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Abstract: A novel method of an optimal summation is developed that allows for calculating from
small-variable asymptotic expansions the characteristic amplitudes for variables tending to infinity.
The method is developed in two versions, as the self-similar Borel–Leroy or Mittag–Leffler summa-
tions. It is based on optimized self-similar iterated roots approximants applied to the Borel–Leroy and
Mittag–Leffler- transformed series with the subsequent inverse transformations. As a result, simple
and transparent expressions for the critical amplitudes are obtained in explicit form. The control
parameters come into play from the Borel–Leroy and Mittag–Leffler transformations. They are deter-
mined from the optimization procedure, either from the minimal derivative or minimal difference
conditions, imposed on the analytically expressed critical amplitudes. After diff-log transformation,
virtually the same procedure can be applied to critical indices at infinity. The results are obtained for
a number of various examples. The examples vary from a rapid growth of the coefficients to a fast
decay, as well as intermediate cases. The methods give good estimates for the large-variable critical
amplitudes and exponents. The Mittag–Leffler summation works uniformly well for a wider variety
of examples.

Keywords: resummation of small-variable asymptotic expansions; large-variable exponents and ampli-
tudes; optimal Mittag–Leffler summation; optimal Borel–Leroy summation; iterated root approximants
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1. Introduction

A method for determining from small-variable asymptotic expansions the characteris-
tic exponents for variables tending to infinity, called a self-similar Borel–Leroy summation,
was suggested recently [1]. It is based on optimized self-similar factor approximation ap-
plied to the Borel–Leroy transformed series. The celebrated method of Borel summation [2]
was also explored in [1], but it should be noted that it does not allow for controlling the
accuracy of approximations. The results can be improved only by adding more and more
terms to the expansions, but even then there are some important physical cases when
the technique could fail because of the poles of gamma-functions entering the formulas.
In addition, the factor approximants are difficult to handle analytically in high-orders.
Therefore, application of some remedial techniques is recommended in the current paper.

First, to solve some debilitating technical problems, instead of the factor approximants,
we apply the so-called iterated roots. Such innovation allows for extending calculation
systematically into high orders of perturbation theory.

Second, in order to broaden the spectrum of problems to be tackled, in addition to
Borel and Borel–Leroy summations, we consider also Mittag–Leffler summation.

Third, optimization ideas are applied now in a consistent manner in rather high orders,
as a part of the summation procedures, in order to determine control parameters introduced
by the transformations.

As is commonly understood, the most often applied Padé–Borel summation has the
following meaning. Suppose we know that the coefficients an of the power series for the
sought function change as n!. Let us get rid of the factorial dependence that complicates
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direct calculation with the original series, by performing Borel-transform. The transfor-
mation basically smoothed the coefficients by excluding n! growth. To the transformed
series, one can apply Padé approximations with a justifiable hope to obtain better results in
a finite domain because the transformed coefficients could be decreasing in magnitude, or
grow much slower than originally. The whole table of Padé approximants could be used for
resummation applied to the transformed series [3]. After the summation is accomplished,
we have to get back to the original series by performing inverse Borel transformation,
by means of improper integration. The last step is accomplished numerically when we
are interested in the sought function at finite values of variables. It should be noted that
asymptotics of the Padé approximants and of the Padé–Borel summation are limited to
integer numbers [1], and more complicated cases of rational or irrational critical indices
can not be covered at all. Thus, the standard approach has certain weak points, especially
when a direct calculation of critical indices is required.

Application of the self-similar approximants brings some distinct advantages over
the standard Padé–Borel summation [3–6]. In particular, factor and root approximants are
defined uniquely for the asymptotic conditions. Most importantly, simple and transparent
expressions for the critical indices and amplitudes arise just by following the definition
faithfully. In [1], we suggested replacing the whole Padé table with uniquely defined factor
approximants, free of a non-uniqueness of Padé tables. It turned out that already from
such an approximant applied to the transformed series one can find the critical index,
even without having to restore the original asymptotic behavior. However, to find the
critical amplitude, one ought to perform an inverse Borel-transform and restore the original
asymptotic behavior.

In addition, the self-similar Borel–Leroy summation by means of factor and root
approximants leads to an exact reconstruction of the zero-dimensional partition function [1],
while the Padé-based techniques are not able to do so. To understand the reasons why
factor approximants are more powerful than Padé approximants, we can turn the physical
case of a D-dimensional hydrogen atom with slowly convergent energy expansion into
powers of 1/D [7,8]. In this case and for similar simple dependencies with power-laws,
factor (as well as root) approximants [9] give exact reconstruction of the sought energy. In
the case of a zero-dimensional field theory discussed in [1], the Borel–Leroy transform of
the exact solution has the form of such a simple dependence with power-law, analogous to
the above mentioned energy, and inverse transformation gives exact reconstruction of the
zero-dimensional partition function.

Of course, one can approach the class of problems with power-law behavior at large
variables from different angles. Recently, the Borel summation was applied also to the
hypergeometric functions/approximants [10,11], leading after integration to the so-called
hypergeometric-Meijer approximants [12,13]. Such techniques are interesting by all means
but are rather difficult to implement in practice. Most notably, non-uniqueness of the
solutions comes into play already at the initial stage of asserting asymptotic equivalence.
Application to realistic problems thus requires a fitting procedure [14,15], and most results
appear only in numerical form. Very honest and direct comments by Mera et al. [12] should
be highly commended without disparaging the further attempts to utilize their technique.
However, much simpler methods should not be abandoned altogether, since they are much
more transparent and could be always rather easily used for estimates before trying any of
the time- and effort-consuming techniques [16].

