15)

where:

ei =


ei if ei ∈ E(G)

e−1
i if ei ∈ E

(
G−1),

Hence, ei ∈ E(G) for all i = 1, . . . , k, where G−1 is the shadow of G. Then, this graph
Wo induced by the loop-diagram wo is a well-defined part of G according to (15), satisfying:

Wo = {φ} ∪V
(

Ŵo

)
∪ FPr

(
Ŵo

)
,

with {w±n
o }

∞
n=1 ⊂ FPr

(
Ŵo

)
,

(16)

where w−k
o are the shadows of wk

o for all k ∈ N.
According to (14) and (16), this part Wo of G contains all loops induced by the fixed

loop-diagram wo. Therefore, one can verify that the part Wo ⊆ G of (15) is the maximal part
of G containing all loops induced by wo.

Definition 10. Let wo ∈ G be a loop-diagram determined by (14), and let Wo ⊆ G be a part (15)
of a given graph G. Then, this connected finite-directed graph Wo is called the loop-diagram part of
wo (in short, the wo part) in the shadowed graph Ĝ of G. Clearly, if Wo:u ⊆ Gu is the corresponding
undirected part of Wo in the undirected graph Gu of G, then it is also called the loop-diagram part of
wo in Gu, which is understood to be the shadowed graph Ŵo of Wo.



Axioms 2022, 11, 47 21 of 55

Suppose that wo = v1wov1 = e1e−1
2 e3 ∈ G0 is a loop of a graph G0:

G0 =

v2• e2←
v3• •

↑e1 ↙e3 ↗ ↓
•
v1

→ • ← •
↑ ↓
• •

.

Then, this loop wo is a loop-diagram of G generating infinitely many loops {wn
o }

∞
n=1

in G0. From wo, one can construct the corresponding wo-part Wo of G0, where:

V(Wo) = {v1, v2, v3} and E(Wo) = {e1, e2, e3},

according to (15), with its shadowed graph Ŵo ⊆ Ĝ0, being equivalent to Wo:u ⊆ G0:u,
where G0:u is the undirected graph of G0.

Definition 11. Let w1, . . . , wN ∈ G be “all” the loop-diagrams in a graph G for some N ∈ N.
If Wk:u ⊆ Gu are the undirected wk parts of Gu for all k = 1, . . . , N, then we define a new part
Wo:u ⊆ Gu by the graph union of the loop-diagram parts W1:u,. . . , WN:u, with:

V(Wo:u) =
N
∪

k=1
V(Wk:u),

and E(Wo:u) =
N
∪

k=1
E(Wk:u).

(17)

This part, Wo:u ⊆ Gu, of (17) is called “the” loop-part of Gu. The part Wo ⊆ G, in the sense
of (15), whose shadowed graph Ŵo is equivalent to the undirected graph Wo:u of (17), is also called
the loop-part of G.

Note that, according to (17), the loop-part Wo of a given graph G is the “maximal”
part of G whose graph groupoidWo contains all loops of the graph groupoid G of G. For
instance, if a given graph G0 is as in the above paragraph, then the loop part Wo of G0 is a
disconnected graph:

Wo =

• ← • •
↑ ↙ ↗ ↓
• • ← • .

Definition 12. Let W ⊆ G be the loop-part of a given graph G and let GW be the corresponding
quotient graph (13). We call the undirected graph GW:u of the quotient graph GW the tree of G
(or the tree induced by Gu). The graph groupoid GW of GW (or that of GW:u) is said to be the tree
groupoid of G (or of Gu). If there is no confusion, we also call the quotient (directed) graph GW the
tree of G as well.

Recall that a undirected tree is a undirected graph whose graph groupoid does not con-
tain loops. Therefore, one can understand “directed trees” to be the directed graphs whose
undirected graphs are (undirected) trees. The following result allows us to understand why
Definition 12 is meaningful.

Theorem 5. Let W ⊆ G be the loop-part and GW be the corresponding quotient graph. Then, GW
is a directed tree and, equivalently, the corresponding undirected graph GW:u of GW is a tree.

Proof. Let W1, . . . , WN be the loop-diagram parts of all loop-diagrams w1, . . . , wN of the

graph groupoidG of a given graph G for N ∈ N, and let the graph union W denote
=

N
∪

k=1
Wk be
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the loop-part of G. Then, W has its connected components K1, . . . , Kn, for some n ≤ N, and
these are identified with the collapsed vertices x1, . . . , xn in the quotient graph GW , which
is connected and finite according to Proposition 3. Since all connected components Ki are
collapsed to be the vertices xi for all i = 1, . . . , n, there are no loops in the graph groupoid
GW of GW . Therefore, it becomes a directed tree; hence, the corresponding undirected
graph GW:u is a tree.

The above theorem shows that the quotient graphs GW of connected finite-directed
graphs G by the loop-part W become connected finite-directed trees inducing the trees GW:u.

Note that, in the proof of Theorem 5, it is said that the loop-part W, the graph union
of all loop-diagram parts W1, . . . , WN of a given graph G, has its connected components
K1, . . . , Kn, for some n ≤ N. For example, let us assume that a graph G contains the
following “part K”:

K =

• e1→ •
e4 ↓ ↗e5 ↑ e2

• →
e3

•
,

in G. Then, one can find the following loop-diagrams:

w1 = e1e−1
5 e−1

4 , w2 = e−1
2 e−1

3 e5,

w3 = e2e−1
5 e3, w4 = e5e−1

1 e−1
4 ,

and
w5 = e1e−1

2 e−1
3 e−1

4 , w6 = e−1
2 e−1

3 e−1
4 e1,

w7 = e−1
3 e−1

4 e1e−1
2 , w8 = e−1

4 e1e−1
2 e−1

3 ,

“in K” and their shadows w−1
1 , . . . , w−1

8 , inducing 16 loop-diagram parts (up to graph
isomorphism) in G. For instance, the w1-part is a graph W1 with:

E(W1) = {e1, e4, e5} in G,

etc. It is not hard to check that, according to Definition 11, Wk = W−1
k , where W−1

k are the
w−1

k -parts for all k = 1, . . . , 8. Thus, up to the graph isomorphisms, we have a total of eight
loop-diagram parts W1:u,. . . , W8:u, as the undirected graphs of Wk, for all k = 1, . . . , 8. Thus,
according to (17), one can obtain the part:

Ku =
8
∪

k=1
Wk:u,

of the undirected graph Gu of G. It is not difficult to check that this very part Ku is
connected. Indeed, this part Ku is the corresponding undirected graph of the part K ⊆ G. It
is connected, and, hence, has only one connected component. Therefore, the graph union
of eight loop-diagram parts becomes a single part. Thus, in general, one can verify that if

W1, . . . , WN are loop-diagram parts forming the loop-part W =
N
∪

k=1
Wk, then W may have

n-many connected components for some n ≤ N in N in general.

Definition 13. Let G be a given graph with the loop-part W ⊆ G. Then, the quotient graph GW ,
or its corresponding undirected graph GW:u, is called the graph-tree of G (or, in short, the G-tree).
Additionally, the graph grouopoid GW of GW is called the G-tree groupoid. The index,

[G : W] = |GW| = |GW|,
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of the part-inclusion W ⊆ G is called the (graph-)tree-index of G (or of the corresponding undirected
graph Gu of G). We denote this tree-index of G by Γ(G):

Γ(G) = [G : W] = |GW|,

where W is the loop-part of G.

The range of tree-indices of given graphs is contained in:

R+
1 = {t ∈ R : 1 ≤ t < ∞}.

Lemma 2. For a given graph G, the tree-index Γ(G) is finite. Moreover:

1 ≤ Γ(G) < ∞. (18)

Proof. In line with our assumption that all given graphs are connected, “finite”, and have
more than one vertex, the G-tree GW is connected and “finite”, where W ⊆ G is the loop-
part. Moreover, since GW:u does not contain any loops, the G-tree groupoid GW does not
contain loops, implying the finiteness of GW—i.e., |GW| < ∞.

Assume now that a graph K is a circulant graph with:

V(K) = {v1, . . . , vN},

and
E(K) = {e1, . . . , eN},

with
ei = vieivi+1, for all i = 1, . . . , N − 1,

for any N ∈ {2, 3, 4, . . . }, and
eN = vNeNv1.

Then, this graph K has its loop-part that is identified with itself. Thus, the correspond-
ing K-tree is the quotient graph KK with:

V(KK) = {x}, and E(KK) = φ,

This is graph-isomorphic to the single-vertex graph I, satisfying:

Γ(G) = [G : G] = |GG| = |I| = 1,

This implies that, in general:
Γ(G) ≥ 1.

Therefore, the G-tree index satisfies:

1 ≤ Γ(G) < ∞.

Using (18), one can obtain the following range of tree-indices.

Theorem 6. Let Γ : G → R+
1 be the function from:

G = {I} ∪

G :
G is a connected, finite graph,

having more than one vertex,


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to R+
1 , where every G ∈ G is unique up to graph isomorphisms, defined by:

Γ(G) = the G-tree index, ∀G ∈ G.

Then, Γ(G) $ N in R+
1 .

(19)

Proof. According to (18), the range Γ(G) is contained in R+
1 . By definition, for all G ∈ G,

Γ(G) = [G : W] = |GW|,

where W ⊆ G is the loop-part. Since the G-tree groupoid GW is a discrete finite set,

|GW| ∈ N⇐⇒ Γ(G) ∈ N,

implying that:
Γ(G) ⊆ N.

Suppose that we have a single-edge tree,

Ge = •
v1

e−→ •
v2

,

in G. Note that the Ge-tree is identical to itself because this graph Ge does not contain
its loop-part. Equivalently, the loop-part of Ge is the empty graph; hence, (Ge)φ = Ge
according to Definition 9. It is easy to check that:

|Ge| =
∣∣∣{φ} ∪ {v1, v2} ∪

{
e, e−1

}∣∣∣ = 5.

This illustrates that:
2, 3, 4 /∈ Γ(G).

Therefore, the relation (19) holds theoretically.

Note that, by the definition of the family G in Theorem 6, this contains a graph L1 with:

V(L1) = {v}, and E(L1) = {e = vev}.

