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1. Introduction

Over the last few years, the general classes of trigonometric distributions have been
seriously studied by many researchers. The main goal of these new distributions is to
create models with a small number of parameters but a high degree of flexibility using
trigonometric functions and their inverses. Some of these new families are based on Cauchy
distribution and involve the arctangent function. For example, one can see generalized
odd half-Cauchy-G (GOHC-G) family [1], the odd power Cauchy-G family (OPC-G) [2],
truncated Cauchy power-G family (TCP-G) and its extensions [3], extended odd Half-
Cauchy-G family (EOHC-G) [4], Arctan-X family [5] and many others.

Recently Altun, Alizadeh, Ramires and Ortega [6] proposed a new family of distri-
butions named generalized odd power Cauchy-G (GOPC-G). The cumulative distribution
function of GOPC-G family is given by

FGOPC−G(t; α, β, ξ) =
2
π

arctan

{[
G(t; ξ)α

1− G(t; ξ)α

]β
}

, (1)

where G(t; ξ) is the cumulative distribution function of the baseline distribution and
ξ represents the parameter vector of the baseline distribution, α > 0 and β > 0 are the
shape parameters.

In [7] Shrahili and Elbatal construct a new family called Truncated Cauchy Power
Odd Fréchet-G (TCPOF-G) family of distributions with cumulative distribution function
defined by

FTCPOF−G(t; λ, κ, ξ) =
4
π

arctan
{

e−λ
(

1−G(t;ξ)
G(t;ξ)

)κ}
, (2)

where λ > 0 and κ > 0.
The main purpose of this paper is to investigate some properties of cumulative

function for some of the special cases of GOPC-G family and TCPOF-G family. We need
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an approximation error between sigmoidal (cumulative) function and a step function if
we want to substitute the one for the other. Hausdorff metric between the graphs of these
functions is a native metric that can be used in this case. We look for an expression for
the error of the best one-sided approximation from cumulative function to the horizontal
asymptote (at the median level) in the Hausdorff sense. This characteristic can help
researchers in the choice of a suitable model for approximating specific cumulative data.

Definition 1. The interval Heaviside step function is defined by

ht0(t) =


0 if t < t0,
[0, 1] if t = t0,
1 if t > t0.

Definition 2 ([8,9]). The one-sided Hausdorff distance −→ρ ( f , g) between two interval functions
f , g on Ω ⊆ R, is the one-sided Hausdorff distance between their completed graphs F( f ) and F(g)
considered as closed subsets of Ω×R. More precisely,

−→ρ ( f , g) = sup
B∈F(g)

inf
A∈F( f )

‖A− B‖,

wherein ‖‖̇ is any norm inR2, e.g., the maximum norm ‖(t, x)‖ = max{|t|, |x|}; hence, the distance
between points A = (tA, xA), B = (tB, xB) in R2 is ‖A− B‖ = max(|tA − tB|, |xA − xB|).

According to authors’ knowledge, only Kyurkchiev and Iliev [10,11] have made an
investigation on Hausdorff approximation of the Heaviside step function and distribu-
tion functions containing arctangent function. Similar investigation on some generalized
trigonometric distributions (Sin-G, Cos-G and Tan-G families) can be found in [12–18]. The
investigations on the Hausdorff approximation can be useful when researchers make a
choice for an approximation model of cumulative data in various modeling problems—
from growth theory, population dynamics, biostatistics, computer viruses propagation,
debugging and test theory, financial and insurance mathematics and many others. One
can see some modeling and approximation problems in related articles [19–22] and refer-
ences therein.

The rest of the paper is organized as follows: Section 2 is devoted to distance d to
the horizontal asymptote in the Hausdorff sense. We obtain precise estimates for this
one-sided Hausdorff approximation for four special cases of proposed families. Some
numerical examples show the feasibility of obtained results. We propose two simple
dynamic software modules, implemented within the programming environment CAS
Wolfram Mathematica. First one present new results using real cumulative data. Second
one shows Hausdorff approximation of two submodels from proposed families with the
same baseline distribution. In Section 3, we construct a new family of recurrence generated
adaptive functions based on the GOPC-G family. Further, we explore asymptotic behavior
of the one-sided Hausdorff distance of the shifted Heaviside function by means of the
corresponding family. Finally, some concluding remarks are included in Section 4.