Our choice throughout the current paper of the known self-similar iterated root
approximants [9] allows for analytical calculation of critical exponents and amplitudes, with
explicit introduction of control parameters and their subsequent evaluation from the general
conditions of non-perturbative nature. All that allows the researcher to keep the calculations
under control. Again, we can cover rational or irrational critical indices, while also retaining
uniqueness in determination of the approximants’ coefficients. Summation methods of the
current paper are also modular, allowing for introducing the desired modifications quite
routinely. There are three modules involved. One is for the transformation per se; another
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is for the approximants and corresponding amplitudes; and the third is for the optimal
selection of the parameters.

Iterated roots are much simpler than factor approximants to define from the asymp-
totic expansion at small variables, and the formulae can be written in rather high orders.
There is no distinction now between odd and even number of terms, as is for the factors.
Correspondingly, by using roots, we can avoid an uneven performance of factor approx-
imants for an odd and even number of terms. Resummation procedure leading to the
self-similar iterated roots consists of optimizing the flow of approximations viewed as a
dynamic system in approximation space. Such flow evolves symmetrically, to satisfy the
property of self-similarity. Moreover, simple and symmetric algorithms may be preferred
by Nature by itself [17]. See also review [18] on relations between symmetry, simplicity and
asymptotic methods.

The control parameter introduced by the Borel–Leroy transformation could be de-
termined from optimization procedure, by imposing either the minimal sensitivity or the
minimal difference conditions formulated for the analytically expressed critical ampli-
tudes or critical indices [19,20]. When we apply the Borel–Leroy summation (see, e,g.,
refs. [3,21,22] and references therein), or yet different Mittag–Leffler summation [5,6,22–24],
to the initial truncated series, we again expect that the problem for such a transformed
series will be simpler than the original one, and could be tackled by means of the self-
similar approximants at hand. Applying such transformation also allows for bypassing
the problem of the gamma-function poles appearing for the Borel summation, allowing
now to calculate critical properties in some important physical cases, such as a shift of
Bose-condensation temperature, or even in generic problems of critical indices.

Our method of optimal Mittag–Leffler summation complements the standard Mittag–
Leffler summation in two principal ways. Instead of the typically employed Padé ap-
proximants, we use iterated root approximants. In order to determine the parameter of
Mittag–Leffler transformation, we systematically apply the optimization conditions. The
former innovation allows us to express the critical properties in analytical form. The latter
gives a systematic way of finding the critical parameters. When the two are considered
together, we arrive at the direct analytical method for calculation of critical amplitudes and
indices from asymptotic series.

2. Preliminaries

Generally speaking, we are interested in a real non-negative function f (x) of a real
variable x. In addition, we are in possession only of the truncated asymptotic expansion of
f (x) at small variables

f (x) ' fk(x) (x → 0), (1)

which can be divergent for finite values of the variable x, and

fk(x) =
k

∑
n=0

anxn , (2)

where a0 > 0. For simplicity, we may set a0 = 1 sometimes.
The most difficult region for approximating is that of the large variable, where ap-

proximations are expected to be at their worst performance. We will try to solve the most
difficult case of the large-variable behaviour of the function, restricting it to the following
asymptotic form:

f (x) ' Bxβ (x → ∞). (3)

The constant B will be called the critical amplitude and the power β stands for the criti-
cal exponent. After the self-similar renormalization (see, e.g., [9,25]), application to the
truncated series (2), we arrive to a self-similar approximant f ∗k (x).

Typically, and as is assumed in the current paper, for many vital physical problems,
the general expressions for the expansion coefficients are not known. Thus, convergence
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of the sequence of approximants cannot be determined rigorously. We can discuss only
numerical convergence, observing it within the finite sequences of numerical results. It is
always preferred, for exceedingly obvious reasons, to apply various methods for finding
large-variable exponents. There are several different ways to implement the self-similar
renormalization. All of them can be found in the book [25]. The particular realization is
dictated by the problem specifics. We opt for such variants that would lead to the possibility
of taking explicitly the limit x → ∞. When such a limit is available in analytical form,
we could find explicitly the related approximation for the critical amplitude and critical
exponent. The task of finding details of critical behavior is far from trivial. In fact, the
problem is central for critical phenomena, ubiquitous in Nature. Critical phenomena are
of great interest in seismology, phase transitions, polymers, non-equilibrium transport
phenomena in structured media, field theory, quantum mechanics, statistics, finance and
so on.

Instead of a single critical index, one can generate a spectrum of critical indices
dependent on conditions of numerical experiments. When the position of the critical point
is known, the problem of critical indices can be reduced to calculation only of the critical
indices at infinity. In turn, such a problem can be mapped to an equivalent problem of
finding only critical amplitudes at infinity. The latter problem arises most naturally when
the value of the exponent β is available from other sources. Then, we need to find only the
critical amplitude B. Such problems, even considered on their own, are of a long-standing
interest in applied mathematics [26]. However, the tables can be turned, so that, by solving
the problem only for critical amplitude, we would also develop the method of calculation
for the critical exponent β as explained in the review [9].

Let us denote the critical amplitude following from the approximants at the intermedi-
ate stage of the transformed series as C(u) [1]. After the inverse Borel–Leroy transformation,
the sought amplitude for the original problem B(u) can be expressed as

B(u) = C(u) Γ(1 + β + u),

for the Borel–Leroy summation. The formula simply follows from the more general result
from [1] by fixing the critical index to a constant β.

In the current paper, we are going to apply also the Mittag–Leffler transformations [22,23],
and find that

B(u) = C(u) Γ(1 + β u),

for the Mittag–Leffler summation.
The two formulas for critical amplitudes are central for our study, since they bridge

analytically the sought critical amplitude for original coefficients with the amplitude for
the transformed coefficients. Only the multipliers involving gamma-function are needed to
return from the transformed quantities to the original. The greatest advantage of possessing
formulas is that we can perform optimization on formulas as well. Such a convenience
arises due to symmetry and simplicity requirements involved in derivation of the self-
similar approximants.

