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Abstract: In this paper, we study the existence and uniqueness of solutions for a coupled implicit
system involving ψ-Riemann–Liouville fractional derivative with nonlocal conditions. We first
transformed the coupled implicit problem into an integral system and then analyzed the uniqueness
and existence of this integral system by means of Banach fixed-point theorem and Krasnoselskiis
fixed-point theorem. Some known results in the literature are extended. Finally, an example is given
to illustrate our theoretical result.
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1. Introduction

The fractional calculus is an important branch of mathematics and its wide appli-
cations to many fields, such engineering, economics, physics, chemistry, finance, control
of dynamical systems, and so on—see [1–7], and the references cited therein. One of the
proposed generalizations of the fractional calculus operators is the ψ-fractional operator—
see [8–10] and references therein for its wide applications. Some properties of this operator
could be found in [11–13].

As we all know, the coupled system of fractional differential equations is becoming
a more popular research field due to its vast applications in real-time problems, namely
anomalous diffusion, chaotic systems, disease models, and ecological models [14–16].
Recently, the coupled system of fractional differential equations has been considered ex-
tensively in the literature. Alsaedi et al. [17] researched the uniqueness and existence
of solutions for a nonlinear system of Riemann–Liouville fractional differential equa-
tions equipped with nonseparated semi-coupled integro-multipoint boundary conditions.
Baleanu et al. [18] studied the uniqueness existence and Ulam stability for a coupled sys-
tem involving generalized Sturm–Liouville problems and Langevin fractional differential
equations described by Atangana–Baleanu–Caputo derivatives by virtue of the notable
Mittag–Leffler kernel. Muthaiah et al. [19] presented the existence, uniqueness, and Hyers–
Ulam stability of the coupled system of Caputo–Hadamard-type fractional differential
equations with multipoint and nonlocal integral boundary conditions. Based on the fea-
tures of the Hadamard fractional derivative, the implementation of fixed-point theorems,
the employment of Urs’s stability approach, and the existence, uniqueness, and stability of
the coupled system of nonlinear Langevin equations involving Caputo–Hadamard frac-
tional derivative—subject to nonperiodic boundary conditions—are established by Matar
et al. [20]. In [21], by using the coincidence degree theory, Zhang et al. established the exis-
tence and uniqueness theorems for the coupled systems of implicit fractional differential
equations with periodic boundary conditions.
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In recent years, the study of basic theories of initial and boundary value problems
for implicit fractional differential equations and integral equations with Caputo fractional
derivative and Riemann–Liouville fractional derivative has been paid to much attention.
In [22], Benchohra and Souid obtained integrable solutions for initial value problem of
implicit fractional differential equations. Nieto et al. [23] studied initial value problem for
an implicit fractional differential equation using a fixed-point theory and approximation
method. Furthermore, in [24] Benchohra and Bouriah established existence and various
stability results for a class of boundary value problem for implicit fractional differential
equation with Caputo fractional derivative. Implicit fractional differential equations play a
key role in different problems, the readers are referred to see [25–28].

In [29], Benchohra et al. discussed the existence and Ulam stability analysis of the
following nonlinear implicit fractional differential equation with initial value condition:{

Dα
0+x(t) = f (t, x(t), Dα

0+x(t)), t ∈ (0, T],
t1−αx(t)|t=0 = x0, x0 ∈ R,

(1)

where Dα
0+ is the standard Riemann–Liouville fractional derivative, f : (0; T]×R×R→ R

is a continuous function, and 0 < α < 1.
Very recently, in [30], Lachouri et al. studied the existence and uniqueness of solutions

for the following nonlinear implicit Riemann–Liouville fractional differential equation with
nonlocal condition: {

Dα
0+x(t) = f (t, x(t), Dα

0+x(t)), t ∈ (0, T],
t1−αx(t)|t=0 = x0 − g(x), x0 ∈ R,

(2)

where Dα
0+ and f are as in (1.1), g : C((0, T],R)→ R is a continuous nonlinear function.

Motivated by the above works, we consider the following coupled implicit ψ-Riemann–
Liouville fractional differential equations with nonlocal conditions:

Dα,ψ
0+ x(t) = f (t, y(t), Dα,ψ

0+ x(t)), t ∈ (0, T],
Dα,ψ

0+ y(t) = g(t, x(t), Dα,ψ
0+ y(t)), t ∈ (0, T],

(ψ(t)− ψ(0))1−αx(t)|t=0 = y0 − r(y), y0 ∈ R,
(ψ(t)− ψ(0))1−αy(t)|t=0 = x0 − h(x), x0 ∈ R,

(3)

where Dα,ψ
0+ x(t) is the Riemann–Liouville fractional derivative of a function x with respect

to another function ψ, which is increasing, and ψ′(t) 6= 0 for all t ∈ [0, T], f , g : (0, T]×
R×R→ R are two continuous functions, and 0 < α < 1, h, r : C((0, T],R) → R are two
continuous nonlinear functions.

To the best of our knowledge, there are no papers on coupled implicit fractional
differential equations including fractional derivative of a function with respect to another
function. We cover this gap in this paper.