Then, the loop-part W of L1 is identical to itself. Thus, the quotient graph (L1)W =
(L1)L1

is the single-vertex graph I. Hence:

Γ(L1) = 1 = Γ(I).

All other graphs G ∈ G \ {L1} containing nonempty loop-parts satisfy:

Γ(G) = 1, or Γ(G) ≥ 5.

Corollary 3. Let G ∈ G be an element containing “nonempty” loop-part W. Then:

Γ(G) = 1, or Γ(G) ≥ 5, (20)
in N.

Proof. Let G ∈ G contain its loop-part W. If W = G, then Γ(G) = 1, as we discussed in the
above paragraph. Now, suppose that W $ G in G. Then, the minimal possible quotient
graph GW for W ⊂ G is (graph-isomorphic to) the single-edge tree:

Ge = • −→ •,

This satisfies Γ(G) = 5 = Γ(Ge). Therefore, the relation (20) holds true.

Now, we define the following concept:
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Definition 14. The function Γ : G → R+
1 introduced in Theorem 6 is called the graph-tree index.

Based on (19) and (20), the range of the graph-tree index Γ is properly contained in N.

5.3. Graph-Tree Equivalence

In this section, motivated by the main results of Section 5.2, we consider an equivalence
relation in the set:

G = {I} ∪

G :
G is a connected, finite graph,

having more than one vertex,

,

These are determined up to graph isomorphisms, where I is the single-vertex graph.
We classify G under the relation (up to graph isomorphisms).

Consider L2 be a tree with:

V(L2) = {v1, v2, v3} and E(L2) = {e12, e23},

where eij = vieijvj,
L2 = • → • → •,

up to graph isomorphisms, with its corresponding undirected graph L2:u (regarded as the
shadowed graph L̂2). Then, the corresponding L2-tree groupoid L2 satisfies:

|L2| =

∣∣∣∣∣∣


φ, v1 v2, v3,
e12, e−1

12 , e23, e−1
23 ,

e12e23, e−1
23 e−1

12


∣∣∣∣∣∣ = 10.

Observe that if G1, G2 ∈ G are graphs:

G1 = • −→ •
	
−→ •

	
,

and

G2 =

•
↗ ↑

• −→ • −→ • → • ,

Then, the corresponding loop parts W1 and W2 are:

W1 = •
	

•
	

,

and

W2 =
•

↗ ↑
• → •

,

respectively. Then, the corresponding Gk-trees (Gk)Wk
,

(G1)W1
= • −→ • −→ • = (G2)W2

,

are obtained for k = 1, 2 (up to graph isomorphisms), meaning that:

(Gk)Wk

graph
= L2, ∀k = 1, 2.
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Even though G1 and G2 are not isomorphic in G, the G1-tree and the G2-tree are
isomorphic to the tree L2. This means that:

Γ(G1) = |L2| = 10 = |L2| = Γ(G2).

Lemma 3. In the family G, define a relationR by:

G1R G2
def⇐⇒ Γ(G1) = Γ(G2).

Then, the relationR is an equivalence relation on G.

Proof. Let G ∈ G. Then, clearly Γ(G) = Γ(G) in N. Therefore, G R G. Suppose now that
G1 R G2 in G. Then,

Γ(G1) = Γ(G2)⇐⇒ Γ(G2) = Γ(G1),

Hence, G2 R G1 in G.
If G1 R G2 and G2 R G3 in G, then:

Γ(G1) = Γ(G2) = Γ(G3),

implying that Γ(G1) = Γ(G3); hence, G1 R G3 in G.
Therefore, the relationR is an equivalence relation on G.

The above lemma shows that the tree-index Γ classifies the family G by the equivalence
relationR of Lemma 3. One can define the quotient set,

GΓ
def
= G/R = {[G] : G ∈ G},

where [G]
def
= {K ∈ G : K R G}

(21)

are theR-equivalence classes of G for all G ∈ G. Additionally, one can define the function:

Γo : GΓ → R+
1 ,

by Γo([G]) = |KW|,
(22)

for all [G] ∈ GΓ, where KW is the K-tree groupoid of the K-tree KW for the loop-part
inclusion W ⊆ K for some K ∈ [G] in G.

Theorem 7. Let GΓ be the quotient set (21), and Γo, the function (22). Then,

Γo(GΓ) $ N,

and Γo([G]) = 1, or Γ([G]) ≥ 5,
(23)

for all [G] ∈ GΓ .

Proof. The proof of (23) is done by (19), (20) and Lemma 3.

By (23), without the loss of much generality, the graph-tree index Γ on G is used to
find the cardinalities Γo of the graph groupoids of the trees representing the elements of GΓ.
We define a family T by:

T def
=

K :
K is a connected finite tree,

or
K is the single-vertex graph I

, (24)

where K ∈ T is unique up to graph isomorphisms. This family T of (24) is called the
(connected-finite-)tree family.
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Theorem 8. Let T be the tree family (24) and let GΓ be the quotient set (22). Then, they are
equipotent set-theoretically.

GΓ
equipotent

= T , set-theoretically. (25)

Suppose Γ0 : T → N is the map defined by:

Γ0(K) = |K|, ∀K ∈ T ,

where K are the graph groupoids of K ∈ T . Then, for any [G] ∈ GΓ, there exists a unique K ∈ T ,
such that:

Γo([G]) = Γ0(K), (26)
where Γo is in the sense of (22). In particular,

K = GW , where W is the loop-part of G,

in T up to graph isomorphisms.

Proof. If [G] ∈ GΓ, then there exists a connected finite graph G ∈ G whose G-tree GW for
the loop-part inclusion W ⊆ G is a tree, satisfying:

[GW ] = [G] in GΓ.

For any [G] = [GW ] ∈ GΓ, there exists a tree GW (up to graph isomorphisms) in T .
Thus, one can define a function:

g : GΓ → T ,

by g([G]) = g([GW ]) = GW ,
(27)

for all [G] ∈ GΓ. By (21), if [G] = [K] in GΓ, then:

g([G]) = g([GW ]) = GW = g([K]),

in T . This implies that the function g of (27) is injective.
Let T be the tree family (24). Then, for any arbitrary K ∈ T , there exists a connected

finite graph G ∈ G whose G-tree GW for the loop-part inclusion W ⊆ G is graph-isomorphic
to a tree K. Equivalently, there exists [G] ∈ GΓ, such that:

g([G]) = g([GW ]) = K,

implying the surjectivity of the function g of (27). Thus, the function g is bijective. Hence,
two families GΓ and T are equipotent set-theoretically. Thus, the relation (25) holds.

By the equipotence (25), we have that:

Γo([G]) = Γo([GW ]) = |GW| = Γ0(g([G])),

Hence, there exists a unique tree K = g([G]) = GW ∈ T , such that:

Γo([G]) = Γ0(K).

Therefore, the relation (26) holds as well.

Using the above theorem, one can obtain the following result.

Corollary 4. If G ∈ G, then there exists K ∈ T , such that:

K
graph
= GW , the G-tree,

and Γ(G) = Γ0(K), in N,
(28)
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where Γ is the graph-tree index on G.

Proof. The relation (28) holds by (23), (25) and (26).

The above series of results show that our family G is classified to be the quotient set
GΓ by our graph-tree index Γ, and this classification is fully characterized by the tree family
T . Free-probabilistically, recall that since each G-tree, say K, for G ∈ G, does not have
loops, the corresponding graph C∗-probability space (MK, τ) does not contain semicircular
elements. Since

Γ(K) = |K| < ∞,

the C∗-algebra MK is a C∗-subalgebra of the matricial algebra,

M|K|(C) = MΓ0(K)(C) = MΓ(K)(C),

by Definition 2.

6. The Gluing on Graphs

Let G1, G2 ∈ G and assume that K1 ⊆ G1 and K2 ⊆ G2 are parts. Suppose further that
the fixed parts K1 and K2 are graph-isomorphic (as connected, or disconnected graphs).
Then, by gluing or identifying K1 and K2 (under graph isomorphism) to the common part,

say K
graph
= K1 ⊆ G1 and K

graph
= K2 ⊆ G2, one can construct a new graph G as a graph with:

V(G) = (V(G1) \V(K1)) ∪V(K) ∪ (V(G2) \V(K2)),

and E(G) = E(G1) ∪ E(G2),
(29)

with the identification rule: if e ∈ E(Kl) in E(Gl), then identify e as an edge e ∈ E(K) in E(G).
For instance, if:

G1 = • → ? =⇒ ?→ •,

and

G2 =
•

↗ ↑
? =⇒ ?

,

then, by gluing (or, identifying) the common (or graph-isomorphic) parts,

? =⇒ ?,

in G1 and G2, one has a new graph G of (29):

G =
•

↗ ↑
• → ? =⇒ ? → •

.

Definition 15. A new graph G of (29), induced by Gl ∈ G, by gluing the common (or, graph-
isomorphic) parts Kl ⊆ Gl , for l = 1, 2, is called the glued graph of G1 and G2 by gluing K1 and
K2. We denote this by:

G = G1 K1#K2 G2.

As a special case of (29), one can have the “vertex-gluing”. Let Gk ∈ G, and fix the
vertices vk ∈ V(Gk), for k = 1, 2. Then, one can construct a new graph, denoted by:

G denote
= G1 v1#v2 G2,
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by gluing (or, by identifying) the two vertices v1 and v2 to a new vertex—for instance:

v# = v1#v2.

Note that, since G1 and G2 are taken from G, if they are different “in G” then they are
not graph-isomorphic by the very definition of the family G.

Definition 16. Let G1, G2 ∈ G (which are not necessarily distinct in G), and let vk ∈ V(Gk) be
fixed for k = 1, 2. Then, we identify two distinct vertices v1 and v2 with a new vertex v# = v1#v2,
called the glued vertex of v1 and v2. Then, we define a graph:

G = G1 v1 #v2 G2,

by a graph with:

V(G) = (V(G1) \ {v1}) ∪ {v#} ∪ (V(G2) \ {v2}),
and E(G) = E(G1) ∪ E(G2),

(30)

with the identification rule. If either e = evk or e = vke in E(Gk), then it is identified with e = ev#,
or e = v#e, respectively, in E(G). This new graph G of (30), obtained by gluing v1 and v2, is called
the glued graph of G1 and G2 with the glued vertex v#.