The parameter u is inherent to the Borel–Leroy and Mittag–Leffler transforms, and
it has to be determined from optimization conditions, selected to mimic the conditions of
convergence for infinite series, but adapted to the case of truncated series. Such conditions
are grounded in some rather intuitive notions, such as a requirement that the numerical
solution stop being dependent on the approximation number (minimal difference), or else
stop being dependent on the artificially introduced parameter (minimal derivative), as
soon as the numerical convergence of the renormalized sequences is achieved.

To find the control parameter u, it we turn to the complete amplitude optimization [1,19,20],
in the form of minimal difference [1], or minimal derivative conditions imposed on amplitude
B(u) [19,20]. Alternatively, we may solve at first the optimization problem formulated anal-
ogously but for the marginal amplitude C(u), and find the control parameter u. From the
solution of marginal problems, we can easily restore the solution of the full original problem.
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The examples considered in the paper correspond to the coefficients an behaving in
various ways, covering situations from a rapid growth of the coefficients to a fast decay,
as well as intermediate cases. The methods of optimal summation manage to adapt to
such behaviors.

3. Iterated Root Approximants

Self-similar root approximants are important for our study. They follow directly from
consideration of the flow of approximations viewed as a dynamic system in approximation
space. The flow evolves by following the symmetrical trajectory of the approximation
cascade. The corresponding symmetry is called self-similarity. Its application to resumma-
tion problems formulated in the space of approximations was pioneered by V.I. Yukalov.
More details on root approximants and self-similarity can be found, e.g., in our recent
paper [27]. The parameters inherent to root approximants are introduced by means of
the algebraic transforms and bootstrapping. When the large-variable asymptotic of the
sought function is known, they appear to be defined uniquely [9]. If we try to find these
parameters only from the small-variable expansion, then there are multiple solutions to
the system of equations for the parameters. However, if some additional condition on the
parameters is imposed, such as a requirement that all terms in root approximant contribute
to the large-variable amplitude [28], then we can have a unique solution for the coefficients
of root approximants.

Conditioning the approximants on correct critical exponent β at infinity, we arrived in [28]
to the so-called iterated root approximants, with known powers and unknown amplitudes,

Rk(x) =

(((
(1 + A1x)2 + A2x2

)3/2
+ A3x3

)4/3
+ . . . + Akxk

)β/k

. (4)

Now, all relevant parameters Aj could be uniquely defined from the asymptotic
equivalence with the truncated series in the small x limit. More up-to-date details on
derivation of iterated roots can be found in [27].

In the large-variable limit, the approximant (4) behaves as the power-law

Rk(x) ' Bkxβ (x → ∞) , (5)

with the critical amplitude

Bk =

(((
A2

1 + A2

)3/2
+ A3

)4/3
+ . . . + Ak

)β/k

. (6)

The parameters of iterated root approximations (4) could be found iteratively, adding
one new parameter in each order. They are defined for all k = 1, 2, . . . and the question
about “odd” and “ even” approximants does not arise here at all, unlike the case of factor
approximants [1].

Calculations with iterated roots are really simple, but the price to be paid for such
convenience amounts to the impossibility to incorporate into (4) nontrivial sub-critical
indices. For that end, we should go back to the original form of root approximants, or
resort to the so-called additive approximants [25].

Remarkably, critical exponents can be found by using the very same techniques
as developed for critical amplitudes. Again, we deal with a function, with power-law
asymptotic behavior f (x) ' Bxβ (x → ∞). The critical exponent can be expressed as
the limit

β = lim
x→∞

x
d

dx
ln f (x) ≡ lim

x→∞
xψ(x), (7)
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where ψ(x) ≡ d
dx ln f (x), as shown in [1,9,29,30]. The small-variable expansion for the

original function is given by the sum fk(x), and we can find the corresponding small-
variable expression for the diff-log function ψ(x),

ψk(x) =
d

dx
ln fk(x), (x → 0),

which can be expanded in powers of x, leading to the truncated series

ψk(x) =
k

∑
n=0

dnxn . (8)

However, for x → ∞, we find that simply

ψ(x) ' β xδ,

where the “ critical amplitude” is the sought critical index β, and the “critical index” is fixed
to δ ≡ −1, to make the limit (7) existent [1,9]. Without much ado, we can simply apply the
technique of iterated roots described above for the critical amplitudes and calculate the
critical index β. Bearing that in mind, we are going to discuss below the case of critical
amplitude B calculation. Then, it remains simply apply the methods to be developed to
calculate also the critical index β.

However, the case of δ = −1, or β = −1, depending on the context, appears to be
divergent when treated by the self-similar Borel summation technique of [1]. In such cases,
some other types of summation should be advanced. They will be considered in the next
two sections, in order to be able to calculate critical properties in such important cases.

4. Self-Similar Borel–Leroy Summation

The generalization of the Borel summation method could be devised through the
Borel–Leroy transform [1,22],

Lk(x, u) =
k

∑
n=0

an

Γ(1 + n + u)
xn , (9)

where u plays the role of a control parameter. It has to be chosen to improve the convergence
of the sequence of approximants to be applied to the transformed series. The transformation
amounts to the coefficients of the original series an being diminished by the factor (n + u)!.
The latter expression should be understood in terms of the factorial function

m! =
∫ ∞

0
exp(−t) tm dt ≡ Γ(1 + m), (10)

defined for arbitrary m = n + u.
With u = 0 in the Formula (9), we return to the Borel-transform, while, with u→ ∞,

the Borel–Leroy summation is supposed to be equivalent to the summation of the original
series (2) with chosen approximants. The latter statement does follow from the analysis of
the Formula (42) from our previous work [1].