2. Approximation Results

This section is devoted to investigation of error of the best one-sided approximation
to the horizontal asymptote a = 1 (at the median level) in the Hausdorff sense. We present
a detailed study of two special cases of GOPC-G family and TCPOF-G family considered
from [6,7], respectively. The reader can formulate other special cases of proposed families
using different baseline distributions with corresponding approximation problems.

2.1. Generalized Odd Power Cauchy-G Family

Here we shall prove that cumulative function tends to Heaviside step function.
The one-sided Hausdorff distance is a square (box) unit ball in the case of maximum
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norm. From Definition 2 we have that distance d is the side of the smallest unit square, cen-
tered at the point (0, 1) touching the graph of the cumulative function. First the following
equality holds true

FGOPC−G(t0; α, β, ξ) =
1
2

with t0 = G(−1)
(

2−1/α; ξ
)

,

where FGOPC−G(t) is defined by (1).
Hence, for this “median” level for the one-sided Hausdorff approximation d between

cumulative distribution function FGOPC−G(t; α, β, ξ) and the Heaviside step function ht0(t)
we have

FGOPC−G(t0 + d; α, β, ξ) = 1− d. (3)

Next theorem gives upper and lower estimates for the one-sided Hausdorff distance
d. Note that one can use them as an additional criteria in investigation of one-sided
Hausdorff approximation.

Theorem 1. Let

A = 1 +
2αβ 2

1
α G′
(

G(−1)
(

2−1/α; ξ
)

; ξ
)

π
. (4)

Then the one-sided Hausdorff distance d between interval Heaviside step function ht0(t) and
the cumulative distribution function FGOPC−G(t; α, β, ξ) defined by (1) satisfies the following
inequalities for 2.1A > e1.05:

dl =
1

2.1A
< d <

ln (2.1A)

2.1A
= dr.

Proof. Let us define a function H(d) as follows

H(d) = FGOPC−G(t0 + d; α, β, ξ)− 1 + d.

Function H(d) is increasing since H′(d) > 0. We consider the approximation of H(d) as
we use the function

T(d) = −1
2
+ Ad,

where A is defined by (4). From Taylor series we have

H(d) = F(t0)− 1 + (1 + F′(t0))d +O(d2) = −1
2
+ (1 + F′(t0))d +O(d2),

where F(t) ≡ FGOPC−G(t; α, β, ξ). Then using that G(t0) = 2−1/α we obtain

F′(t0) =

2β
(

G(t0)
α

1−G(t0)α

)β−1
(

αG(t0)
α−1G′(t0)

1−G(t0)α + αG(t0)
2α−1G′(t0)

(1−G(t0)α)2

)
π

((
G(t0)α

1−G(t0)α

)2β
+ 1
) =

αβ 21+ 1
α G′(t0)

π
= A− 1.

So we obtain that T(d)− H(d) = O(d2). Note that function T(d) is increasing too. Hence,
T(d) approximates H(d) with d→ 0 as O(d2). Let 2.1A > e1.05. It is easy to check that the
following inequalities hold true

T(dl) = −
1
2
+ A

1
2.1A

< 0 and T(dr) = −
1
2
+ A

ln (2.1A)

2.1A
> −1

2
+

1.05
2.1

= 0,

that completes the proof.

We consider two special cases of GOPC-G family with baseline distributions: Log-
logistic and Weibull called GOPC-LL and GOPC-W, respectively. Figure 1 presents graphs
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of approximation functions H and T for fixed parameters in the cases of GOPC-LL and
GOPC-W distributions.

0.2 0.4 0.6 0.8 1.0

-0.5

0.5

1.0

Generalized odd power Cauchy-log-logistic

HGOPC-LL(d)

TGOPC-LL(d)

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.5

0.5

1.0

1.5

Generalized odd power Cauchy-Weibull

HGOPC-W (d)

TGOPC-W (d)

(a) α = 1.25, β =0.43, λ = 0.65, γ = 2.6 (b) α = 0.5, β = 1.5, a = 1.25, b = 2.5

Figure 1. Graph of functions T(d) and H(d) in the cases of GOPC-LL and GOPC-W distributions.

The cumulative distribution function of log-logistic distribution is given by

G(t) =
1

1 + ( t
λ )
−γ

,

where t > 0, λ > 0 and γ > 0.

Definition 3. Generalized odd power Cauchy-log-logistic (GOPC-LL) distribution is associated
with the cumulative distribution function given as

FGOPC−LL(t; α, β, λ, γ) =
2
π

arctan




(
1

( t
λ )
−γ

+1

)α

1−
(

1
( t

λ )
−γ

+1

)α


β. (5)

Then for the one-sided Hausdorff approximation (using square unit ball with a side d)
we have

FGOPC−LL(t0 + d; α, β, λ, γ) = 1− d, (6)

where

FGOPC−LL(t0; α, β, λ, γ) =
1
2

with t0 = λ

(
2−1/α

1− 2−1/α

)1/γ

.