For instance, if:
G1 = • → • ← •

v1
→ •,

and

G2 =

v2•
↙ ↓

• → •
,

then the glued graph G = G1 v1#v2 G2 of (30) is a new graph:

G =
• → • ←−

v#• → •
↙ ↓
• → •

,

by gluing v1 and v2 to v#.

Theorem 9. Let G1, G2 ∈ G and G = G1 K1 #K2 G2 ∈ G, the glued graph of G1 and G2 by gluing
the common parts K1 ⊆ G1 and K2 ⊆ G2. Then, the graph C∗-probability spaces

(
MGk , τk

)
of

Gk are free-probabilistic sub-structures of the graph C∗-probability space (MG, τ), by regarding
Kl ⊆ Gl as K ⊆ G, in the sense that:

MGk

∗-sub
⊂ MG, and τk = τ |MGk

,

for all l = 1, 2, where “
∗-sub
⊂ ” means “being C∗-subalgebra of”.

Proof. If we identify Kl ⊆ Gl with K ⊆ G in the glued graph G, then Gk ⊂ G are parts of
G. Hence, the graph groupoids Gk of Gk are the subgroupoid of the graph groupoid G of
G, implying that the graph groupoid algebra MGk of Gk are C∗-subalgebra of the graph
groupoid algebra MG of G. Furthermore, by (7) and (29), one has:

τk = τ |MGk
, for all k = 1, 2,
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because K1
graph
= K2

graph
= K in G. Therefore, the C∗-probability spaces

(
MGk , τk

)
are the

C∗-probability subspaces of (MG, τ), for all k = 1, 2.

The above theorem shows that free-probabilistic properties of
(

MGk , τk
)

are preserved
in (MG, τ) whenever:

G = G1 K1#K2 G2.

7. The Graph-Tree Index Γ and Graph-Tree Towers

In this section, we consider certain towers of part-inclusions induced by a graph
G ∈ G. In fact, we are interested in such towers preserving the graph-tree index Γ(G) in
each step. Recall first that every graph G ∈ G has its G-tree GW ∈ T , where W ⊆ G is the
loop-part and:

Γ(G) = |GW| < ∞.

Certain Quotient Graphs Induced by G ∈ G
In this section, we fix an arbitrary graph G ∈ G with its loop-part W ⊆ G, and,

hence, the corresponding G-tree GW . Additionally, suppose throughout this section that
the loop part W of G induced by the N-many loop-diagram parts W1, . . . , WN induced by
the loop-diagrams w1, . . . , wN ∈ G, for some N ∈ N. Then, there exist k-many connected
components K1, . . . , Kk of W, for some k ≤ N in N, such that:

W =
k
∪

l=1
Kl in G. (31)

For instance, if:

G =

• ←
v2• •

↓ ↗ ↑ ↙ ↑
•
v1
→ • → •

v3
→ •, (32)

in G, then it has the disconnected loop-part W in G

W =

• ←
v2• •

↓ ↗ ↑ ↙ ↑
•
v1
→ • •

v3
→ •,

consisting of two connected components:

K1 =

• ←
v2• •

↓ ↗ ↑ ↙ ↑
•
v1
→ • K2 = •

v3
→ • ,

(33)

These induce the K-tree KW of K:

KW = •
x1
−→ •

x2
, (34)

by (31) and (33), where xl are the collapsed vertices of Kl , for l = 1, 2 (see (17)).
Let G ∈ G, and suppose the loop-part W ⊆ G has its connected components K1, . . . , Kk

(induced from the diagram-loop parts W1, . . . , WN), for some k ≤ N in N. Suppose G1 ∈ G
is graph-isomorphic to G, whose loop-part W1 ⊆ G1 is graph-isomorphic to the loop-part
W of G, with its connected components J1, . . . , Jk, where each Ji is graph-isomorphic to Ki,
for all i = 1, . . . , k.

Then, by gluing the common (or, graph-isomorphic) connected components Kl ⊆ G
and Jl ⊆ G1, we obtain the glued graph:

G2(Kl) = G Kl #Jl G1, (35)
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in the sense of (29), for any arbitrarily fixed l ∈ {1, . . . , k}. Without a loss of generality, the
graph G2 of (35) is identified with G2

1(Jl), since:

G2(Kl)
graph
= G2

1(Jl), ∀l = 1, . . . , k. (36)

By (36), we identify G2(Kl) and G2
1(Jl), for l = 1, . . . , k.

For example, if a graph G ∈ G is in the sense of (32) with its connected components
K1, K2 ⊆ G of (33) induced by the loop-diagram parts (32), and if J ∈ G is a graph,
isomorphic to K, whose loop-part has two connected components J1 and J2, isomorphic to
K1 and K2, respectively, then we obtain a new graph:

K2(K1) = K K1#J1 J,

by gluing K1 ⊆ K and J1 ⊆ J,

K2(K1) =

• • ←
v2• •

↑ ↘ ↓ ↗ ↑ ↙ ↑
• ← • ← •

v1
→ • → •

v3
→ •

,

by (29) and (35). According to (36), the new graph K2(K1) can be identified with J2(J1).

As discussed above, from (36), one may understand given two graphs G
graph
= G1 as

an identical element of G—i.e., two copies of G ∈ G. For a fixed G ∈ G and its connected
part K ⊆ G, one takes two “distinct” copies of G’s and identifies K in the two copies of G,
before gluing them to construct a new graph G2(K) in G, as in (35).

Definition 17. Let G ∈ G, and K ⊆ G, a connected part. The graph,

G2(K) denote
= G K#K G,

induced by (35) of two copies of G (in the sense of (36)), is called the K-fixed 2-copy of G in G.
Similarly, one can have the K-fixed 3-copy of G:

G3(K) = G2(K) K#KG ∈ G,

Inductively, we have the K-fixed (n + 1)-copies of G:

Gn+1(K) = Gn(K) K#KG, ∀n ∈ N,

in G, for all n ∈ N, with a notational identity: G1(K) = G.

By Definition 17, we can obtain the following result.

Lemma 4. Let G ∈ G and K ⊆ G, a connected part, and let Gn(K) ∈ G be the K-fixed n-copies
of G for all n ∈ N with the identity: G1(K) = G. Then, the quotient graph

(
Gn+1(K)

)
Gn(K) is

isomorphic to the quotient graph GK for K ⊆ G, in the sense of (13), in G, for all n ∈ N:(
Gn+1(K)

)
Gn(K) = GK in G. (37)

Proof. First, consider the case where n = 1. Suppose

G2(K) = G K#K G ∈ G

is the K-fixed 2-copy of G in the sense of Definition 17, where G1(K) = G in G. Then, by
identifying, or collapsing the part G1(K) = G in G2(K), one has:(

G2(K)
)

G1(K)
=
(

G2(K)
)

G

graph
= GK,
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in G. Similarly, if n = 2, then, by collapsing G2(K) in G3(K), we have:(
G3(K)

)
G2(K)

graph
= GK,

by Lemma 4. Therefore, inductively,(
Gn+1(K)

)
Gn(K)

graph
= GK,

This implies that: (
Gn+1(K)

)
Gn(K)

= GK in G,

because every element of G is uniquely determined up to the graph isomorphisms. Thus,
the relation (37) holds.

Using (37), one directly obtains the following corollary.

Corollary 5. Let G ∈ G, and v ∈ V(G), a fixed vertex, and let

Gn(v) denote
= Gn({v}) ∈ G

be the {v}-fixed (or, v-fixed) n-copies of Definition 17, where {v} = ({v}, φ) is a vertex-part of G.
Then: (

Gn+1(v)
)

Gn(v) = G in G. (38)

Proof. The relation (38) is immediately shown by (37). Indeed, one has:(
Gn+1(v)

)
Gn(v)

= G{v} = G,

in G, by (37), where {v} = ({v}, φ) is a vertex-part of G.

By (37), one also has the following result.

Theorem 10. Let G ∈ G, and K ⊆ G, a connected part, and let Gn(K) ∈ G be the K-fixed n-copies
of G, for n ∈ N. Then: [

Gn+1(K) : Gn(K)
]
= [G : K] = |GK|, (39)

for all n ∈ N.

Proof. By (37), we have: (
Gn+1(K)

)
Gn(K) = GK, in G,

implying that
[
Gn+1(K) : Gn(K)

]
=
∣∣∣(Gn+1(K)

)
Gn(K)

∣∣∣, (40)

where
(
Gn+1(K)

)
Gn(K) are the graph groupoids of the quotient graphs

(
Gn+1(K)

)
Gn(K),

which are graph-isomorphic to GK, and, hence, identified with GK in G for all n ∈ N.
Thus, using (40), one has:[

Gn+1(K) : Gn(K)
]
= |GK| = [G : K],

for all n ∈ N, where GK is the graph groupoid of GK. Therefore, Formula (39) holds.

By (39), one obtains the following corollary.
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Corollary 6. Let G ∈ G and v ∈ V(G), a fixed vertex, and let Gn(v) ∈ G be the {v}-fixed
n-copies of G, for all n ∈ N. Then:[

Gn+1(v) : Gn(v)
]
= |G| = [G : {x}], (41)

for all n ∈ N, for all x ∈ V(G), inducing the vertex-parts {x} = ({x}, φ) of G in G.

Proof. First of all, it must be noted that, if x ∈ V(G), inducing the vertex-part {x} ⊆ G,
then the corresponding quotient graphs Gx = G{x} are graph-isomorphic to G, and, hence,
identified with G in G. Thus, by (39), we have:[

Gn+1(v) : Gn(v)
]
= [G : {v}] = |G|,

implying the Formula (41).

Additionally, we have the following result.

Theorem 11. Let G ∈ G, and K ⊆ G, a connected part, and let Gn(K) ∈ G be the K-fixed
n-copies of G, for all n ∈ N. Suppose GK is the quotient graph for K ⊆ G, and

(
MGK , τ

)
is the

corresponding graph C∗-probability space of GK. If

GK(n + 1) denote
=

(
Gn+1(K)

)
Gn(K)

are the quotient graphs for Gn(K) ⊆ Gn+1(K), then:(
MGK(n+1), τn+1

) free-iso
=

(
MGK , τ

)
, (42)

for all n ∈ N.