Summing up the truncated series Lk(x, u) by means of iterated self-similar root ap-
proximants yields the approximant

L∗k (x, u) = a0(u)

(((
(1 + A1(u)x)2 + A2(u)x2

)3/2
+ A3(u)x3

)4/3
+ . . . + Ak(u)xk

)β/k

. (11)

The inverse Borel–Leroy transformation

f ∗k (x) =
∫ ∞

0
e−ttuL∗k (tx, u) dt , (12)
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gives the approximation f ∗k (x) for the sought function f (x).
It is relatively straightforward to observe that, at large values of the variable

L∗k (x, u) ' Ck(u)xβ (x → ∞) , (13)

i.e., the self-similar Borel–Leroy transform behaves as a power-law with correct critical
index β. The marginal amplitude Ck(u)

Ck(u) = a0(u)

(((
A1(u)2 + A2(u)

)3/2
+ A3(u)

)4/3
+ . . . + Ak(u)

)β/k

(14)

follows from the definition of iterated root. Finally, at large values of x, function (12) is
expressed as follows:

f ∗k (x) ' Bk(u)xβ (x → ∞) , (15)

where the critical amplitude

Bk(u) = Ck(u) Γ(1 + u + β). (16)

is presented as the marginal amplitude Ck(u) multiplied by the correcting gamma-function.
In what follows, we are going to approach the optimization problem following the

lines of the papers [19,20], by employing either the minimal difference condition or the
minimal derivative condition formulated for critical amplitudes. The solution is expected
to correspond to a positive u when the coefficients an are increasing with approximation
number n. Covering the case of an increasing faster than n! may be problematic for the
Bose–Leroy methodology and may be better approached with Mittag–Leffler summation.

5. Self-Similar Mittag–Leffler Summation

Borel summation method can be generalized in a different manner, through the Mittag–
Leffler transform [22,23]. For the truncated series (2), it reads as follows:

Mk(x, u) =
k

∑
n=0

an

Γ(1 + n u)
xn , (17)

with arbitrary u playing the role of a control parameter. It has to be chosen in such a
way that the convergence of the sequence of approximants could be expected to improve.
Compared with the conventional Borel-transform valid for a non negative integer m = un,
the Mittag–Leffler transform allows for a more general behavior of the series coefficients,
formalized by means of the factorial function (10), valid for arbitrary m = nu. From the
Formula (10), it is clear that Mittag–Leffler transformation amounts to the coefficients of
the original series an being divided by the factor (un)!.

With u = 1 in the Formula (17), we return to the Borel-transform, while, with u = 0,
the Mittag–Leffler summation degenerates to the summation of the original truncated
series (2) with chosen approximants. Summing up the truncated series Mk(x, u) by means
of iterated self-similar root approximants results in the following approximation:

M∗k (x, u) = a0(u)

(((
(1 + A1(u)x)2 + A2(u)x2

)3/2
+ A3(u)x3

)4/3
+ . . . + Ak(u)xk

)β/k

. (18)

The inverse Mittag–Leffler transformation gives the self-similar approximation for the
sought function

f ∗k (x) =
∫ ∞

0
e−t M∗k (t

ux, u) dt . (19)

At large values of the variable, the self-similar Mittag–Leffler transform behaves as

M∗k (x, u) ' Ck(u)xβ (x → ∞) , (20)
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with the amplitude

Ck(u) = a0(u)

(((
A1(u)2 + A2(u)

)3/2
+ A3(u)

)4/3
+ . . . + Ak(u)

)β/k

(21)

Finally, it remains to discover that, at large values of x, function (19) acquires the form
of a power-law

f ∗k (x) ' Bk(u)xβ (x → ∞) , (22)

where the amplitude can be expressed through a simple formula,

Bk(u) = Ck(u) Γ(1 + u β). (23)

Formula (10) for the gamma-function was employed again to derive the Formula (23).
One can think that actual performance of the Mittag–Leffler summation method described
in this section depends on how well it performs at the two rather close limits, u = 0 and
u = 1. We expect the solution to the optimization problem [19], to be located at positive u
when the coefficients an are increasing with approximation number n. Negative optimal
values could also come into play, in particular when an are decreasing with n.

6. Bose–Einstein Condensation Temperature

The Bose–Einstein condensation temperature T0 of ideal uniform Bose gas in three-
dimensional space is rather well known and can be found in standard textbooks. However,
it is also well known that the ideal Bose gas is unstable below the condensation temperature.
Atomic interactions do stabilize the system, while also shifting the transition temperature by
the amount ∆Tc ≡ Tc − T0 . This shift, at a asymptotically small gas parameter Γ ≡ ρ1/3as ,
where as is atomic scattering length, and ρ stands for the gas density, is widely assumed to
be proportional to Γ,

∆Tc

T0
' c1Γ (Γ→ 0) .

Monte Carlo simulations (see, e.g., Refs. [31,32] and multiple references therein)
estimate that c1 = 1.3 ± 0.05. The coefficient c1 can be defined [33–35] as the strong-
coupling limit

c1 = lim
g→∞

c1(g) ≡ B, (24)

of a function c1(g) with the formally obtained expansion in the small parameter g,

c1(g) ' 0.223286g− 0.0661032g2 + 0.026446g3 − 0.0129177g4 + 0.00729073g5 , (25)

with g playing the role of effective coupling. For such a problem, we have β = −1, and
Borel summation according to the scheme of [1] is not applicable. However, the problem
can be addressed with different summations.

Let us first apply the method of Mittag–Leffler summation. In the highest avail-
able order, we obtain from the minimal-difference condition, B4(u) = B3(u) [19], the
unique solution

u∗ = 0.538618, B4 = 1.33967.

The result appears to be in a good agreement with the known results mentioned above.
In the same way, one can find the values of c1 for the O(1) field theory [34], with the

following, formally obtained expansion available,

c1(g) ' 0.334931g− 0.178478g2 + 0.129786g3 − 0.115999g4 + 0.120433g5 ,
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and for the problem with β = −1, we calculate from the minimal-difference condition
B4(u) = B3(u), the unique solution

u∗ = 0.54681, B4 = 1.14124.