In this paper, our aim is to present the sufficient conditions for the existence and
uniqueness of solutions for coupled implicit system (3). First of all, we transform (3) into an
integral system and then we study the existence and uniqueness of solutions by the Banach
and Krasnoselskii fixed-point theorems. Finally, an example is given to illustrate our main
results. Our results extend the main results of [30].

This paper will be organized as follows. In Section 2, we will briefly recall some
notations, definitions and preliminaries. Section 3 is devoted to proving the existence and
uniqueness of the solution for system (3). In Section 4, an example is given to illustrate our
theoretical result. Finally, we present some conclusions in Section 5.

2. Preliminaries

In this section, we provided some basic definitions and lemmas which are used in
the sequel.
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Definition 1 ([13]). Let α > 0, f be an integrable function defined on [a, b] and ψ ∈ C1([a, b]) be
an increasing function with ψ′(t) 6= 0 for all t ∈ [a, b]. The left ψ-Riemann–Liouville fractional
integral operator of order α of a function f is defined by:

Iα,ψ
a+ f (t) =

1
Γ(α)

∫ t

a
ψ′(s)(ψ(t)− ψ(s))α−1 f (s)ds.

Definition 2 ([13]). Let n− 1 < α < n, f ∈ Cn([a, b]) and ψ ∈ Cn([a, b]) be an increasing
function with ψ′(t) 6= 0 for all t ∈ [a, b]. The left ψ-Riemann–Liouville fractional derivative of
order α of a function f is defined by:

Dα,ψ
a+ f (t) =

(
1

ψ′(t)
d
dt

)n
In−α,ψ
a+ f (t)

=
1

Γ(n− α)

(
1

ψ′(t)
d
dt

)n ∫ t

a
ψ′(s)(ψ(t)− ψ(s))n−α−1 f (s)ds,

where n = [α] + 1.

Lemma 1 ([13]). Let α > 0 and β > 0, then

(i) Iα,ψ
a+ (ψ(s)− ψ(a))β−1(t) =

Γ(β)

Γ(β + α)
(ψ(t)− ψ(a))β+α−1,

(ii) Dα,ψ
a+ (ψ(s)− ψ(a))β−1(t) =

Γ(β)

Γ(β− α)
(ψ(t)− ψ(a))β−α−1.

In the following, we will give the combinations of the fractional integral and the fractional
derivatives of a function with respect to another function.

Lemma 2 ([11]). Let f ∈ Cn([a, b]) and n− 1 < α < n. Then we have

(1) Dα,ψ
a+ Iα,ψ

a+ f (t) = f (t);

(2) Iα,ψ
a+ Dα,ψ

a+ f (t) = f (t)−
n

∑
k=1

f [k−1](a+)
Γ(k− α)

(ψ(t)− ψ(a))k−α,

where f [k](t) :=
(

1
ψ′(t)

d
dt

)k
f (t) on [a, b]. In particular, given α ∈ (0, 1), one has

Iα,ψ
a+ Dα,ψ

a+ f (t) = f (t)− c(t− a)α−1,

where c is a constant.

Lemma 3. (x, y) solves (3) if—and only if—it is a solution of integral system.{
x(t) = (ψ(t)− ψ(0))α−1(y0 − r(y)) + 1

Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1 f (s, y(s), Dα,ψ

0+ x(s))ψ′(s)ds,

y(t) = (ψ(t)− ψ(0))α−1(x0 − h(x)) + 1
Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1g(s, x(s), Dα,ψ

0+ y(s))ψ′(s)ds.
(4)

Proof. If (x, y) satisfies the problem (3), then applying Iα,ψ
0+ to both sides of the first equation

and second equation of (3), respectively, we have

Iα,ψ
0+ Dα,ψ

0+ x(t) = Iα,ψ
0+ f (t, y(t), Dα,ψ

0+ x(t)),

and
Iα,φ
0+ Dα,ψ

0+ y(t) = Iα,ψ
0+ g(t, x(t), Dα,ψ

0+ y(t)).

By Lemma 2, we obtain{
x(t) = c1(ψ(t)− ψ(0))α−1 + 1

Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1 f (s, y(s), Dα,ψ

0+ x(s))ψ′(s)ds,

y(t) = c2(ψ(t)− ψ(0))α−1 + 1
Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1g(s, x(s), Dα,ψ

0+ y(s))ψ′(s)ds,
(5)
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where t ∈ (0, T]. In view of the following conditions:

(ψ(t)− ψ(0))1−αx(t)|t=0 = y0 − r(y), (ψ(t)− ψ(0))1−αy(t)|t=0 = x0 − h(x),

we obtain
c1 = y0 − r(y), c2 = x0 − h(x). (6)

Substituting (6) into (5) we obtain the integral system (4).

Theorem 1 ((Krasnoselskll’s fixed point theorem) [31]). Let Ω be a non-empty closed bounded
convex subset of a Banach space E. Suppose that F1 and F2 map Ω into E, such that

(i) F1x + F2y ∈ Ω for all x, y ∈ Ω;
(ii) F1 is continuous and compact;
(iii) F2 is a contraction with constant k < 1.

Then, there is a z ∈ Ω, with F1z + F2z = z.

3. Main Results

Let γ > 0, T > 0 and J = [0, T], we denote the weighted space of the following
continuous functions:

Cγ,ψ(J,R) = {x : (0, T]→ R|(ψ(t)− ψ(0))γx ∈ C(J,R)},

with the norm
‖x‖Cγ,ψ = sup

t∈J
|(ψ(t)− ψ(0))γx(t)|.