Proof. By Theorem 9, if two graphs G1 and G2 are graph-isomorphic, then the correspond-
ing graph C∗-probability spaces

(
MG1 , τG1

)
and

(
MG2 , τG2

)
are free-isomorphic. Therefore,

by (37), the free-isomorphic relation (42) holds.

By (42), the following corollary holds.

Corollary 7. Let G ∈ G, and v ∈ V(G), a fixed vertex, and let Gn(v) ∈ G be the {v}-fixed
n-copies of G, for all n ∈ N. If Gv(n + 1) =

(
Gn+1(v)

)
Gn(v) in G, then:(

MGv(n+1), τn+1

) free-iso
= (MG, τ), ∀n ∈ N. (43)

Proof. The free-isomorphic relation (43) holds by (38) and (42).

Additionally, using Theorem 11 and Corollary 7, one obtains the following free-
probabilistic information.

Corollary 8. Let G ∈ T be a tree, and x ∈ V(G), a fixed vertex, and let Gn(x) ∈ T be the
{x}-fixed n-copies of G, for all n ∈ N. If Gv(n + 1) =

(
Gn+1(x)

)
Gn(n) in T , then:(

MGv(n+1), τn+1

) free-iso
= (MG, τ), ∀n ∈ N. (44)

Proof. The relation (44) is obtained by (42) and (43).

By Corollary 8, we obtain the following main result of this section.
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Theorem 12. Let G ∈ G and W ⊆ G, the loop-part, inducing the G-tree GW ∈ T . Assume that
K ⊆W is a connected component of the loop-part W in G, generating the collapsed vertex x of GW .
Let

GW:x(n + 1)
def
=
(

Gn+1
W (x)

)
Gn

W (x+1)
, ∀n ∈ N,

with identity: GW:x(1) = GW , where Gn
W(x) are the {x}-fixed n-copies of GW ∈ T , for all n ∈ N.

Then:

GW:x(n) = GW in T ,

and hence, [GW:x(n + 1) : GW:x(n)] = |GW| = [G : W] = Γ(G),
(45)

and (
MGW:x(n), τn

) free-iso
=

(
MGW , τ

)
, (46)

for all n ∈ N. In particular, these free-isomorphic C∗-probability spaces of (46) do not contain
semicircular elements.

Proof. By (38), the graph-isomorphic relation of (45) hold for all n ∈ N. Thus, the index
relations of (45) holds by (39) and (41) for all n ∈ N. Therefore, the free-isomorphic
relation (46) holds by (42)–(44).

Since the graph GW is a tree in T , it does not contain any loops in its graph groupoid
GW. It guarantees that the graph C∗-probability space

(
MGW , τ

)
does not contain any

semicircular elements by Corollary 2.

The above theorem shows that one can construct a tower of trees:

GW = G1
W(x) ⊆ G2

W(x) ⊆ G3
W(x) ⊆ G4

W(x) ⊆ · · · (47)

“in T ,” whenever a loop-part inclusion W ⊆ G is given “in G,” where x ∈ V(GW) is
a collapsed vertex of an any connected component of the loop-part W of G ∈ G, and{

Gn
W(x)

}∞
n=1 are the collection of {x}-fixed n-copies of G. This tower (47) satisfies:(

Gn+1
W (x)

)
Gn

W (x)
= GW in T ,

and [
Gn+1

W (x) : Gn
W(x)

]
= |GW| = [G : W] = Γ(G),

and
(

M(Gn+1
W (x))Gn

W (x)
, τn+1

)
free-iso
=

(
MGW , τ

)
,

(48)

for all n ∈ N, by (45) and (46). Furthermore, under (318), all free-isomorphic C∗-probability
spaces do not have semicircular elements.

Definition 18. Let G ∈ G and W ⊆ G, the loop-part inclusion, inducing the G-tree GW ∈ T . A
tower (317) of trees, induced by GW and its {x}-fixed n-copies for an arbitrary collapsed vertex x of
a connected component of W, satisfying the relations of (48), is called the (G, x)-tree tower.

By Theorem 12 and Definition 18, one immediately has the following corollary.

Corollary 9. Let G ∈ G, and W ⊆ G, the loop-part inducing the G-tree GW ∈ T . Suppose

GW = K1 ⊆ K2 ⊆ K3 ⊆ · · ·

is a (G, x)-tree tower (47), where Kn = Gn
W(x) for all n ∈ N, and x ∈ V(GW) is the collapsed

vertex of a connected component of W. Then:

(Kn+1)Kn
= GW in T , ∀n ∈ N,
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and
[Kn+1 : Kn] = |GW| = [G : W] = Γ(G),

and
(

M(Kn+1)Kn
, τn+1

) free-iso
=

(
MGW , τ

)
,

(49)

for all n ∈ N. The C∗-probability spaces of (49) have no semicircular elements.

Proof. The relations of (49) are shown by (48) under Definition 18.

The above corollary shows that, for any K ∈ [G] = [GW ] ∈ GΓ, where GΓ is the graph-
tree family (21) equipotent to the tree-family T , one can construct (G, x)-tree towers (47)
for all collapsed vertices x of connected components of the loop-part W ⊆ G. Note here
that “all” (G, x)-tree towers satisfy the relations of (49). The quotient structures for the
steps of the tower are all equivalent from each other, combinatorially, algebraically, and
free-probabilistically.

This shows that our graph-tree index Γ on G preserves the non-semicircularity on the
(steps of the) towers (47) up to quotient relation (on the steps).

8. The Tree-Monoid (T V , })

Define a new family TV using:

TV def
= {(G, v) : G ∈ T , v ∈ V(G)}. (50)

Note that, even though G ∈ T is a fixed tree, if v 6= x in V(G), then the elements (G, v)
and (G, x) are “distinct” in TV by definition. For a fixed tree G ∈ T , there are |V(G)|-many
elements {(G, v)}v∈V(G) in TV.

From the set TV of (50), define its partition T V by:

T V = {T V(n) : n ∈ N},
with T V(n) = {(G, v) ∈ T V : |V(G)| = n}, ∀n ∈ N.

(51)

The partition T V of (51) satisfies:

TV = t
n∈N
T V(n), set-theoretically,

where t is the disjoint union. We here consider the partition T V of TV as a family (or, a
small category) of the sets T V(n), for all n ∈ N.

On this set TV of (50), define an operation } by:

(G1, v1)} (G2, v2)
def
= (G1 v1#v2 G2, v#), (52)

where G1 v1 #v2 G2 is the vertex-glued graph (30) of the trees G1 and G2 by gluing v1 ∈ V(G1)
and v2 ∈ V(G2) to the identified, or glued vertex v# = v1#v2.

By (52), one may understand our {x}-fixed 2-copy G2(x) of G ∈ T as:

G2(x) = G x#x G
regard
= (G, x)} (G, x);

inductively,

Gn+1(x)
regard
= (Gn(x), x)} (G, x),

in TV, for n ≥ 2 inN,
(
Gn+1(x), x

)
= (Gn(x), x)} (G, x),

(53)

in T V by (52), for all n ∈ N.
By (49) and (53), “if” the operation } is well-defined on TV, then the construction of

the graph-tree towers of (47) is also carried out by the operation (52) by (53).

Lemma 5. The operation } of (52) on the set TV of (50) is well-defined.
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Proof. By the definition (52), for any arbitrary (G1, v1), (G2, v2) ∈ TV, one can determine a
pair (G, v) of the glued graph G = G1 v1 #v2 G2, and the glued vertex v ∈ V(G) of v1 and v2.
It is trivial to check that this new graph G forms a new finite connected tree contained in
the tree-family T . Thus,

(G, v) ∈ TV,

by (50), implying that the operation } is closed on TV.

This well-defined operation } on TV satisfies the following properties.

Lemma 6. The operation } of (52) on the set TV of (50) satisfies the following properties:

} is associative on TV. (54)

The trivial element I denote
= ({x}, x) ∈ TV of the single-vertex graph I = {x} ∈ T with its

unique vertex x forms the (})-identity of TV,

I} (G, v) = (G, v) = (G, v)} I in TV. (55)

} is commutative on TV. (56)

Proof. Note that the tree-family T is defined up to graph isomorphisms. Therefore, if

K ∈ T , and if K1
graph
= K, then K1 = K in T , and the family TV is determined by T by (50).

Thus, the equalities
(T1, x1) = (T2, x2) on TV

mean that T1 = T2 in T . Equivalently, T1
graph
= T2 and x1 = x2.

If Kl = (Gl , vl) ∈ TV, for l = 1, 2, 3, then:

(K1 } K2)} K3 = (G12, v12)} K3,

where G12 = G1 v1 #v2 G2, and v12 = v1#v2

= ((G1 v1#v2 G2) v12 #v3 G3, (v1#v2)#v3)

= (G1 v1#v2 G2 v12 #v3 G3, v1#v2#v3)

= (G1 v1#(G2 v2#v3 G3), v1#(v2#v3))

= (G1, v1)} (G23, v23)

where G23 = G2 v2 #v3 G3 and v23 = v2#v3

= K1 } (K2 } K3),

implying that:
(K1 } K2)} K3 = K1 } (K2 } K3),

in TV. Therefore, the associativity (54) of } holds.
The tree-family T contains its trivial element I = {x}, the single-vertex graph (unique

up to graph isomorphisms), and hence, the family T V of (50) contains its trivial element,

I = {x} denote
= ({x}, x),

satisfying that, for all (G, v) ∈ TV,

I} (G, v) = ({x} x#v G, x#v) = (G, v),

in TV, because
{x} x#v G = G, in T ,

and
x#v is identified with v in G.
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Similarly, one has:
G} I = (G, v).

Therefore, the trivial element I ∈ TV acts as the (})-identity. Thus, the relation
(55) holds.

The commutativity (56) of } is clear, since:

G1 v1#v2 G2 = G2 v2#v1 G1,

in T , and
v1#v2 and v2#v1.