Now we are ready to state our first corollary of Theorem 1. It shows how one-sided
Hausdorff distance is related with parameters of cumulative distribution function.

Theorem 2. Let

B = 1 +
2αβγ2

1
α

(
21/α − 1

)1+ 1
γ

πλ
. (7)

Then the one-sided Hausdorff distance d between interval Heaviside step function ht0(t) and the
cumulative distribution function FGOPC−LL(t; α, β, λ, γ) defined by (5) satisfies the following
inequalities for 2.1B > e1.05:

dl =
1

2.1B
< d <

ln (2.1B)
2.1B

= dr.

Table 1 gives several numerical experiments for different values of parameters α, β, λ
and γ. The values of estimates dl and dr are computed according to Theorem 2. Figure 2
shows some graphical representations.
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Table 1. Bounds for Hausdorff distance d according to Theorem 2.

α β λ γ dl d computed by (6) dr

1.05 5.71 0.01 2.23 0.001191 0.004766 0.008014
10.05 0.71 0.03 5.23 0.014494 0.045419 0.061356
2.51 7.06 2.16 13.13 0.029458 0.053603 0.103833
0.15 0.61 0.03 2.55 0.015408 0.059157 0.064296
2.71 9.31 0.12 0.91 0.058845 0.094795 0.166699

0.0 0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0
F(t)

d = 0.0589908

dl= 0.0287685 dr= 0.102084

0.0 0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0
F(t)

d = 0.0802578

dl= 0.0271643 dr= 0.0979505

(a) α = 0.822, β= 0.665, λ = 0.106, γ = 8.0301 (b) α = 0.025, β= 3.78, λ = 1.9, γ = 6.27

Figure 2. Approximation of CDF function of GOPC-LL distribution.

Let us recall that the cumulative distribution function of Weibull distribution is

G(t) = 1− ew,

where w = −
( t

b
)a, a > 0 is a shape parameter and b > 0 is a scale parameter.

Definition 4. Generalized odd power Cauchy–Weibull (GOPC-W) distribution is associated with
the cumulative distribution function given as

FGOPC−W(t; α, β, a, b) =
2
π

arctan


(

1− e−(
t
b )

a)α

1−
(

1− e−(
t
b )

a)α


β

. (8)

Here we examine the one-sided Hausdorff distance of the Heaviside step function
and cumulative distribution function FGOPC−W(t; α, β, a, b) defined by (8). For the “median
level” we have

FGOPC−W(t0; α, β, a, b) =
1
2

with t0 = b a

√
log
(

1
1− 2−1/α

)
.

Then the one-sided Hausdorff distance d satisfies the following nonlinear equation

FGOPC−W(t0 + d; α, β, a, b) = 1− d. (9)

Next corollary of Theorem 1 gives useful estimates for the one-sided Hausdorff
approximation d.

Theorem 3. Let

C = 1 +
2aαβ

(
21/α − 1

)
log
(

1 + 1
21/α−1

) a−1
a

πb
. (10)
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Then the one-sided Hausdorff distance d between interval Heaviside step function ht0(t) and
the cumulative distribution function FGOPC−W(t; α, β, a, b) defined by (8) satisfies the following
inequalities for 2.1C > e1.05:

dl =
1

2.1C
< d <

ln (2.1C)
2.1C

= dr.

Table 2 presents some computational examples for different values of parameters
α, β, a and b. We exhibit the values of dl and dr as we use Theorem 3. Some graphical
visualizations are given in Figure 3.

Table 2. Bounds for the one-sided Hausdorff distance d computed by Theorem 3.

α β a b dl d computed by (9) dr

1.62 2.45 0.92 0.05 0.018521 0.042754 0.073878
0.85 0.93 1.75 0.09 0.044115 0.075925 0.137681
1.62 3.25 4.93 1.15 0.052857 0.080239 0.155409
3.09 0.93 2.82 0.25 0.059214 0.087407 0.167374
0.09 3.75 2.01 1.98 0.043054 0.099305 0.135419

0.0 0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0
F(t)

d = 0.0350066

dl= 0.0167891 dr= 0.0686175

0.0 0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0
F(t)

d = 0.0687527

dl= 0.0172054 dr= 0.0698974

(a) α = 2.12, β = 3.87, a = 1.82, b = 0.15 (b) α = 0.45, β = 0.93, a = 0.85, b = 0.04

Figure 3. Approximation of CDF function of GOPC-W distribution.