The solution for critical amplitude agrees well with Monte Carlo numerical estimate
c1 = 1.09± 0.09 , (see [31] and references therein).

For the O(4) field theory, the following expansion can be found in [34],

c1(g) ' 0.167465g− 0.0297465g2 + 0.00700448g3 − 0.00198926g4 + 0.000647007g5,

and for the problem with β = −1, from the minimal-difference condition in the form

B4(u) = B3(u),

we find the unique solution

u∗ = 0.52176, B4 = 1.60226.

The solution agrees well with Monte Carlo numerical estimate c1 = 1.6± 0.1 , as
discussed in [9,31].

The method of Borel–Leroy summation could be applied similarly and gives rather
reasonable results shown in Table 1. In all cases, the solutions appear to be defined uniquely.
Results of calculations in the fourth-order by the two summation methods are compared
in Table 1. They appear to be in a good agreement with each other and with Monte Carlo
simulations. The problems of condensation temperature correspond to slowly decaying,
relatively small numbers of the coefficients an. Rather surprisingly, the summation methods
developed for the series with rapidly growing coefficients in mind work rather well.
The available truncated series are quite short but nonetheless informative; the minimal
difference condition manages to mimic plausibly the role of missing, high-order coefficients.

Table 1. Different types of transforms and summations applied to calculation of the parameter c1,
defining shift of the Bose–Einstein condensation temperature and to analogous models. Parameter c1

quantifies a shift of the transition temperature compared with the ideal system.

Parameter c1 Bose Condensate O(1) O(4)

Mittag–Leffler 1.33967 1.14124 1.60226

Borel–Leroy 1.28676 1.09556 1.53957

“Exact” Monte Carlo 1.3 ± 0.05 1.09 ± 0.09 1.6 ± 0.1

7. Fluctuating Fluid Membrane

The pressure p exerted by a two-dimensional membrane can be calculated from
perturbation theory with the wall stiffness g playing the role of a small parameter [36].
Extensive calculations produce the following expansion

pk(g) =
π2

8g2

(
1 +

k

∑
n=1

angn

)
, (g→ 0), (26)

with the coefficients

a1 =
1
4

, a2 =
1

32
, a3 = 2.176347× 10−3, a4 = 0.552721× 10−4

a5 = −0.721482× 10−5 , a6 = −1.777848× 10−6 .
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The rigid-wall limit of g → ∞ is of primary interest. The coefficients an are rapidly
decaying and the problem, at first glance, does not seem to be treatable accurately by means
of Borel-type summations.

From Monte Carlo simulations, the best available result was obtained in [37], i.e.,

p(∞) = 0.0798± 0.0003 . (27)

In order to apply the techniques developed above, we consider the quantity

fk(g) = pk(g) g2,

which diverges at infinity with critical index β = 2. The sought pressure can be calculated
as the critical amplitude at infinity.

The problem of calculating p(∞) appears to be rather difficult, judging by the fact
that the Padé approximants fail to produce reasonable results [9]. Factor approximants
also essentially fail, giving very high estimates [9]. Iterated roots application improves the
results. For instance, in the case of the iterated roots, we have p∗6(∞) = 0.071.

Calculations with various Borel-type techniques conducted with all known coefficients
an, do not bring any improvement over the iterated root results. In such a situation, one
would like to have more coefficients in the expansion in the hope to improve results.
In order to have some proxy for the true coefficients, we add some trial, “ very small”
coefficients, a7 = a8 = 0. Routinely, one constructs the approximant M∗8(g, u), and finds u
by employing the minimal-derivative condition [19] in the form

∂p8(u)
∂u

= 0.

Solving the latter equation, we find negative control parameter u∗ = −0.253341,
with the final Mittag–Leffler summation result for the sought pressure treated as the
critical amplitude,

p8(u∗) = 0.077289.

The quality of the result is the same as of the full, self-similar root approximants
considered in [38]. The result can be compared also with the value of 0.0821 from the
variational perturbation theory [36], which overestimates the Monte Carlo result by about
the same amount.

Borel summation gives a much smaller value of 0.06517 for the pressure, while, for
the Borel–Leroy summation, the solution to a minimal derivative condition is absent
altogether even in the considered high orders. The solution (p ≈ 0.055) exists though in the
sixth order and is vastly inferior. The result p∗∗3 (∞) = 0.0792, obtained by the analytical-
numerical method of doubly renormalized iterated roots [9], remains the best to the best of
our knowledge.

8. Unitary Limit

The function f ∗k (x) can be reconstructed from M∗k (x) even without integration, by
adapting the method of self-similarly corrected Padé approximants [1,31]. To this end, one
can use the following formula: function

f ∗k (x) ' M∗k (x) Pn/n(x) (2n = k) , (28)

and concentrate on finding the parameters of the correcting, diagonal Padé approximant
Pn/n(x). Asymptotic equivalence in the formula (28) is enforced by equating terms of the
same order of the small-variable expansion of (28) and of the expansion (2).

The case of β = 0 can be most conveniently handled by means of the self-similar factor
approximants [1]. Even without a transformation, the approximants, when applied to the
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initial series (2), allow for a direct definition of characteristic amplitudes by extrapolating
the initial series (2) to the form

f ∗k (x) =
Nk

∏
j=1

(1 + Ajx)
nj , (29)

where Nk = k/2 , k = 4, 6, . . .. However, let us first apply the Mittag–Leffler transform to
the truncated series (1), and apply then the factor approximants so that

M∗k (x, u) = a0(u)
Nk

∏
j=1

(1 + Aj(u)x)nj(u) . (30)

Remember that the condition on the exponent

β =
Nk

∑
j=1

nj,

has to be satisfied in each and every order. “Marginal ” amplitude for the transformed
series is given by the expression suggested in [1],

Ck(u) = a0(u)
Nk

∏
j=1

Aj(u)
nj(u) , (31)

and the critical amplitude is expressed through the marginal amplitude and correcting
gamma-function,

Bk(u) = Ck(u) Γ(1 + u β). (32)

In the case of β = 0 to be discussed below, Bk(u) = Ck(u). The amplitudes could be
optimized by means of the minimal derivative condition [19],

∂Ck(u)
∂u

= 0.