Hence,
(G1 v1#v2 G2, v1#v2) = (G2 v2#v1 G1, v2#v1),

implying that:
(G1, v1)} (G2, v2) = (G2, v2)} (G1, v2),

in TV, for all (G1, v1), (G2, v2) ∈ TV.

Recall that an algebraic structure (Ω, •) of a set Ω and an operation • is a monoid if a
well-defined operation (•) is associative and has its identity. In particular, if the operation •
is commutative, then the monoid (Ω, •) is said to be a commutative monoid.

Theorem 13. An algebraic pair (TV,}) is a commutative monoid.

Proof. By Lemma 6, the operation } is closed on the set T V . And, by (54) and (12), an
algebraic pair (T V ,}) forms a monoid. Moreover, by (56), this monoid is commutative
consisting of all mutually commuting elements under }.

Notation and Assumption. From below, we understand the set TV of (50) then as a
commutative monoid (TV,}),

TV denote
= (TV, }).

Definition 19. We call the monoid TV = (TV,}), the tree-monoid.

Now, let G ∈ G and W ⊆ G, the loop-part inclusion inducing the G-tree GW in T . For
the collapsed vertex x ∈ V(GW) of an arbitrary connected component of the loop-part W,
one can obtain:

(GW , x) ∈ TV.

As we considered in Section 7, one can have the G-tree tower (47):

GW = G1
W(x) ⊆ G2

W(x) ⊆ G3
W(x) ⊆ · · · ,

in T , satisfying (319). By regarding the steps of the tower as:

Gn
W(x) denote

=
(
Gn

W(x), x
)

in TV, (57)

for all n ∈ N, we naturally obtain the corresponding tower:

G(x) ⊆ G2
W(x) ⊆ G3

W(x) ⊆ · · · , (58)

in TV by (57) and by fixing the common vertex x. Note the difference between the G-tree
tower (47) in T , and the tower (58) induced by G1

W(x) = (GW , x) in TV.

Definition 20. Under the same hypothesis with (57), the tower (58) is called the (GW , x)-tower
in T V .
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By the monoidal structure we discussed in Theorem 13, one has:

Gn+1
W (x) = Gn

W(x)} G1
W(x),

in the sense of (57) in TV, for all n ∈ N.

Proposition 4. Let G1
W(x) ⊆ G2

W(x) ⊆ G3
W(x) ⊆ · · · be the (GW , x)-tower (58) in TV. Then:

Gn
W(x) = Gn1

W (x)} Gn2
W (x),

for all n = n1 + n2 in N.

Proof. This relation is performed with (57) because the operation } is associative (equiva-
lently, TV is a monoid).

Now, let G ∈ G and Gn
W(x) ∈ TV be in the sense of (57), the steps of the (GW , x)-tower

(58), and fix an arbitrary k ∈ N. Then, one can construct a sub-tower:

Gk
W(x) ⊆ G2k

W (x) ⊆ G3k
W (x) ⊆ · · · , (59)

of the (GW , x)-tower. One can understand in (59) that:

G(n+1)k
W (x) = Gnk

W (x)} Gk
W(x), (60)

in TV, for all n ∈ N.

Theorem 14. Let (59) be the sub-tower of the (GW , x)-tower (58) in the tree-monoid TV. Then:(
G(n+1)k

W (x)
)

Gnk
W (x)

= Gk
W(x) in T V ,

and

(
M(

G(n+1)k
W (x)

)
Gnk

W (x)

, τ(n+1)k

)
free-iso
=

(
MGk

W (x), τ
)

,
(61)

for all n ∈ N. All C∗-probability spaces of (61) do not have semicircular elements.

Proof. The combinatorial equivalence in (61) is shown by (57), (58) and (60), and it implies
the free-isomorphic relation of (61). Since all free-isomorphic C∗-probability spaces are
induced by graph-isomorphic trees, they do not contain semicircular elements.

9. The Operad T V Induced by TV

In Sections 5–7, we showed that, if G ∈ G and W ⊆ G is the loop-part inclusion induc-
ing the G-tree, the quotient graph GW , then the graph-tree index Γ(G) of G is determined

by the graph groupoid index [G : W]
def
= |GW| , and there exists a tower of trees:

GW = G1
W(x) ⊆ G2

W(x) ⊆ G3
W(x) ⊆ · · · , (62)

of the {x}-fixed n-copies Gn
W(x), for all n ∈ N, where x is the collapsed vertex of GW of an

arbitrary connected component of the loop-part W of G, in the tree-family T , and each step

Gn
W(x) ⊆ Gn+1

W (x), for n ∈ N,

we have a combinatorial equivalence,(
Gn+1

W (x)
)

Gn
W (x)

= GW in T , (63)

and an algebraic equivalence,[
Gn+1

W (x) : Gn
W(x)

]
= [G : W] = Γ(G), (64)
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and a free-probabilistic equivalence,(
M(Gn+1

W )Gn
W (x)

, τn+1

)
free-iso
=

(
MGW , τ

)
. (65)

In particular, the free-isomorphic relation (65) shows that the tower (62) constructs the
same free-probabilistic structures in every step up to quotient, and they provide equivalent
free-probabilistic structures without having semicircular elements.

Additionally, in Section 8, if one has a fixed (GW , x) ∈ TV, where GW ∈ T and
x ∈ V(GW) are as above, then:

Gn+1
W (x) denote

=
(

Gn+1
W (x), x

)
∈ TV

are well-defined in TV by (57) to be

Gn+1
W (x) = Gn

W(x)} G1
W(x),

for all n ∈ N, with identity:
G1

W(x) = (GW , x), (66)

where TV = (TV,}) is the tree-monoid of Definition 20 and the (GW , x)-tower,

G1
W(x) ⊆ G2

W(x) ⊆ G3
W(x) ⊆ · · · ,

of (58) is well-determined whose graph-entries of the steps satisfy (63)–(65).
Motivated by the above results, we here consider how our tree-monoid TV = (TV,})

induces an operadic structure (e.g., also see [39,40,42,43]). Such an interesting consideration
starts from the fact that:

(G1, v1)} (G2, v2) = (G1 v1#v2 G2, v1#v2)
denote
= (G, v)

satisfies the combinatorial relation,

|V(G)| = |V(G1)|+ |V(G2)| − 1,

since two vertices v1 ∈ V(G1) and v2 ∈ V(G2) are identified with the collapsed vertex v
in V(G).

Now, let us decompose the family TV of (50) by:

TV = t
n∈N
T V(n),

with T V(n) = {K ∈ TV : |V(K)| = n},
(67)

for all n ∈ N, where tmeans the disjoint union. By (24), we canonically obtain a family:

T V = {T V(n) : n ∈ N} of (51),

by (67). Moreover, by definitions, one has:

T V(1) = {({x}, x)}. (68)

By abusing notation, one can understand that:

T V } T V = {(G, v)} (K, x) : (G, v), (K, x) ∈ T V},

set-theoretically. Hence,
T V } T V = T V , (69)
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as sets. Indeed, the set-equality (69) holds, since

T V } T V ⊆ T V ,

since } is well-defined on TV, and

T V ⊆ T V } T V ,

since, for all (G, v) ∈ T V ,
(G, v) = (G, v)} ({x}, x),

in T V } T V . Additionally, if we understand

T V(n)} T V(m) =

{
(G, v)} (K, x) :

(G, v) ∈ T V(n)
(K, x) ∈ T V(m)

}
,

set-theoretically, then
T V(n)} T V(m) = T V(n + m− 1), (70)

as subsets of T V , for all n, m ∈ N.
The notational expression (69) says that the operation, also denoted by} on the family

T V = {T V(n)}n∈N, is well-defined in the sense of (70).

Proposition 5. If T V is the family (67) and (}) is the operation (69) on T V , then the set-
equality (70) holds in T V , so that:

T V(n)} T V(m) = T V(n + m− 1),

as elements of T V , for all n, m ∈ N.

Proof. By the symbolic definition (69) of } on T V , one has:

T V(n)} T V(m) ⊆ T V(n + m− 1).

Indeed, for (G, v) ∈ T V(n), and (K, x) ∈ T V(m) (equivalently, |V(G)| = n, and
|V(K)| = m),

(G, v)} (K, x) = (G v#x K, v#x),

in TV, with:
|V(G v#x K)| = n + m− 1.

Additionally, if (G, v) ∈ T V(n + m− 1), then, for the fixed vertex v, one can take a
tree part K1 of G with |V(K1)| = n, containing v as its vertex. Then, from the fixed vertex v,
by collecting all vertices which are not contained in V(K1) (except for v), and by collecting
all edges which are not contained in E(K1), we obtain another part K2 with |V(K2)| = m.
One can decide:

(K1, v) ∈ T V(n), and (K2, v) ∈ T V(m),

such that:
(K1, v)} (K2, v) = (G, v),

in TV. This shows that:

T V(n + m− 1) ⊆ T V(n)} T V(m).

Therefore, the set-equality (70) holds in the family T V .

By Proposition 5, we obtain the following result.
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Theorem 15. The pair (T V ,}) is a monoidal category, where T V is the family (67) and (}) is
the operation (69).

Proof. By the very construction of

T V = {T V(n) : n ∈ N},

this forms a small category. If we symbolically define an operation (}) on T V as in (69),
then it is well-defined on T V , satisfying (70), by Proposition 5.

By (70), the operation (}) is associative in the sense that:

(T V(k1)} T V(k2))} T V(k3) = T V(k1)} (T V(k2)} T V(k3)).

Indeed, both sides are identified with:

T V(k1 + k2 + k3 − 2) in T V ,

for all k1, k2, k3 ∈ N.
Furthermore, one can take T V(1) = {{{x}, x}} = {I} in T V , satisfying:

T V(1)} T V(n) = T V(n) = T V(n)} T V(1),

for all n ∈ N by (70).
Therefore, the category T V forms a monoidal category (T V ,}) under (}).

Remark that this monoidal category T V = (T V ,}) is commutative in the sense that:

T V(k1)} T V(k2) = T V(k2)} T V(k1),

for all k1, k2 ∈ N, since both sides are identical to:

T V(k1 + k2 − 1) in T V .