2.2. Some Special Models from Truncated Cauchy Power Odd Frechet-G Family of Distributions

In this section we consider two submodels of TCPOF-G family based on the baseline
distributions: Weibull and Lomax named TCPOFW and TCPOFL. For these two special
cases, we obtain upper and lower estimates for the one-sided Hausdorff distance d. Since
the proof of Theorems 4 and 5 follows the ideas given in Theorem 1, then they will be
omitted. Some computational examples and graphical representations are presented in
Table 3 with Figure 4 for TCPOFW distribution and Table 4 with Figure 5 for TCPOFL
distribution, respectively.

Definition 5. Truncated Cauchy Power Odd Fréchet–Weibull (TCPOFW) distribution is associ-
ated with the cumulative distribution function given as

FTCPOFW(t; λ, κ, a, b) =
4
π

arctan

e
−λ

 e
−( t

b )
a

1−e
−( t

b )
a

κ
. (11)

Hence, the one-sided Hausdorff distance d between FTCPOFW(t; λ, κ, a, b) defined
by (11) and the Heaviside function ht0(t) satisfy the relation

FTCPOFW(t0 + d; λ, κ, a, b) = 1− d, (12)
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where

FTCPOFW(t0; λ, κ, a, b) =
1
2

with t0 = b

(
log
(

1 + λ1/κ log
(

cot
(π

8

))−1/κ
)1/a

)
.

Theorem 4. Let

D = 1 +

√
2aκλ−1/κ log

(
cot
(

π
8
))(

λ1/κ + κ

√
log
(
cot
(

π
8
)))

log
(

1 + λ1/κ log
(
cot
(

π
8
))−1/κ

) a−1
a

πb
.

Then the one-sided Hausdorff distance d between interval Heaviside step function ht0(t) and
the cumulative distribution function FTCPOFW(t; λ, κ, a, b) defined by (11) satisfies the following
inequalities for 2.1D > e1.05:

dl =
1

2.1D
< d <

ln (2.1D)

2.1D
= dr.

Table 3. Bounds for one-sided Hausdorff distance d computed by Theorem 4.

λ κ a b dl d computed by (12) dr

0.29 3.87 1.82 0.13 0.012021 0.031634 0.053148
1.59 2.45 0.92 0.05 0.014215 0.040334 0.060465
0.05 2.32 1.02 0.18 0.020202 0.057339 0.078829
3.62 3.87 4.82 1.03 0.039285 0.071086 0.127163
1.62 3.25 4.93 1.15 0.050716 0.085735 0.151211

0.0 0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0
F(t)

d = 0.0476741

dl= 0.0146429 dr= 0.0618488

1.0 1.2 1.4 1.6 1.8 2.0
t

0.2

0.4

0.6

0.8

1.0
F(t)

d = 0.0698575

dl= 0.0414623 dr= 0.131973

(a) λ = 0.25, κ = 1.91, a = 0.91, b = 0.07 (b) λ = 6.62, κ = 1.97, a = 7.92, b = 1.03

Figure 4. Approximation of CDF function of TCPOFW distribution.

Definition 6. Truncated Cauchy Power Odd Fréchet–Lomax (TCPOFL) distribution is associated
with the cumulative distribution function given as

FTCPOFW(t; λ, κ, a, b) =
4
π

arctan

e
−λ

(
(1+ t

b )
−a

1−(1+ t
b )
−a

)κ
. (13)

The one-sided Hausdorff distance d between FTCPOFL(t; λ, κ, a, b) defined by (13) and
the Heaviside function ht0(t) satisfies the relation

FTCPOFL(t0 + d; λ, κ, a, b) = 1− d, (14)

where

FTCPOFL(t0; λ, κ, a, b) =
1
2

with t0 = b

((
1 + λ1/κ log

(
cot
(π

8

))−1/κ
)1/a

− 1

)
.
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Theorem 5. Let

E = 1 +

√
2aκλ−1/κ log

(
cot
(

π
8
)) κ+1

κ

(
1 + λ1/κ log

(
cot
(

π
8
))−1/κ

) a−1
a

πb
.