From the latter equation, we have to find the control parameter u = u∗.
The technique just discussed above could be applied to the problem of extrapolation

of the ground-state energy of a dilute Fermi gas. The truncated series for the energy follows
from the perturbation theory [39,40]. They are derived with respect to the effective coupling
parameter g ≡ |kFas| , expressed through a Fermi wave number kF, and atomic scattering
length as. The perturbation theory leads to the expansion up to the fourth order,

E(g) ' a0 + a1g + a2g2 + a3g3 + a4g4 , (33)

with the coefficients

a0 =
3

10
, a1 = − 1

3π
, a2 = 0.055661, a3 = −0.00914 , a4 = −0.018604 .

From the experimental viewpoint, it is very important that the effective coupling parameter
could be varied by controlling the scattering length, in a rather broad band. The band
includes the case of g→ ∞. The latter limit corresponds to the so-called unitary Fermi gas,
used to model the low-density neutron matter [41]. The often used Bertsch parameter is
defined through the energy, ξ = E(∞)× 10

3 [41].
The energy of a dilute Fermi gas in the limit-case g→ ∞ can be calculated by various

methods. In particular, the Monte Carlo calculations [41,42] yield

E(∞) = 0.1116,
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while the experimentally best known value is

E(∞) = 0.1128,

(see [41,43]). More recent Monte Carlo simulations give E(∞) = 0.1164 [44].
We construct the approximant M∗4(g, u) in the highest available order, and find control

parameter u by employing the minimal-derivative condition

∂E4(u)
∂u

= 0.

Solving the latter equation, we find negative control parameter

u∗ = −0.4846, (34)

with the final Mittag–Leffler-summation result for the sought critical amplitude,

E4(u∗) = 0.1022.

Borel-summation can be accomplished by simply setting u = 1, bringing a much smaller result

E4(1) = 0.0814.

By adding one more trial coefficient a5 = 0, we can estimate E6(1) = 0.1451. The bounds
given by the Borel-summation are quite reasonable, but are rather wide.

Using all four terms from the expansion and one condition at infinity, we calculate,
from the Formula (28) with the control parameter (34), the final value of the energy

E∗4 (∞) = C4(u∗) P2/2(∞) = 0.1193.

The latter estimate is closer to the result of [44]. Of course, one can study the unitary
limit also with the Borel–Leroy transform, but, in this case, the factor approximants give
vastly inferior results E∗4 (∞) = 0.174.

We conclude that various Mittag–Leffler summation results are in better agreement
with the best available numerical and experimental results than other methods presented
in the review [9]. The expressions of the type of (28) can be used for interpolation as
described in [27], to construct a ground state energy dependence of low-density neutron
matter as a function of interaction strength, possibly generalizing the known formula
of [45]. Overall, the optimal Mittag–Leffler summation applied to the series (33), with the
coefficients behaving non-monotonously, first decaying and then increasing in absolute
values, allows for a rather nimble adaptation to such a situation.

9. Critical Exponent: Anharmonic Models

We are going to implement below the idea sketched in the end of Section 3. The main
target is the critical index at infinity. The Mittag–Leffler transform has to be applied now to
the truncated series (8), with the formal result

Mk(x, u) =
k

∑
n=0

dn

Γ(1 + n u)
xn , (35)

where arbitrary u plays the role of a control parameter. Summing up the latter series by
means of iterated self-similar root approximants yields

M∗k (x, u) = a0(u)

(((
(1 + A1(u)x)2 + A2(u)x2

)3/2
+ A3(u)x3

)4/3
+ . . . + Ak(u)xk

)−1/k

. (36)
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Accomplishing the inverse Mittag–Leffler transformation gives the approximation for
the sought function

ψ∗k (x) =
∫ ∞

0
e−t M∗k (t

ux, u) dt . (37)

At large values of the variable, the self-similar Mittag–Leffler transform behaves as

M∗k (x, u) ' Sk(u) x−1 (x → ∞) , (38)

with the amplitude

Sk(u) = a0(u)

(((
A1(u)2 + A2(u)

)3/2
+ A3(u)

)4/3
+ . . . + Ak(u)

)−1/k

. (39)

Finally, at large values of x, the function (19) acquires the following form:

ψ∗k (x) ' βk(u) x−1 (x → ∞) , (40)

where the “amplitude” from (39) is the sought critical index

βk(u) = Sk(u) Γ(1− u). (41)

To obtain the final Formula (41), we simply have to adapt the Formula (23).
Following equivalent steps, one can also accomplish the Borel–Leroy summation in

application to critical indices. Omitting here self-evident intermediate steps, we arrive to
the core expression for the critical index:

βk(u) = Sk(u) Γ(u). (42)

The critical indices βk(u) could be optimized by means, e.g., of the minimal difference
condition [19],

βk(u)− βk−1(u) = 0,

with k = 2, 3, . . .. From the latter equation, one expects to find the optimal parameter
u = u∗.

The quantum model of one-dimensional quartic oscillator serves mostly for evaluation
of the new methods’ applicability to various quantum field-theoretical problems [6]. With
the Hamiltonian given in dimensionless units as follows:

H = − 1
2

d2

d x2 +
1
2

x2 + gx4 , (43)

where x ∈ (−∞, ∞) and g ≥ 0, one can calculate the ground-state energy E(g) for the
corresponding quantum-mechanical problem. The expansion of E(g) in powers of the
coupling constant g results in a divergent series of type (2). Explicit value of the coefficients
an can be found in [46,47].