Thus, T V is a commutative monoidal category.

9.1. Operads

Not only in mathematical analysis, but also in topology and quantum physics, operads
are well-known and play important roles (e.g., [50]). In particular, their applications in
connection with subfactor theory and knot theory are simply amazing (e.g., [41] and cited
papers therein). Here, we introduce a modified definition of Day’s original definition of
operads (e.g., see Sections 1.2, 1.3 and 1.7 of [50]).

Definition 21. Let P = {P(n)}n∈N be a monoidal category with an operation ~ on P . This
structure (P ,~) is an operad, if (i) the well-defined operation ~ satisfies:

P(n)~P(m1)~ ...~P(mn) = P
(

n

∑
k=1

mk

)
,

for all m1, . . . , mn ∈ N, for all n ∈ N; (ii) ~ is associative in the sense that: if

−→m = (m1, . . . , mt) ∈ Nt,

−→n = (n1, . . . , ns) ∈ Ns,
−→
k = (k1, . . . , ku) ∈ Nu,
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for t, s, u ∈ N, and if

P
(−→m ) = t

~
i=1
P(mi), P

(−→n ) = s
~

j=1
P
(
nj
)
,

and
P
(−→

k
)
=

u
~

l=1
P(kl),

then (
P
(−→m )~P(−→n ))~P(−→k ) = P

(−→m )~ (P(−→m )~P(−→k ));

(iii) ~ satisfies the equivalence condition in the sense that: for all

−→m = (m1, . . . , mn) ∈ Nn, ∀n ∈ N,

one has

P(n)~P
(−→m ) = P(n)~P(σ−→m ) = P( n

∑
k=1

mk

)
,

for all σ ∈ Sn, where Sn is the symmetric group over {1, . . . , n}, and

σ−→m =
(

mσ(1), . . . , mσ(n)

)
∈ Nn;

and finally (iv) ~ has the unit property in the sense that: if

U = P(1) and U~n = U~ ... · · ·~U︸ ︷︷ ︸
n-times

,

then
P(n)~U~n = P(n) = U~n ~P(n),

in P , for all n ∈ N.

Interesting examples and applications of operads can be found in e.g., [41,50].

9.2. The Operad T V Induced by the Tree-Monoid TV

In this section, we prove that our monoidal category T V = (T V ,}), induced by the
tree-monoid TV, is a well-determined operad in the sense of Definition 21. Of course,
as a commutative monoid, the tree-monoid TV itself is a good algebraic structure. More
than that, if TV induces an operad, then it also provides “good” categorial, topological,
and quantum-physical properties as in [50], and, hence, the similar applications such as
the Jones’ operads (or, Temperly–Lieb operads) of planar algebra (e.g., [41]) may/can be
possible. The tree-monoid TV provides a new example of operads in connections with
graph theory, groupoid theory, representation theory, operator algebra and free probability
(especially, “non-semicircularity”).

Let T V = (T V ,}) be the monoidal category of Theorem 15.

Theorem 16. The monoidal category T V is an operad.

Proof. Let T V be the small category (67) equipped with an operation (}) of (69). Then,
using Theorem 15:

T V is a monoidal category. (71)

moreover, it is a commutative monoidal category. Recall that the operation} on T V satisfies:

T V(n)} T V(m) = T V(n + m− 1), ∀n, m ∈ N, (72)

by (70). Observe first that, if
m1, . . . , mn ∈ N,
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then one has that:

T V(n)} T V(m1)} . . . } T V(mn)

= (T V(n)} T V(m1))} T V(m2)} . . . } T V(mn)

since the category T V o is monoidal by (71)

= T V(n + m1 − 1)} T V(m2)} . . . } T V(mn)
by (72)

= (T V(n + m1 − 1)} T V(m2))} T V(m3) · · ·} T V(mn)
by (71)

= T V(n + m1 + m2 − 2)} T V(m3)} . . . } T V(mn)

= . . .

= T V(n + m1 + · · ·+ mn−1 − (n− 1))} T V(mn)

= T V(n + m1 + · · ·+ mn − n) = T V(m1 + · · ·+ mn), (73)

for all n ∈ N. Thus, the operation } of T V o satisfies the condition (i) of Definition 21.
Now, assume that −→m , −→n , and

−→
k are in the sense of the condition (ii) of Definition 21,

and suppose:

T V
(−→m ) = t

}
i=1
T V(mi), T V

(−→n ) = s
}

j=1
T V

(
nj
)
,

and
T V

(−→
k
)
=

u
}

l=1
T V(kl), ∀t, s, u ∈ N,

in T V o. Then, we have that:(
T V

(−→m )} T V(−→n ))} T V(−→k ) = T V(N),

and T V
(−→m )} (T V(−→n )} T V(−→k )) = T V(N),

(74)

where

N =

(
t

∑
i=1

mi − (t− 1)

)
+

(
s

∑
j=1

nj − (s− 1)

)
+

(
u

∑
l=1

kl − (u− 1)

)
,

in N by (71) and (72). This implies that:(
T V

(−→m )} T V(−→n ))} T V(−→k ) = T V
(−→m )} (T V(−→n )} T V(−→k )),

in T V o, implying the associativity (ii) of Definition 21.
Consider now that if:

−→m = (m1, . . . , mn) ∈ Nn,

then

T V(n)} T V
(−→m ) = T V( n

∑
k=1

mk

)
,

by (73). Note that, by (72)

T V(k1)} T V(k2) = T V(k1 + k2 − 1),

and
T V(k2)} T V(k1) = T V(k2 + k1 − 1),

implying that,
T V(k1)} T V(k2) = T V(k2)} T V(k1), (75)



Axioms 2022, 11, 47 44 of 55

for all k1, k2 ∈ N. Thus,

T V(n)} T V
(−→m ) = T V( n

∑
k=1

mk

)
= T V(n)} T V

(
σ−→m

)
,

for all σ ∈ Sn, where
σ−→m =

(
mσ(1), . . . , mσ(n)

)
∈ Nn, (76)

by (75), for all n ∈ N. Thus, the equivalence condition (iii) of Definition 21 is satisfied for
(T V o,}).

Now, let
U = T V(1) = {({x}, x)},

as in (68), and
U}n = U} · · · · · · · · ·}U︸ ︷︷ ︸

n-times

, ∀n ∈ N.

Recall that
T V(n)}U = T V(n) = U} T V(n),

in T V , by Theorem 15, for all n ∈ N. Therefore,

T V(n)}U}n = T V(n) = U}n } T V(n), (77)

in T V , for all n ∈ N. This shows that the operation } of T V satisfies the unit property (iv)
of Definition 21.

Therefore, by (73), (74), (76), and (77), our category T V is an operad.

The above theorem not only shows our tree-monoid TV induces an operad T V
naturally, but also provides a new example that is different from the free monoids of [50],
and the Temperly–Lieb, or Temperly–Lieb-like operads of [41].

10. The Tree-Monoidal Algebra T V

Let TV = (TV,}) be the tree-monoid of Definition [14]. In this section, we construct
a certain pure-algebraic algebra T V generated by the monoid TV, and study not only the
algebraic properties of T V , but also the natural statistical properties of T V .

Define a (pure-algebraic) vector space TV by:

TV
def
= spanC(TV), (78)

where spanC(Y) means the vector space spanned by a set Y over C, and, hence, the vector
space TV is generated by the set TV. By (78), every vector ξ ∈ TV has its expression:

ξ = ∑
(G,v)∈TV

t(G,v)ξ(G,v), with t(G,v) ∈ C, (79)

where ∑ is the finite sum, and ξ(G,v) are the spanning vectors of TV induced by (G, x) ∈ TV.

Notation and Assumption 78. (From below, in short, NA 78) If there is no confusion, we
denote the spanning vectors ξ(G,v) in (79) simply by (G, v). Under this assumption, one can
re-write (79) using

ξ = ∑
(G,v)∈TV

t(G,v)(G, v),

below. In particular, we write:

ξG
denote
= ∑

x∈V(G)

1 · (G, x),

in TV, for all G ∈ T . @

Now, on this vector space TV, we define a vector multiplication, also denoted as }, by:
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(
∑

T∈TV
tTT

)
}
(

∑
S∈TV

sSS
)

def
= ∑

(T,S)∈TV2
(tTsS)T} S, (80)

where the operation} on the right-hand side is the monoidal operation on the tree-monoid
(TV,}). Of course, in the summands in (80), the notations T, S and T } S mean the
spanning vectors ξT , ξS and ξT}S in TV, respectively, by NA 78.

By the very definition (80), the operation } is well-defined on the vector space TV.
Moreover, it satisfies:

(ξ1 } ξ2)} ξ3 = ξ1 } (ξ2 } ξ3), (81)

in TV, for all ξ1, ξ2, ξ3 ∈ TV, since the operation } in the right-hand side of (80) is
associative, inducing a monoid TV.

Therefore, this well-defined multiplication} of (80) is associative by (81) on TV. Thus,
the vector space equipped with } forms a (pure-algebraic) algebra over C. Moreover, this
algebra is unital in the sense that it contains its unity (or, unit vector) I = ({x}, x),

I = ξI ∈ TV, under NA 78,

satisfying (
∑

T∈T V
tTT

)
} I = ∑

T∈T V
tT(T} I) = ∑

T∈T V
tTT,

implying
ξ } I = ξ = I} ξ, ∀ξ ∈ TV. (82)

Additionally, since
(G, v)} (K, x) = (G v#x K, v#x),

and
(K, x)} (G, v) = (K x#v G, x#v),

in the tree-monoid TV, implying that

T} S = S} T, for all T, S ∈ T V ,

one can check that
ξ } η = η} ξ for all ξ, η ∈ TV, (83)

by (80).

Theorem 17. Let TV be the vector space (78) generated by the tree-monoid TV, equipped with the
vector-multiplication } of (80). Then, it is a commutative unital algebra over C.

Proof. The vector space TV equipped with the operation } forms an algebra over C by
the well-definedness (80) and the associativity (81). Additionally, it is commutative by (83)
and unital by the existence of the unity I = ξI ∈ TV by (82).

The above theorem shows that the tree-monoid TV generates the commutative unital
algebra TV.