In fact, we have (i) ‖x‖Cγ,ψ ≥ 0, (ii) ‖kx‖Cγ,ψ = |k|‖x‖Cγ,ψ , and
(iii) ‖x + y‖Cγ,ψ = sup

t∈J
|(ψ(t)− ψ(0))γ(x(t) + y(t))|

≤ sup
t∈J
|(ψ(t)− ψ(0))γx(t)|+ sup

t∈J
|(ψ(t)− ψ(0))γy(t)| = ‖x‖Cγ,ψ + ‖y‖Cγ,ψ .

Thus, Cγ,ψ(J,R) is a Banach space.
Define the operators A : C1−α,ψ(J,R)× C1−α,ψ(J,R)→ C1−α,ψ(J,R)× C1−α,ψ(J,R) by

A(x, y)(t) = (A1(x, y)(t), A2(x, y)(t)), t ∈ (0, T], (7)

where

A1(x, y)(t) = (ψ(t)− ψ(0))α−1(y0 − r(y)) +
1

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1 p(s)ψ′(s)ds,

and

A2(x, y)(t) = (ψ(t)− ψ(0))α−1(x0 − h(x)) +
1

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1q(s)ψ′(s)ds,

here, p, q : (0, T]→ R are two functions satisfying the functional equations

p(t) = f (t, y(t), p(t)), q(t) = g(t, x(t), q(t)). (8)

The operator A is well-defined, i.e., for every (x, y) ∈ C1−α,ψ(J,R)× C1−α,ψ(J,R) and
t > 0, the following integrals

1
Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)p(s)ds,

and
1

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)q(s)ds
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belong to C1−α,ψ(J,R).
For convenience, we allow the following hypothesis.

Hypothesis 1 (H1). There exist constants L1, l1 > 0 and L2, l2 ∈ (0, 1) such that

| f (t, u1, v1)− f (t, u2, v2)| ≤ L1|u1 − u2|+ L2|v1 − v2|,

|g(t, u1, v1)− g(t, u2, v2)| ≤ l1|u1 − u2|+ l2|v1 − v2|,

for t ∈ (0, T], u1, u2, v1, v2 ∈ R and f (·, 0, 0), g(·, 0, 0) ∈ C1−α,ψ(J,R).

Hypothesis 2 (H2). There exist two constant b1, b2 ∈ (0, 1), such that

|h(x)− h(y)| ≤ b1‖x− y‖C1−α,ψ , |r(x)− r(y)| ≤ b2‖x− y‖C1−α,ψ ,

for x, y ∈ C1−α,ψ(J,R).

Hypothesis 3 (H3). There exist m1, n1 ∈ C1−α,ψ(J,R+), m2, n2, m3, n3 ∈ C(J,R+) with
m∗3 = supt∈J m3(t) < 1 and n∗3 = supt∈J n3(t) < 1, such that

| f (t, u, v)| ≤ m1(t) + m2(t)|u|+ m3(t)|v|,

|g(t, u, v)| ≤ n1(t) + n2(t)|u|+ n3(t)|v|,

for t ∈ (0, T] and each u, vs. ∈ R.

Theorem 2. Assume that (H1)–(H2) hold. If the following is true:

k = max
{

b2 +
L1Γ(α)

Γ(2α)(1− L2)
(ψ(T)− ψ(0))α, b1 +

l1Γ(α)
Γ(2α)(1− l2)

(ψ(T)− ψ(0))α

}
< 1, (9)

then there exists a unique solution for the BVP (3) in the space C1−α,ψ(J,R)× C1−α,ψ(J,R).

Proof. In the following, we will prove that the operator A has unique fixed point. From
(8), one has by condition (H1) that

|p(t)| ≤ | f (t, y(t), p(t))− f (t, 0, 0)|+ | f (t, 0, 0)| ≤ L1|y(t)|+ L2|p(t)|+ | f (t, 0, 0)|,

which implies that

|p(t)| ≤ L1

1− L2
|y(t)|+ e1(ψ(t)− ψ(0))α−1, t ∈ (0, T], (10)

where e1 =
supt∈J |(ψ(t)−ψ(0))1−α f (t,0,0)|

1−L2
< +∞. Similarly, we have

|q(t)| ≤ l1
1− l2

|x(t)|+ e2(ψ(t)− ψ(0))α−1, t ∈ (0, T], (11)

where e2 =
supt∈J |(ψ(t)−ψ(0))1−αg(t,0,0)|

1−l2
< +∞. For each x, y ∈ C1−α,ψ(J,R), by Lemma 1,

we obtain
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∣∣∣ (ψ(t)−ψ(0))1−α

Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1ψ′(s)p(s)ds

∣∣∣
≤ (ψ(t)−ψ(0))1−α

Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1ψ′(s)|p(s)|ds

≤ (ψ(t)−ψ(0))1−α

Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1ψ′(s)

(
L1

1−L2
|y(s)|+ e1(ψ(s)− ψ(0))α−1

)
ds

≤ (ψ(t)−ψ(0))1−α

Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1ψ′(s)(ψ(s)− ψ(0))α−1

·
(

L1
1−L2
|(ψ(s)− ψ(0))1−αy(s)|+ e1

)
ds

≤
(

L1
1−L2
‖y‖C1−α,ψ + e1

)
(ψ(t)− ψ(0))1−α Iα,ψ((ψ(t)− ψ(0))α−1)

≤
(

L1
1−L2
‖y‖C1−α,ψ + e1

)
Γ(α)(ψ(t)−ψ(0))α

Γ(2α)

≤
(

L1
1−L2
‖y‖C1−α,ψ + e1

)
Γ(α)

Γ(2α)
(ψ(T)− ψ(0))α.