Then the one-sided Hausdorff distance d between interval Heaviside step function ht0(t) and
the cumulative distribution function FTCPOFL(t; λ, κ, a, b) defined by (13) satisfies the following
inequalities for 2.1E > e1.05:

dl =
1

2.1E
< d <

ln (2.1E)
2.1E

= dr.

Table 4. Bounds for the one-sided Hausdorff distance d computed by Theorem 5.

λ κ a b dl d computed by (14) dr

0.84 3.63 1.75 0.16 0.021236 0.055276 0.081803
0.05 2.32 1.02 0.18 0.024986 0.072125 0.092186
1.62 2.45 0.92 0.05 0.034049 0.087080 0.115085
1.62 3.25 4.93 1.15 0.049539 0.094769 0.148865
3.67 5.05 6.01 2.88 0.064591 0.109868 0.176961

0.0 0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0
F(t)

d = 0.049396

dl= 0.0185188 dr= 0.0738708

0.0 0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

0.8

1.0
F(t)

d = 0.0676173

dl= 0.0190523 dr= 0.0754578

(a) λ = 2.12, κ = 3.87, a = 1.82, b = 0.13 (b) λ = 0.35, κ = 1.91, a = 0.85, b = 0.04

Figure 5. Approximation of CDF function of TCPOFL distribution.

2.3. Some Applications

In this section we present one particular application of obtained results. We consider
data that represent runoff amounts of Jug Bridge, Maryland (see Chhikara and Folks [23]):

0.17, 1.19, 0.23, 0.33, 0.39, 0.39, 0.40, 0.45, 0.52, 0.56, 0.59, 0.64, 0.66

0.70, 0.76, 0.77, 0.78, 0.95, 0.97, 1.02, 1.12, 1.24, 1.59, 1.74, 2.92.

Here we present a simple dynamic programming module, implemented within the
programming environment CAS Wolfram Mathematica, for the analysis of cumulative dis-
tribution function of GOPC-W (see Figure 6). We consider that the considered data set
can be approximated with cumulative distribution function GOPC-W F(t; α, β, a, b) with
parameters α = 0.46, β = 1.2, a = 1.8 and b = 1.52. We compute Hausdorff distance with
its upper and lower estimates as we use Theorem 3. The obtained values are d = 0.298156
with estimates dl = 0.266013 and dr = 0.352257, respectively. Our module provides graph-
ical visualization of the results. Similar modules can be obtained for other cases of pro-
posed families.
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GOPC-W distribution

α 0.46

β 1.2

a 1.8

b 1.52

0.5 1.0 1.5 2.0 2.5 3.0
t

0.2

0.4

0.6

0.8

1.0

F(t; α, β, a, b)
d = 0.298156

Emperical data

GOPC-W distribution

Figure 6. The model (8) for runoff amounts data (normalized) of Jug Bridge, Maryland.

2.4. Simple Comparison of GOPC-G and TCPOF-G Families

Some special cases of GOPC-G family and TCPOF-G family are proposed from [6]
and [7], respectively. Reader can obtain many others using different base cumulative
distribution functions. For example in the literature there are many modifications of
classical Weibull distribution. In 2014, Almalki and Nadarajah [24] present a review of
some of them.

In this section we propose a simple comparison of GOPC-G and TCPOF-G families
with the same Weibull-type correction. Let us consider an example with Inverse Weibull
distribution with cumulative distribution function defined by

G(t) = e−bt−a
.

Hence we obtain the following submodels of GOPC-G and TCPOF-G named GOPC-IW
and TCPOFIW, respectively.

Cumulative distribution function of Generalized odd power Cauchy-Inverse Weibull
(GOPC-IW) distribution is defined by

FGOPC−IW(t; α, β, a, b) =
2
π

arctan


(

e−bt−a
)α

1−
(
e−bt−a)α


β

. (15)

Cumulative distribution of Truncated Cauchy Power Odd Fréchet-Inverse Weibull
(TCPOFIW) distribution is given by

FTCPOFIW(t; λ, κ, a, b) =
4
π

arctan

e
−λ

(
1−e−bt−a

e−bt−a

)κ
. (16)

In Figure 7, we present simple comparatively investigation of asymptotic behavior of
one-sided Hausdorff distance between Heaviside step function and cumulative distribution
functions of GOPC-IW and TCPOFIW. Both models are based on arctangent function but
they have different construction. In our simple dynamic programming module we choose
corresponding distribution parameters which yield similar type of cumulative shapes.
The corresponding Hausdorff distances that we obtain are dGOPC−IW = 0.0994408 and
dTCPOFIW = 0.0994448.
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GOPC Inverse Weibull

(GOPC-IW) Distribution

α 0.832

β 5.033

a 3.509

b 1.664

TCPOF Inverse Weibull

(TCPOFIW) Distribution

λ 4.136

κ 2.925

a 6.281

b 1.573
1.0 1.5 2.0

t

0.2

0.4

0.6

0.8

1.0
F(t)

dTCPOFIW = 0.0994448

dGOPC-IW = 0.0994408

Figure 7. Hausdorff approximation of GOPC-IW and TCPOFIW distributions.