Definition 22. The commutative unital algebra TV of (78), equipped with the vector-multiplication
} of (80), is called the tree-monoidal algebra. From below, to distinguish with the vector-space
notation TV, we denote this tree-monoidal algebra using T V . This notation T V means a vector
space TV with the vector-multiplication }, as an algebra.

11. Discrete Statistical Models of T V

Let T V be the tree-monoidal algebra of Definition 22 generated by the tree-monoid
TV, equipped with its algebra multiplication } of (80).
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11.1. A Tree-Index Statistical Model

On the tree-monoidal algebra T V , define a (pure-algebraic) linear functional Γ by a
linear morphism:

Γ

(
∑

(G,v)∈TV
t(G,v)(G, v)

)
def
= ∑

(G,v)∈TV

t(G,v)
Γ(G)

, (84)

where Γ on the right-hand side of (84) is the graph-tree index of Definition 25. Note that,
by the very definition (84), the morphism Γ is a well-defined linear functional, which is
bounded in the sense that:

|Γ(Y)| < ∞, ∀Y ∈ T V ,

where |.| is the modulus onC. Moreover, by the commutativity of the tree-monoidal algebra
T V . Note that if O ∈ T V is the zero element (which is the zero vector of TV), then it is
understood to be:

O = 0 ·U,

and hence,

Γ(O) =
0

Γ(U) =
0
1
= 0.

Definition 23. We call the linear functional Γ of (84), the (graph-tree-)indexing trace on T V .

Recall that if K ∈ G with its loop-part W ⊆ K, then

Γ(K) = [K : W] = |KW|,

where KW is the graph groupoid of the quotient graph KW . Thus, one has:

G ∈ T is a tree,

if and only if
Γ(G) = [G : φ] = |G|, (85)

by our axiomatization Gφ = G, where φ is the empty part (see Definition 8).

Proposition 6. The indexing trace Γ of (84) satisfies that:

Γ

 ∑
(G,v)∈T V

t(G,v)(G, v)

 = ∑
(G,v)

t(G,v)

|G| ,

and, as a special case,

Γ(ξG) =
|V(G)|
|G| , (86)

for all G ∈ T , where G are the graph groupoids of G ∈ T .

Proof. By the definition (84) of the indexing trace Γ and by the formula (85), one obtains
the first formula of (86). Thus, one has:

Γ(ξG) = Γ

 ∑
v∈V(G)

(G, v)

 = ∑
v∈V(G)

1
|G| =

|V(G)|
|G| ,

by (85), for all G ∈ T . Thus, the second formula of (86) holds as a special case of the
first.
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It is easy to check that

Γ((G, v)) = Γ
(

ξ(G,v)

)
=

1
Γ(G)

=
1
|G| ,

for all generating elements (G, v) ∈ T V .
In (86), note that, since we are handling linear combinations (as finite sums), and since

the graph groupoids of our trees contains finitely many elements, we always have:

0 ≤ |Γ(ξ)| < ∞, ∀ξ ∈ T V .

Therefore, the resulted quantities of (86) are bounded in C. Thus, one can obtain the
following statistical structure (e.g., [18]).

Definition 24. Let T V be the tree-monoidal algebra (78) generated by the tree-monoid TV,
and let Γ be the indexing trace (84). Then, the pair (T V , Γ) is called the index-tree-monoidal
(measure) space.

By the very definition, the statistical data determined by the moments of an element
of the index-tree-monoidal measure space (T V , Γ) are determined by the tree index Γ. In
particular, by (86), one has:

Γ(ξG) =
|V(G)|
|G| =

|V(G)|
Γ(G)

,

for all G ∈ T . For instance, if I = ({x}, x) ∈ T V in (T V , Γ), then:

Γ(I) = 1
Γ({x}) =

1
1
= 1

(e.g., see (18), or (20)).
Now, for an arbitrarily fixed (G, v) ∈ T V(N) in TV (implying that |V(G)| = N, for

N ∈ N), let:

ξ(G,v)
denote
=

NA 78
(G, v) ∈ T V .

Observe that the powers
{
(G, v)n}∞

n=1 ⊂ T V of (G, v) ∈ T V satisfy that:

(G, v)n = (Gn(v), v) denote
= Gn(v)

(
= ξGn(v)

)
∈ T V ,

where Gn(v) are in the sense of (53), for all n ∈ N. Indeed,

(G, v)n = (G, v)} · · ·} (G, v)︸ ︷︷ ︸
n-times

= ((G, v)} (G, v))} · · ·} (G, v)

= G2(v)} (G, v)} · · ·} (G, v) = . . .

= Gn−1(v)} (G, v) = (Gn(v), v) denote
= Gn(v), (87)

in T V .

Theorem 18. Let (G, v) denote
= ξ(G,v) ∈ (T V , Γ), for (G, v) ∈ TV. Then

Γ
(
(G, v)n) = 1

|Gn | , ∀n ∈ N,

and lim
n→∞

Γ
(
(G, v)n) = 0,

(88)

where Gn are the graph groupoids of Gn(v), for all n ∈ N, and where the limit in (88) is taken from
the usual topology on C.
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Proof. By (87), one has:
(G, v)n = Gn(v) in T V ,

Hence, if Gn are the graph groupoids of Gn(v), then:

Γ
(
(G, v)n) = 1

Γ(Gn(v)) =
1
|Gn | , (89)

by (86) for all n ∈ N. Thus, the statistical data of the powers
{
(G, v)n}

n∈N of (88) are obtained.
Note now that if (G, v) ∈ T V(N) in TV, then

G2(v) ∈ T V(2N − 1), G3(v) ∈ T V(3N − 2),

inductively,
Gn(v) ∈ T V(nN − (n− 1)) = T V(n(N − 1) + 1), (90)

for all n ∈ N. Thus, if Gn are the graph groupoids of Gn(v) ∈ T V , then the cardinalities of
them are strictly increasing in N,

0 <
∣∣∣G1

∣∣∣ < ∣∣∣G2
∣∣∣ < ∣∣∣G3

∣∣∣ < · · · ,

by (90). Hence:
1
|G1|

>
1
|G2| >

1
|G3| > · · · .

Thus,

Γ
(
(G, v)n) = Γ(Gn(v)) =

1
|Gn| → 0,

as n→ ∞, in C. Therefore, the asymptotic data of (88) hold.

The above statistical data (88) show that each generating element (G, v) ∈ TV induces
the algebra-element (G, v) = ξ(G,v) ∈ T V , whose moments approach 0.

Corollary 10. Let X =
N
∑

k=1
tk(Gk, vk) ∈ (T V , Γ), with |tk| < 1 for all k = 1, . . . , N, for N ∈ N.

Then
lim

n→∞
|Γ(Xn)| = 0 in C.

Proof. Under the assumption for the C-coefficients that

|tk| < 1, for all k = 1, . . . , N,

one can obtain the above asymptotic statistical data according to (90).

11.2. A Vertex-Cardinality Model

The index-tree-monoidal space (T V , Γ) is well-determined in Definition 13, and the
corresponding discrete-measure-theoretic data on (T V , Γ) are considered in Section 11.1 as
a discrete statistical model. However, in general, it is somewhat hard to “actually” compute
the cardinality of graph groupoids of trees of the tree-family T . In particular, if the size of
finite trees of T is bigger and bigger, or the combinatorial structure of the trees is more and
more complicated, computing the cardinalities of the graph groupoids of such trees, which
is equivalent to finding their tree-indices, is not easy, even though we know that they are
finitely determined in N. Thus, in this section, we introduce another statistical model on
our tree-monoidal algebra T V , providing rough upper bounds.

Frankly speaking, in the model of this section, we will ignore some interesting combina-
torial data of the trees of T and corresponding algebraic information of the graph groupoids
of the trees. However, this model is interesting as a discrete statistical model (induced from
our graphs of G) independently, and it is much easier to handle computationally.
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On the tree-monoidal algebra T V , we define a linear functional,

υ : T V → C,

by

υ

 ∑
(G,v)∈T V

t(G,v)(G, v)

 def
= ∑

(G,v)∈T V

t(G,v)

|V(G)| . (91)

Then, it is indeed a well-defined bounded linear functional on the algebra T V .
By the very definition (91) of the linear functional υ on T V , one can realize that the

combinatorial data from the trees of T V , determined by the admissibility of their graph
groupoids, do not affect the quantitative data, while the classification of the generating family

TV = t
n∈N
T V(n),

determines the linear-functional values. For instance, if (G, v) ∈ T V(n) in T V , for all
v ∈ V(G), then:

υ
(

ξ(G,v)

)
denote
=

NA 78
υ((G, v)) = 1

|V(G)| =
1
n , (92)

Hence, if ξG = ∑
x∈V(G)

(G, x) ∈ T V , then, by (92), one has:

υ(ξG) =
n
n = 1, for all G ∈ T . (93)

Proposition 7. Let X =
N
∑

k=1
tk(Gk, xk) ∈ T V , with (Gk, xk) ∈ T V(nk), for all k = 1, . . . , N,

for n1, . . . , nN , N ∈ N, and let

ξG = ∑
x∈V(G)

(G, x) ∈ T V , for G ∈ T ,

under NA 78. Then

υ(X) =
N

∑
k=1

tk
nk

, and υ(ξG) = 1 (94)

Proof. Under this hypothesis, the second formula of (94) is shown by (93). The first formula
of (94) is proven by the straightforward computation by (87). Indeed, if X ∈ T V is given
as above, then:

υ(X) =
N

∑
k=1

tk
|V(Gk)|

=
N

∑
k=1

tk
nk

,

since (Gk, xk) ∈ T V(nk), for all k = 1, . . . , N, and hence,

|V(Gk)| = nk, ∀k = 1, . . . , N.

Now, let (G, v) ∈ T V(N) in TV, inducing the algebra-element (G, v) denote
= ξ(G,v) in

T V under NA 78, for N ∈ N. As we considered in Section 11.1:

(G, v)n = Gn(v) denote
= (Gn(v), v) ∈ T V ,

(under NA 78), and
Gn(v) ∈ T V(n(N − 1) + 1),

in TV, implying that
|V(Gn(v))| = n(N − 1) + 1, (95)
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for all n ∈ N.