Similarly, we have∣∣∣∣ (ψ(t)− ψ(0))1−α

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1ψ′(s)q(s)ds

∣∣∣∣
≤
(

l1
1− l2

‖x‖C1−α,ψ + e2

)
Γ(α)

Γ(2α)
(ψ(T)− ψ(0))α.

Thus, the integrals exist and belong to C1−α,ψ(J,R). Let (x, y), (u, v) ∈ C1−α,ψ(J,R)×
C1−α,ψ(J,R). Then, for each t ∈ (0, T], we obtain

|A1(x, y)(t)− A1(u, v))(t)| ≤ (ψ(t)− ψ(0))α−1|r(y)− r(v)|

+ 1
Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1ψ′(s)|py(s)− pv(s)|ds,

and
|A2(x, y)(t)− A2(u, v)(t)| ≤ (ψ(t)− ψ(0))α−1|h(x)− h(u)|

+ 1
Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1ψ′(s)|qx(s)− qu(s)|ds,

where py, pv, qx, qu ∈ C1−α,ψ(J,R), such that

py = f (t, y(t), py(t)), pv = f (t, v(t), pv(t)),

qx = g(t, x(t), qx(t)), qu = g(t, u(t), qu(t)).

In view of (H1), one has

|py(t)− pv(t)| = | f (t, y(t), py(t))− f (t, v(t), pv(t))|

≤ L1|y(t)− v(t)|+ L2|py(t)− pv(t)|,

and
|qx(t)− qu(t)| = |g(t, x(t), qx(t))− g(t, u(t), qu(t))|

≤ l1|x(t)− u(t)|+ l2|qx(t)− qu(t)|,

which implies that

|py(t)− pv(t)| ≤
L1

1− L2
|y(t)− v(t)|, |qx(t)− qu(t)| ≤

l1
1− l2

|x(t)− u(t)|.
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Hence, for every t ∈ (0, T]

|A1(x, y)(t)− A1(u, v)(t)| ≤ (ψ(t)− ψ(0))α−1|r(y)− r(v)|

+ 1
Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1ψ′(s)|py(s)− pv(s)|ds

≤ b2(ψ(t)− ψ(0))α−1‖y− v‖C1−α,ψ + L1
Γ(α)(1−L2)

∫ t
0 (ψ(t)− ψ(s))α−1ψ′(s)|y(s)− v(s)|ds

≤ b2(ψ(t)− ψ(0))α−1‖y− v‖C1−α,ψ

+ L1
Γ(α)(1−L2)

∫ t
0 (ψ(t)− ψ(s))α−1(ψ(s)− ψ(0))α−1|(ψ(s)− ψ(0))1−α(y(s)− v(s))|ψ′(s)ds

≤ b2(ψ(t)− ψ(0))α−1‖y− v‖C1−α,ψ

+ L1
1−L2

Iα,ψ((ψ(t)− ψ(0))α−1)‖y− v‖C1−α,ψ

≤ b2(ψ(t)− ψ(0))α−1‖y− v‖C1−α,ψ

+ L1Γ(α)
Γ(2α)(1−L2)

(ψ(t)− ψ(0))2α−1‖y− v‖C1−α,ψ .

So, we obtain the following:

(ψ(t)− ψ(0))1−α|A1(x, y)(t)− A1(u, v)(t)|

≤
(

b2 +
L1Γ(α)

Γ(2α)(1−L2)
(ψ(t)− ψ(0))α

)
‖y− v‖C1−α,ψ

That is, as follows:

‖A1(x, y)− A1(u, v)‖C1−α,ψ ≤
(

b2 +
L1Γ(α)

Γ(2α)(1− L2)
(ψ(T)− ψ(0))α

)
‖y− v‖C1−α,ψ .

Similarly, we can obtain the following:

‖A2(x, y)− A2(u, v)‖C1−α,ψ ≤
(

b1 +
l1Γ(α)

Γ(2α)(1− l2)
(ψ(T)− ψ(0))α

)
‖x− u‖C1−α,ψ .

Thus, we have

‖A(x, y)− A(u, v)‖C1−α,ψ×C1−α,ψ = ‖A1(x, y)− A1(u, v)‖C1−α,ψ + ‖A2(x, y)− A2(u, v)‖C1−α,ψ

≤ max
{

b2 +
L1Γ(α)

Γ(2α)(1−L2)
(ψ(T)− ψ(0))α, b1 +

l1Γ(α)
Γ(2α)(1−l2)

(ψ(T)− ψ(0))α
}

·(‖x− u‖C1−α,ψ + ‖y− v‖C1−α,ψ)

= k‖(x, y)− (u, v)‖C1−α,ψ×C1−α,ψ .

where k = max
{

b2 +
L1Γ(α)

Γ(2α)(1−L2)
(ψ(T)− ψ(0))α, b1 +

l1Γ(α)
Γ(2α)(1−l2)

(ψ(T)− ψ(0))α
}

. From
(7), we know that A is a contraction operator. By using of Banach’s fixed-point theorem, we
obtain that A has a unique fixed point which is a unique solution of the problem (3).