The leading term of the strong-coupling behavior also has the form a power-law

E(g) ' 0.667986 g1/3 (g→ ∞) . (44)

Let us perform the diff-log transformation, find coefficients dn in the formula (8), and
proceed step-by-step to the minimal difference condition in the form

β10(u)− β9(u) = 0,

where the highest available order of truncation where we managed to perform calculations
analytically is k = 10.
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In the case of Mittag–Leffler summation, we find a unique solution to the minimal
difference problem, so that

u∗ = 0.557476, β10 = 0.330762,

while, for the Borel–Leroy summation, we obtained

u∗ = 0.945554, β10 = 0.324663.

The two estimates (especially the former) are in a good agreement with exact critical
exponents. The former estimate is also the best compared with the whole family of estimates
obtained in [1].

Let us also bring here more details on the self-similar Mittag–Leffler summation. With
increasing approximation order, it leads to the following results:

β2 = 0.36781, β3 = 0.32793, β4 = 0.33741, β6 = 0.33085, β8 = 0.33053, β10 = 0.33076.

Already in the low orders quite good accuracy is achieved. The results for some “odd”
approximations are not shown here, since there are no solutions to the minimal-difference
condition in such cases. Numerical convergence appears to be monotonous in the case of
self-similar Borel–Leroy summation, brought up below for the higher-orders,

β5 = 0.31983, β6 = 0.32178, β7 = 0.32275, β8 = 0.32346, β9 = 0.32405, β10 = 0.32466.

Let us consider another popular touchstone, the partition function of the zero-dimensional
anharmonic model

Z =
1√
π

∫ ∞

−∞
exp

(
−ϕ2 − gϕ4

)
dϕ , (45)

with the non-negative coupling parameter g. Expanding the integral in powers of g leads
to the divergent series (2) with the coefficients an = (−1)n

√
π n! Γ

(
2n + 1

2

)
.

The strong-coupling behavior of the integral is known as well, with the leading term
shown below:

Z(g) ' 1.022765 g−0.25 (g→ ∞) . (46)

We follow the same procedure as in previous example, and write down the minimal
difference condition β10(u) = β9(u).

In the case of Mittag–Leffler summation, we found the following solution to the
minimal difference problem,

u∗ = 0.684764, β10 = −0.254076,

while, for the Borel–Leroy summation, we obtained

u∗ = 0.501554, β10 = −0.249603.

The two estimates are in a good agreement with exact critical exponent β = −1/4.
The two estimates are also the best compared with the whole family of estimates obtained
in [1]. In the latter case, there is a small caveat of two more solutions with slightly inferior
index, and only the best solution is brought up.

With increasing approximation order, the self-similar Mittag–Leffler summation gives
good results already in low orders

β2 = −0.2878, β3 = −0.25274, β4 = −0.26209, β5 = −0.25642,

while, in higher-orders, the results are confirmed,

β6 = −0.25788, β7 = −0.2553, β8 = −0.25559, β9 = −0.2539, β10 = −0.254076.



Axioms 2022, 11, 202 15 of 21

Let us also bring here more details on the self-similar Borel–Leroy summation depen-
dence on the order of approximation. The summation leads to the following approximants:

β2 = −0.2069, β4 = −0.23206, β6 = −0.24282, β8 = −0.24751.

The results for the approximations with odd k are not shown here, since there are
multiple solutions to the minimal-difference condition in such cases. Note that the con-
trol parameters are found to be positive for the two touchstone examples with the fast
growing coefficients.

10. Critical Exponent: Expansion Factor of Polymer Chain

Let us proceed with a concrete example of a certain theoretical interest. The excluded
volume effect in a polymer chain has been one of the central problems in the field of
polymer solutions. The excluded volume effect emerges due to the effective repulsion
between segments of the polymer chain, resulting in the enlargement of the chain. The
expansion factor α is quantified by the ratio of the mean square end-to-end distance of the
chain to its unperturbed value. The expansion factor of polymers gives a parsimonious
example of self-organized criticality. The power-laws emerge without an external tuning,
in the absence of a or phase transition and for a pure geometrical quantity. However, its
statistical mechanics could be developed as well for a zero-component order parameter.

A perturbation theory for the expansion factor leads to a series in a single dimen-
sionless interaction parameter g, quantifying the expansion factor α(g) [48,49]. For the
three-dimensional case, as g→ 0, the expansion factor can be presented as the truncated
series of the type (2), with the coefficients

a0 = 1, a1 =
4
3

, a2 = −2.075385396, a3 = 6.296879676, a4 = −25.05725072,

a5 = 116.134785, a6 = −594.71663.

The strong-coupling behavior of the expansion factor as g → ∞, has been found
numerically in the paper [50],

α(g) ∝ g0.3508 ,

while a slightly lower result
α(g) ∝ g0.3504

was obtained in [51]. Let us perform the diff-log transformation, find coefficients dn in
the (8), and proceed to the minimal difference condition

β5(u)− β4(u) = 0,

in the highest available order of truncation k = 5.
In the case of Mittag–Leffler summation, we found two very close positive solutions

to the minimal difference problem and took their average for the critical index, while there
half-difference serves to measure a margin of error, so that

β5 = 0.350364± 0.000777139,

while for the Borel–Leroy summation we obtained

β5 = 0.351679± 0.000285817.

The two estimates (especially the former) are in a good agreement with numerical
estimates quoted above, and smaller than the number 0.3544 quoted in [49]. They are also
significantly better than our previous estimates obtained by various methods in [1]. In
Table 2, we present the critical index dependencies on the approximation order for the two
types of summation. They are obtained similarly to the cases discussed above.
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Table 2. Critical index β for the expansion factor of three-dimensional polymer chain. Dependencies
on the approximation order corresponding to the number of coefficients an employed in the course
of calculations.