3. Recurrent Generation of New Families of “Adaptive Functions”

We construct a family of recurrence generated activation functions based on GOPC-G
family in the following way

Fi+1(t) =
2
π

arctan

{[
G(t + Fi(t); ξ)α

1− G(t + Fi(t); ξ)α

]β
}

, i = 0, 1, 2, . . . , (17)

with
F0(t) = FGOPC−G(t; α, β, ξ); F0(0) = 0.

The reader may formulate some special cases of a family of recurrence generated
activation functions with the corresponding approximation problems based on GOPC-G
family or TCPOF-G family. In this section we consider a special case based on GOPC-G
family with Weibull as baseline distribution. Here we investigate the one-sided Hausdorff
approximation of the shifted Heaviside function by means of the corresponding family
at ”median level“. For other results about families of recurrence generated parametric
activation functions with various approximation and modeling aspects see [12,14,17,18,22].

Let us consider one special case. The recurrent family based on GOPC-W is defined by

wi+1(t) =
2
π

arctan


(

1− e−
(

t+wi(t)
b

)a
)α

1−
(

1− e−
(

t+wi(t)
b

)a
)α


β

, i = 0, 1, 2, . . . , (18)

with

w0(t) =
2
π

arctan


(

1− e−(
t
b )

a)α

1−
(

1− e−(
t
b )

a)α


β

; w0(0) = 0.

The recurrence generated functions w0(t), w1(t), w2(t), w3(t) and w4(t) from family (18)
for fixed α = 0.25, β = 1.75, a = 1.25 and b = 2.5 are visualized on Figure 8.
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Figure 8. The graphics of recurrence generated adaptive functions from family (18).

The one-sided Hausdorff distance d between cumulative distribution function wi(t)
i = 1, 2, . . . and the Heaviside function ht0(t) satisfies the following nonlinear equation

wi(t0 + d) = 1− d, (19)

where t0 is a positive solution of the equation wi(t0) =
1
2

. We present some computational
examples in Table 5. We show the asymptotic behavior of the one-sided Hausdorff distance
for cumulative distribution functions wi(t), i = 1, 2, . . . for different values of parameters α,
β, a and b. From these results, one can observe that how deeper we go into the recursion,
the one-sided Hausdorff distance comes smaller.

Table 5. The one-sided Hausdorff distance d computed by (19) for reccurent family (18).

α = 0.25, β = 1.51 α = 0.09, β = 0.30 α = 0.41, β = 0.98 α = 1.20, β = 3.50 α = 0.75, β = 3.80
a = 1.25, b = 1.75 a = 2.90, b = 0.60 a = 1.30, b = 0.70 a = 0.20, b = 0.20 a = 0.25, b = 1.90

w0 0.253906 0.338647 0.249528 0.167576 0.203568
w1 0.154401 0.170627 0.148968 0.063312 0.098448
w2 0.107709 0.113641 0.097871 0.033868 0.061280
w3 0.089594 0.093047 0.073675 0.029762 0.052952
w4 0.085553 0.085846 0.066701 0.029554 0.052124

4. Conclusions

The aim of this research is to study the asymptotic behavior of the one-sided Hausdorff
distance between Heaviside step function and some cumulative distribution functions
based on arctangent function and some baseline distribution. Estimates for the searching
Hausdorff approximation are given. In practice, they can be used as one more possible
criterion in examination of the one-sided Hausdorff approximation. Simple comparatively
investigation of asymptotic behavior of one-sided Hausdorff distance between Heaviside
step function and cumulative distribution functions of GOPC-G and TCPOF-G families
with the same Weibull-type correction is presented. Moreover, we construct families of
recurrence generated adaptive functions. One can formulate corresponding tasks with
approximation problems using proposed methods for other families containing arctangent
function and their extensions. In this way the researcher receive a lot of opportunities when
choosing the appropriate model for approximation of cumulative specific data. We propose
a simple dynamic software module that demonstrate how new results can be using with
real cumulative data.
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