Theorem 3. Suppose that (H1)–(H3) hold. If

µ = max
{

b2 +
m∗2Γ(α)(ψ(T)− ψ(0))α

(1−m∗3)Γ(2α)
, b1 +

n∗2Γ(α)(ψ(T)− ψ(0))α

(1− n∗3)Γ(2α)

}
< 1, (12)

where m∗2 = supt∈J m2(t) and n∗2 = supt∈J n2(t). Then, the BVP (3) has at least one solution
in Ω.
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Proof. Let

R = 1
1−µ ,

∆ = |x0|+ |y0|+ Q1 + Q2 +
m�1 Γ(α)(ψ(T)−ψ(0))α

(1−m∗3)Γ(2α)
+

n�1 Γ(α)(ψ(T)−ψ(0))α

(1−n∗3)Γ(2α)
,

where m�1 = supt∈J{(ψ(t)− ψ(0))1−αm1(t)}, n�1 = supt∈J{(ψ(t)− ψ(0))1−αn1(t)}, Q1 =
|h(0)| and Q2 = |r(0)|.

Set the non-empty closed bounded convex subset as follows:

Ω = {(x, y) ∈ C1−α,ψ(J,R)× C1−α,ψ(J,R) : ‖(x, y)‖C1−α,ψ×C1−α,ψ ≤ M},

where M ≥ R∆ is fixed. Define two operators F1, F2 on Ω as follows:

F1(x, y)(t) = ((ψ(t)− ψ(0))α−1(y0 − r(y)), (ψ(t)− ψ(0))α−1(x0 − h(x))),

F2(x, y)(t) =
(

1
Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1 px(s)ψ′(s)ds, 1

Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1qy(s)ψ′(s)ds

)
,

where px, qy : (0, T]→ R are two functions satisfying the following functional equations:

px(t) = f (t, y(t), px(t)), qy(t) = g(t, x(t), qy(t)). (13)

In the following, we will prove that the operator F1 + F2 in Ω has at least one fixed
point by using Krasnoselskii’s fixed-point theorem. The proof will be given in four steps.

Step 1. We prove that F1(x, y) + F2(u, v) ∈ Ω for all (x, y), (u, v) ∈ Ω.
For any (x, y), (u, v) ∈ Ω and t ∈ (0, T], one has

F1(x, y)(t) + F2(u, v)(t) = (H1(x, y, u, v), H2(x, y, u, v)),

where

H1(x, y, u, v) = (ψ(t)− ψ(0))α−1(y0 − r(y)) + 1
Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1 pu(s)ψ′(s)ds,

H2(x, y, u, v) = (ψ(t)− ψ(0))α−1(x0 − h(x)) + 1
Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1qv(s)ψ′(s)ds.

Here, pu, qv : (0, T]→ R are two functions satisfying the the functional equations:

pu(t) = f (t, v(t), pu(t)), qv(t) = g(t, u(t), qv(t)).

From (H3), for any t ∈ (0, T], we obtain

|(ψ(t)− ψ(0))1−α pu(t)| = |(ψ(t)− ψ(0))1−α f (t, v(t), pu(t))|

≤ (ψ(t)− ψ(0))1−αm1(t) + m2(t)|(ψ(t)− ψ(0))1−αv(t)|+ m3(t)|(ψ(t)− ψ(0))1−α pu(t)|

≤ m�1 + m∗2‖v‖C1−α,ψ + m∗3 |(ψ(t)− ψ(0))1−α pu(t)|,

which implies that

|(ψ(t)− ψ(0))1−α pu(t)| ≤
m�1 + m∗2‖v‖C1−α,ψ

1−m∗3
. (14)

Similarly, we can obtain

|(ψ(t)− ψ(0))1−αqv(t)| ≤
n�1 + n∗2‖u‖C1−α,ψ

1− n∗3
. (15)

For any (x, y), (u, v) ∈ Ω and t ∈ (0, T], by (14), we obtain the following:
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|H1(x, y, u, v)| ≤ (ψ(t)− ψ(0))α−1|y0|+ (ψ(t)− ψ(0))α−1|r(y)− r(0)|+ (ψ(t)− ψ(0))α−1|r(0)|

+ 1
Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1(ψ(s)− ψ(0))α−1|(ψ(s)− ψ(0))1−α pu(s)|ψ′(s)ds

≤ (ψ(t)− ψ(0))α−1|y0|+ (ψ(t)− ψ(0))α−1b2‖y‖C1−α,ψ + (ψ(t)− ψ(0))α−1Q2

+
m�1+m∗2‖v‖C1−α,ψ

1−m∗3
1

Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1(ψ(s)− ψ(0))α−1ψ′(s)ds

= (ψ(t)− ψ(0))α−1|y0|+ (ψ(t)− ψ(0))α−1b2‖y‖C1−α,ψ + (ψ(t)− ψ(0))α−1Q2

+
m�1+m∗2‖v‖C1−α,ψ

1−m∗3
Γ(α)

Γ(2α)
(ψ(t)− ψ(0))2α−1.