Theorem 19. Let (G, v) ∈ T V(N) in TV inducing an algebra-element (G, v) ∈ T V under
NA 78, for N ∈ N. Then:

υ
(
(G, v)n) = 1

n(N − 1) + 1
, ∀n ∈ N,

and hence,
lim

n→∞
υ
(
(G, v)n) = 0, (96)

where the limit is taken from the usual topology for C.

Proof. Recall that
(G, v)n = (G, v)} · · ·} (G, v)︸ ︷︷ ︸

n-times

= Gn(v),

in T V . Hence:
υ
(
(G, v)n) = υ(Gn(v)) =

1
|V(Gn(v))| ,

by (94), for all n ∈ N. By (95),

|V(Gn(v))| = n(N − 1) + 1,

for all n ∈ N. Thus, the statistical data of (96) hold.
If n→ ∞, then n(N − 1) + 1→ ∞. Hence, the asymptotic data of (96) hold as well.

By (88) and (96), one can obtain the following result.

Corollary 11. Let (G, v) ∈ T V be in the sense of Theorem 19, with (G, v) ∈ T V(N), for
N ∈ N \ {1}. Then

Γ
(
(G, v)n) < υ

(
(G, v)n),

however,
υ(In) = υ(I) = Γ(I) = Γ(In), (97)

for all n ∈ N, where I = ({x}, x) ∈ T V is the unity.

Proof. If N ∈ N \ {1}, then:

(G, v) 6= I in TV, and hence, in T V ,

under NA 78. Thus, if G ∈ T is a tree, which is not the vertex graph {x} ∈ T , then

|V(G)| < |G|,

because G contains the empty word φ other than vertices. Hence:

|V(G)|+ |{φ}| = |V(G)|+ 1 ≤ |G|.

Therefore, by (88) and (94), we have:

υ
(
(G, v)n) = 1

|V(Gn(v))| >
1
|Gn| = Γ

(
(G, v)n),

where Gn are the graph groupoids of Gn(v) ∈ T , for all n ∈ N. Therefore, the strict
inequality of (97) holds.
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Now, let I = ({x}, x) ∈ T V(1) is the identity of the tree-monoid TV, and I denote
= ξI ∈

T V , the unity under NA 78. Then, the powers of I satisfy

In = I}n = I, in T V .

Therefore, one has:

Γ(In) = Γ(I) = 1
Γ(I) =

1
|X| =

1
1
= 1,

and
υ(In) = υ(I) = 1

|V(I)| =
1
1
= 1,

implying the equalities of (97) for all n ∈ N.

The following result is a direct consequence of Corollary 11.

Corollary 12. Let (G, v) ∈ T V be in the sense of Theorem 19. Then:

Γ
(
(G, v)n) ≤ υ

(
(G, v)n),

for all n ∈ N.

Proof. This is shown by (97).

The above result illustrates that our vertex-cardinality statistical model (T V , υ) on
the tree-monoidal algebra T V provides rough upper bounds for the index-tree-monoidal
space (T V , Γ).

Definition 25. The pair (T V , υ) is called the vertex-tree-monoidal (measure) space.

Now, let W be an element of the vertex-tree-monoidal space:

W =
N
∑

k=1
tk(Gk, vk) ∈ (T V , υ), with tk ∈ C,

with (Gk, vk) ∈ T V(Nk) ⊂ TV, for k = 1, . . . , N,
(98)

for N1, . . . , NN , N ∈ N.
Observe that if W ∈ (T V , υ) is in the sense of (98), then:

Wn = ∑
(i1,...,in)∈{1,...,N}n

(
n
∏
l=1

til

)(
n
}

l=1

(
Gi1 , vil

))
,

where
n
}

l=1

(
Gil , vil

)
=
(
Gi1 , vi1

)
}
(
Gi2 , viv

)
} · · ·} (Gin , vin),

(99)

for all (i1, . . . , in) ∈ {1, . . . , N}n, for all n ∈ N. If we denote the summands of Wn by:{
ti1,...,in

(
Ki1,...,in , vi1,...,in

)
: (i1, . . . , in) ∈ {1, . . . , N}n},

then

Wn = ∑
(i1,...,in)∈{1,...,N}n

ti1,...,in
(
Ki1,...,in , vi1,...,in

)
,

where ti1,...,in =
n
∏
l=1

til in C,
(100)

and
Ki1,...,in = Gi1vi1

#vi2
Gi2vi2

#vi3
. . .vin−1

#vin
Gin ,
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are the iterated glued graphs, and

vi1,...,in = vi1#vi2# . . . #vin ,

are the corresponding iterated collapsed vertices, for all (i1, . . . , in)∈{1, . . . , N}n, for n ∈ N,
by (99).

Since if (G, v) ∈ T V(k1) and (K, x) ∈ T V(k2) in T V , then

(G, v)} (K, x) = (G v#x K, v#x) ∈ T V(k1 + k2 − 1),

in TV, each factor
(
Ki1,...,in , vi1,...,in

)
∈ T V of the summand of Wn, in the sense of (100),

satisfies: (
Ki1,...,in , vi1,...,in

)
∈ T V

(
ni1 + · · ·+ nin − (n− 1)

)
,

⇐⇒(
Ki1,...,in , vi1,...,in

)
∈ T V

(
1− n +

n
∑

l=1
Nil

)
,

(101)

by (98) and (99).

Theorem 20. Let W ∈ (T V , υ) be in the sense of (98). Then:

υ(Wn) = ∑
(i1,...,in)∈{1,...,N}n

(
n
∏

l=1
til

)
(

1−n+
n
∑

l=1
Nil

) , (102)

for all n ∈ N.

Proof. If W ∈ (T V , υ) is an element (98), then:

Wn = ∑
(i1,...,in)∈{1,...,N}n

ti1,...,in
(
Ki1,...,in , vi1,...,in

)
,

by (99), where ti1,...,in ∈ C and
(
Ki1,...,in , vi1,...,in

)
∈ T V are in the sense of (100), for all

n ∈ N.
Thus, one has:

υ(Wn) = ∑
(i1,...,in)∈{1,...,N}n

ti1,...,in∣∣V(Ki1,...,in
)∣∣ ,

by (91). Hence, the formula (102) holds because:

∣∣V(Ki1,...,in
)∣∣ = 1− n +

n

∑
l=1

Nil ,

by (101).

The above moment computation (102) provides the following generalized estimation
of (97).

Corollary 13. Let Y =
N
∑

k=1
(Gk, vk) be an element of the tree-monoidal algebra T V . If we

understand Y ∈ T V as an element of the index-tree-monoidal space (T V , Γ), then:

Γ(Yn) ≤ ∑
(i1,...,in)∈{1,...,N}n

1(
1−n+

n
∑

l=1
Nil

) , (103)

for all n ∈ N.
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Proof. If Y ∈ T V is as above, then, similar to (99),

Yn = ∑
(i1,...,in)∈{1,...,N}n

(
Ki1,...,in , vi1,...,in

)
,

where the summands are in terms of (100), for all n ∈ N.
By (97), one has:

0 < Γ
((

Ki1,...,in , vi1,...,in
))
≤ υ

((
Ki1,...,in , vi1,...,in

))
,

for all (i1, . . . , in) ∈ {1, . . . , N}n. It implies that

Γ(Yn) ≤ υ(Yn), for all n ∈ N.

Therefore, the inequality (103) holds by (102).

12. Conclusions and Discussion

In this section, we explain the main ideas of this paper, summarize our main results,
and discuss the connections among them.

Let G be a connected finite-directed graph with its graph groupoidG. Then, the graph
groupoid algebra MG is well-defined as a C∗-algebra generated by G, and the trace τ on
MG is naturally defined. Thus, the graph C∗-probability space (MG, τ) is established. On
(MG, τ), the semicircularity is characterized by the loop-ness on G. If Gu is the undirected
graph of G, then the semicircularity on (MG, τ) is characterized by the loop-ness on G,
which is characterized by the condition: Gu is not a tree—i.e., w ∈ G is a loop if and
only if the w-radial operator Lw is semicircular in (MG, τ), if and only if Gu is not a tree.
Equivalently, the “non-semicircularity” on (MG, τ) is characterized by the “non-loop-ness”
of G and, equivalently, the “tree-ness” of Gu (or, the “directed-tree-ness” of G).

From a given connected finite-directed graph G ∈ G with more than one vertex
(unique for the graph isomorphisms), one can take the loop-part W ⊆ G and construct
the quotient graph GW . Then, this quotient graph GW is a (directed) tree, called the G-tree.
This shows that the G-tree GW implies the “non-semicircularity” inside (MG, τ), implying
that

(
MGW , τ

)
does not contain any semicircular elements. Such a non-semicircularity on

(MG, τ) is quantized by the (graph-)tree index Γ:

Γ(G)
def
= |GW| = [G : W].

Based on the tree-indexing on G, one can classify the family G in terms of the tree-
family T (up to graph isomorphisms), implying the non-semicircularity induced by G.

If TV = {(G, v) : G ∈ T , v ∈ V(G)}, then the corresponding commutative monoid
(TV,}) is well-defined under the vertex-gluing on G (and, hence, on T ), under the opera-
tion (}), which is the vertex-fixed gluing process. This monoidal structure (TV,}) induces
an operad,

T V = {T V(n) : n ∈ N},

which is a monoidal category satisfying

T V(n1)} T V(n2) = T V(n1 + n2 − 1),

for all n1, n2 ∈ N. Independently, this monoid (TV,}) induces a pure-algebraic algebra
T V over C, and it has certain statistics depending on the tree-index Γ, and that on the
vertex-cardinality. In particular, the vertex-cardinality model provides rough upper bounds
for the statistical data determined by Γ.

From our main results, one may/can consider further operad-dependent structures,
such as the operad algebra generated by our operad T V , and keep considering how the
tree-ness (which classifies the non-semicircularity) affects not only the analysis but also
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the topology, as well as the physics. Additinoally, one may/can consider direct, canonical,
and interesting connections between statistical data on T V and the non-semicircularity on
graph C∗-probability spaces.
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