(16)

Thus,

(ψ(t)− ψ(0))1−α|H1(x, y, u, v)|

≤ |y0|+ Q2 +
m�1 Γ(α)(ψ(T)−ψ(0))α

(1−m∗3)Γ(2α)
+ b2‖y‖C1−α,ψ +

m∗2 Γ(α)(ψ(T)−ψ(0))α

(1−m∗3)Γ(2α)
‖v‖C1−α,ψ .

Similarly, we have

(ψ(t)− ψ(0))1−α|H2(x, y, u, v)|

≤ |x0|+ Q1 +
n�1 Γ(α)(ψ(T)−ψ(0))α

(1−n∗3)Γ(2α)
+ b1‖x‖C1−α,ψ +

n∗2 Γ(α)(ψ(T)−ψ(0))α

(1−n∗3)Γ(2α)
‖u‖C1−α,ψ .

Hence,

‖F1(x, y) + F2(u, v)‖C1−α,ψ = ‖H1(x, y, u, v‖C1−α,ψ + ‖H2(x, y, u, v‖C1−α,ψ

≤ |x0|+ |y0|+ Q1 + Q2 +
m�1 Γ(α)(ψ(T)−ψ(0))α

(1−m∗3)Γ(2α)
+

n�1 Γ(α)(ψ(T)−ψ(0))α

(1−n∗3)Γ(2α)

+
(

max
{

b2 +
m∗2 Γ(α)(ψ(T)−ψ(0))α

(1−m∗3)Γ(2α)
, b1 +

n∗2 Γ(α)(ψ(T)−ψ(0))α

(1−n∗3)Γ(2α)

})
M

= ∆ + µM ≤ M
R +

(
1− 1

R

)
M = M.

Thus, F1(x, y) + F2(u, v) ∈ Ω for all x, y ∈ Ω.
Step 2. We show that F1 is a contraction mapping.
For any (x, y), (u, v) ∈ Ω×Ω, we obtain the following by (H2):

F1(x, y)(t)− F1(u, v)(t) = (F11, F12),

where F11 = (ψ(t)− ψ(0))α−1(r(v)− r(y)) and F12 = (ψ(t)− ψ(0))α−1(h(u)− h(x)).
So,

|F11| ≤ (ψ(t)− ψ(0))α−1b2‖y− v‖C1−α,ψ , |F12| ≤ (ψ(t)− ψ(0))α−1b1‖x− u‖C1−α,ψ .

‖F1(x, y)− F1(u, v)‖C1−α,ψ×C1−α,ψ

= sup
t∈J
|(ψ(t)− ψ(0))1−αF11|+ sup

t∈J
|(ψ(t)− ψ(0))1−αF12|

≤ b1‖x− u‖C1−α,ψ + b2‖y− v‖C1−α,ψ

≤ max{b1, b2}(‖x− u‖C1−α,ψ + ‖y− v‖C1−α,ψ)

= max{b1, b2}(‖(x, y)− (u, v)‖C1−α,ψ×C1−α,ψ .

Hence, the operator F1 is a contraction.
Step 3. We show that F2 is continuous.
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Let {(xn, yn)} be a sequence such that (xn, yn)→ (x, y) in C1−α,ψ(J,R)× C1−α,ψ(J,R),
then, for each t ∈ (0, T], we have

F2(xn, yn)(t)− F2(x, y)(t) = (F21, F22),

where

F21 =
1

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1(pxn(s)− px(s))ψ′(s)ds, (17)

F22 =
1

Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1(qyn(s)− qy(s))ψ′(s)ds. (18)

where pxn , px, qyn , qy ∈ C1−α,ψ(J,R) be such that

pxn(t) = f (t, yn(t), pxn(t)), px(t) = f (t, y(t), px(t)),

qyn(t) = g(t, xn(t), qyn(t)), qy(t) = g(t, x(t), qy(t)).

By (H1), one has

|pxn(t)− px(t)| = | f (t, yn(t), pxn(t))− f (t, y(t), px(t))|

≤ L1|yn(t)− y(t)|+ L2|pxn(t)− px(t)|,

|qyn(t)− qy(t)| = |g(t, xn(t), qyn(t))− g(t, x(t), qy(t))|

≤ l1|xn(t)− x(t)|+ l2|qyn(t)− qy(t)|.

Then,

|pxn(t)− px(t)| ≤
L1

1− L2
|yn(t)− y(t)|, (19)

and
|qyn(t)− qy(t)| ≤

l1
1− l2

|xn(t)− x(t)|. (20)

By replacing (19) in Equation (17), we obtain the following:

|F21| ≤ 1
Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1|pxn(s)− px(s)|ψ′(s)ds

≤ L1
(1−L2)Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1|yn(s)− y(s)|ψ′(s)ds

= L1
(1−L2)Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1(ψ(s)− ψ(0))α−1|(ψ(s)− ψ(0))1−α(yn(s)− y(s))|ψ′(s)ds

= L1
1−L2

Iα,ψ((ψ(t)− ψ(0))α−1)‖yn − y‖C1−α,ψ

= L1Γ(α)
(1−L2)Γ(2α)

(ψ(t)− ψ(0))2α−1‖yn − y‖C1−α,ψ .

(21)

Similarly, we can obtain

|F22| ≤
l1Γ(α)

(1− l2)Γ(2α)
(ψ(t)− ψ(0))2α−1‖xn − x‖C1−α,ψ . (22)

From (21), and (22), one has
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‖F2(xn, yn)− F2(x, y)‖C1−α,ψ = ‖(ψ(t)− ψ(0))1−αF21‖C1−α,ψ + ‖(ψ(t)− ψ(0))1−αF22‖C1−α,ψ

≤ L1Γ(α)
(1−L2)Γ(2α)

(ψ(t)− ψ(0))α‖yn − y‖C1−α,ψ

+ l1Γ(α)
(1−l2)Γ(2α)

(ψ(t)− ψ(0))α‖xn − x‖C1−α,ψ

≤ max
{

L1
1−L2

, l1
1−l2

}
Γ(α)

Γ(2α)
(ψ(T)− ψ(0))α(‖xn − x‖C1−α,ψ + ‖yn − y‖C1−α,ψ)

= max
{

L1
1−L2

, l1
1−l2

}
Γ(α)

Γ(2α)
(ψ(T)− ψ(0))α‖(xn, yn)− (x, y)‖C1−α,ψ ,

which implies that

‖F2(xn, yn)− F2(x, y)‖C1−α,ψ → 0 as n→ ∞.

That is, F2 is continuous.
Step 4. We prove that F2 is compact.
For each (x, y) ∈ Ω×Ω and t ∈ (0, T], one has

F2(x, y)(t) =
(

1
Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1 px(s)ψ′(s)ds,

1
Γ(α)

∫ t

0
(ψ(t)− ψ(s))α−1qy(s)ψ′(s)ds

)
,

where px, qy are as in (13). Similar to the proof of (16), we obtain∣∣∣ 1
Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1 px(s)ψ′(s)ds

∣∣∣
≤ 1

Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1(ψ(s)− ψ(0))α−1|(ψ(s)− ψ(0))1−α px(s)|ψ′(s)ds

≤
(

m�1+m∗2 M
1−m∗3

)
Γ(α)

Γ(2α)
(ψ(t)− ψ(0))2α−1,

and ∣∣∣ 1
Γ(α)

∫ t
0 (ψ(t)− ψ(s))α−1qy(s)ψ′(s)ds

∣∣∣
≤
(

n�1+n∗2 M
1−n∗3

)
Γ(α)

Γ(2α)
(ψ(t)− ψ(0))2α−1.

Hence,

‖F2(x, y)‖C1−α,ψ ≤ max
{

m�1 + m∗2 M
1−m∗3

,
n�1 + n∗2 M

1− n∗3

}
Γ(α)
Γ(2α)

(ψ(T)− ψ(0))α.

Thus, F2(Ω×Ω) is uniformly bounded.
Finally, we show that F2(Ω × Ω) is equicontinuous, let 0 < t1 < t2 ≤ T and

(x, y) ∈ Ω×Ω. Then,

(ψ(t2)− ψ(0))1−αF2(x, y)(t2)− (ψ(t1)− ψ(0))1−αF2(x, y)(t1) = (K21, K22),

where

K21 = 1
Γ(α)

[∫ t1
0 +

∫ t2
t1
(ψ(t2)− ψ(0))1−α(ψ(t2)− ψ(s))α−1 px(s)ψ′(s)ds

−
∫ t1

0 (ψ(t1)− ψ(0))1−α(ψ(t1)− ψ(s))α−1 px(s)ψ′(s)ds
]
,

K22 = 1
Γ(α)

[∫ t1
0 +

∫ t2
t1
(ψ(t2)− ψ(0))1−α(ψ(t2)− ψ(s))α−1qy(s)ψ′(s)ds

−
∫ t1

0 (ψ(t1)− ψ(0))1−α(ψ(t1)− ψ(s))α−1qy(s)ψ′(s)ds
]
.
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Then, by (14), we obtain the following:

|K21| ≤ 1
Γ(α)

∫ t1
0 |(ψ(t2)− ψ(0))1−α(ψ(t2)− ψ(s))α−1(ψ(s)− ψ(0))α−1

−(ψ(t1)− ψ(0))1−α(ψ(t1)− ψ(s))α−1(ψ(s)− ψ(0))α−1||(ψ(s)− ψ(0))1−α px(s)|ds

+ 1
Γ(α)

∫ t2
t1
(ψ(t2)− ψ(0))1−α(ψ(t2)− ψ(s))α−1(ψ(s)− ψ(0))α−1|(ψ(s)− ψ(0))1−α px(s)|ds

≤ m�1+m∗2 M
(1−m∗3)Γ(α)

∫ t1
0 |(ψ(t2)− ψ(0))1−α(ψ(t2)− ψ(s))α−1

−(ψ(t1)− ψ(0))1−α(ψ(t1)− ψ(s))α−1|(ψ(s)− ψ(0))α−1ds

+
m�1+m∗2 M
(1−m∗3)Γ(α)

∫ t2
t1
(ψ(t2)− ψ(0))1−α(ψ(t2)− ψ(s))α−1(ψ(s)− ψ(0))α−1ds→ 0,

as t2 → t1. Similarly, we obtain that K22 → 0 as t2 → t1. Which yields that F2(Ω×Ω) is
equicontinuous, Then, by the Ascoli–Arzela theorem, the operator F2 is compact.

All the assume of the Theorem 1 are satisfied. Therefore, there exists a fixed point,
(x, y) ∈ Ω × Ω, such that (x, y) = F1(x, y) + F2(x, y), which is a solution of the prob-
lem (3).

4. Example

Consider the following coupled implicit ψ-Riemann–Liouville fractional differential
equations with nonlocal conditions

D
4
7 ,ln(1+t)
0+ x(t) = f (t, y(t), D

4
7 ,ln(1+t)
0+ x(t)), t ∈ (0, 1],

D
4
7 ,ln(1+t)
0+ y(t) = g(t, x(t), D

4
7 ,ln(1+t)
0+ y(t)), t ∈ (0, 1],

ln
3
7 (1 + t)x(t)|t=0 = 1

3 −
n
∑

i=1
ci ln

3
7 (1 + t)y(ti),

ln
3
7 (1 + t)y(t)|t=0 = 1

4 −
n
∑

i=1
di ln

3
7 (1 + t)x(ti),

(23)

where 0 < t1 < · · · < tn < 1, ci and di are positive constants with
n
∑

i=1
ci ≤ 1

3 and
n
∑

i=1
di ≤ 2

5 . Let

f (t, u, v) = 1
(2+t)2(2+|u|+|v|) +

2 sin t

ln
3
7 (1+t)

, t ∈ (0, 1], u, vs. ∈ R,

g(t, u, v) = 1
3 exp(2−t) arctan(1 + 3|u|+ |v|) + cos t

ln
3
7 (1+t)

, t ∈ (0, 1], u, vs. ∈ R.

Thus, we have

C1−α,ψ([0, 1],R) = C 3
7 ,ln(1+t)([0, 1],R) = {h : (0, 1]→ R : ln

3
7 (1 + t)h ∈ C([0, 1],R)},

where α = 4
7 . Obviously, the functions f and g are continuous, f (·, 0, 0), g(·, 0, 0) ∈

C 3
7 ,ln(1+t)([0, 1],R). For any u1, u2, v1, v2 ∈ R and t ∈ (0, 1], one has

| f (t, u1, v1)− f (t, u2, v2)| = 1
(2+t)2

∣∣∣ 1
2+|u1|+|v1|

− 1
2+|u2|+|v2|

∣∣∣
≤ |u1−u2|+|v1−v2|

(2+t)2(2+|u1|+|v1|)(2+|u2|+|v2|)

≤ 1
4 (|u1 − u2|+ |v1 − v2|),

|g(t, u1, v1)− g(t, u2, v2)| = 1
3 exp(2−t) |arctan(1 + 3|u1|+ |v1|)− arctan(1 + 3|u2|+ |v2|)|

≤ 1
3e (3|u1 − u2|+ |v1 − v2|).
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Moreover, set the following:

r(y) =
n

∑
i=1

ci ln
3
7 (1 + t)y(ti), h(x) =

n

∑
i=1

di ln
3
7 (1 + t)x(ti),

For each x1, x2, y1, y2 ∈ R, we have

|h(x1)− h(x2)| ≤
n
∑

i=1
di ln

3
7 (1 + t)|x1(ti)− x2(ti)|

≤
n
∑

i=1
di‖x1 − x2‖C 3

7 ,ln(1+t)
≤ 2

5‖x1 − x2‖C 3
7 ,ln(1+t)

,

and
|r(y1)− r(y2)| ≤

n
∑

i=1
ci ln

3
7 (1 + t)|y1(ti)− y2(ti)|

≤
n
∑

i=1
ci‖y1 − y2‖C 3

7 ,ln(1+t)
≤ 1

3‖y1 − y2‖C 3
7 ,ln(1+t)

.

So, conditions (H1) and (H2) are satisfied with L1 = 1
4 , L2 = 1

4 , l1 = 1
e , l2 = 1

3e , b1 = 2
5

and b2 = 1
3 . Moreover, the following condition:

max
{

b2 +
L1Γ(α)

Γ(2α)(1−L2)
(ψ(T)− ψ(0))α, b1 +

l1Γ(α)
Γ(2α)(1−l2)

(ψ(T)− ψ(0))α
}

= max
{

1
3 + 0.4504, 2

5 + 0.5666
}
= 0.9666 < 1,

is satisfied with T = 1. By Theorem 2, we have that the problem (23) has a unique coupled
solution in the space C 3

7 ,ln(1+t)([0, 1],R)× C 3
7 ,ln(1+t)([0, 1],R).

5. Conclusions

In this paper, we investigated a coupled implicit system that has ψ-Riemann–Liouville
fractional derivative and nonlocal conditions. The interesting point is that two fractional
implicit equations are coupled. By Banach fixed-point theorem and Krasnoselskii’s fixed-
point theorem, the uniqueness and the existence results are proved. Our results obtained in
this paper is new and complements the existing literature on this topic. We will study the
corresponding problem in future research, and we hope to be able to make some progress.
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