βk, 3d Polymer 3rd Order (k = 2) 4th Order (k = 3) 5th Order (k = 4) 6th Order (k = 5)

Mittag–Leffler 0.356688 0.350572 ± 0.0067 0.354107 0.350364 ± 0.000777

Borel–Leroy 0.341325 0.348305 0.351065 0.351679 ± 0.000286

Consider also the two-dimensional polymer coil [48], with the expansion factor

α(g) ' 1 + 0.5g− 0.121545g2 + 0.0266314g3 − 0.132236g4, (g→ 0). (47)

The critical index at infinity is considered to be known exactly, with β = 1/2, and

α(g) ' Bg1/2

where the critical amplitude at infinity B is not known exactly [52,53]. The amplitude was
estimated in the book [25] by several methods, with a best guess of B ≈ 1.

We apply for optimization the minimal difference condition,

B4(u)− B3(u) = 0.

The Mittag–Leffler summation brings the following results

u∗ = 0.883551, B4 = 0.972576.

Correspondingly, the Borel–Leroy summation brings

u∗ = 0.28001, B4 = 0.975689.

The Borel summation can be performed just by setting u = 0 in the formulas for
Borel–Leroy technique, and it gives for the amplitude a very close result, B4 = 0.969559.
All results appear to be only slightly smaller than unity.

11. Critical Exponent: Susceptibility of the Ising Model

Consider a three-dimensional Ising model for spins Sz
j = ±1/2, characterized by

the Hamiltonian

Ĥ = − J
2 ∑
〈ij〉

sz
i sz

j

(
sz

j ≡
Sz

j

S

)
, (48)

defined on a simple cubic lattice, with the ferromagnetic interaction of nearest neighbors
with the strength J. The dimensionless interaction parameter g ≡ J

kBT is defined as the
inverse of the temperature T.

The susceptibility χ(g) of the Ising model diverges at a critical point
gc = 0.22165463(8) [54,55], as

χ(g) ' B(gc − g)−γ , (49)

with the critical index anticipated within the range γ = 1.237− 1.244 [4,53]. The weak-
interaction case corresponds to a high-temperature expansion, and is described by a rather
long series in powers of g [56]. Only the starting few terms are shown below:

χ(g) = 1 + 6g + 30g2 + 148g3 + 706g4 + 16804
6 g5 + 42760

3 g6 + . . . (g→ 0) . (50)
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Let us perform the diff-log transformation as explained above and find the coefficients
dn in the formula (8). Then, we proceed step-by-step to the minimal difference condition in
the form

γ10(u)− γ9(u) = 0,

in the 11th order for the original series.
In the case of Borel–Leroy summation, we found two close solutions to the minimal

difference problem,
u∗1 = 2.84111, γ10,1 = 1.23605,

u∗2 = 4.58975, γ10,2 = 1.24479.

We take their average for the final estimate of the critical index, while half-difference
there serves to measure a margin of error [19], so that

γ10 = 1.24042± 0.00437,

while, for the Mittag–Leffler summation, we obtained

u∗ = 0.235521, γ10 = 1.24624.

The two estimates (especially the former) are in a good agreement with numerical
estimates quoted above. In Table 3, we also present the critical index γ dependencies on
the approximation order for the two types of summation. They are obtained similarly to
the cases of highest orders discussed above in more detail. Only the results for rather high
orders are presented.

Table 3. Critical Index for the Susceptibility of the Three-Dimensional Ising Model. Dependencies
on the approximation order corresponding to the number of coefficients an employed in the course
of calculations.

γk, 3d Ising 8th Order (k = 7) 9th Order (k = 8) 10th Order (k = 9) 11th Order (k = 10)

Mittag–Leffler 1.24649 1.24707 1.24702 1.24624

Borel–Leroy 1.24351 1.24314 ± 0.039 1.24163 ± 0.0041 1.24042 ± 0.0044

12. Compressibility Factor of Hard-Spheres Fluids

The thermodynamics of hard-spheres fluids is described by the compressibility factor

Z =
P

ρkBT
= Z( f )

(
f ≡ πρ

6
a3

s

)
, (51)

where P is pressure, ρ is density, T is temperature, and as is the sphere diameter. The
parameter f is called packing fraction. The compressibility factor is believed to diverge as a
power-law at a finite critical point as

Z( f ) ∼ ( fc − f )−β ( f → fc − 0) , (52)

with the parameter fc = 1 and conjectured β = 3 [57,58]. This behavior is infused into
various phenomenological equations of state.

For low packing fraction, the compressibility factor is represented by the virial expansion

Z( f ) = 1 + 4 f + 10 f 2 + 18.364768 f 3 + . . . , (53)

and more exact terms, up to the eleventh order inclusively are available [59–61]. The
expansion is also presented and discussed in the book [25].
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In order to reduce the consideration to the same type of problems as treated above, we
make the same substitution as in the paper [1], with fc = 1:

f =
x

1 + x
, x =

f
1− f

.

Then, as x → ∞ ( f → fc − 0), the compressibility factor at the critical point
behaves as

Z ∝ xβ (x → ∞) . (54)

Now, we can apply the same methods as above, imposing the minimal difference condition,

β10(u)− β9(u) = 0,

corresponding to the highest available order of truncation k = 11, in the original truncated
series (2).

In the case of Mittag–Leffler summation, we found two solutions to the minimal
difference problem,

u∗1 = 0.285573, β10,1 = 3.55362,

u∗2 = 0.46858, β10,2 = 2.6812.

Thus, we take their average to produce the final estimate of the critical index, while
their half-difference serves to measure a margin of error, giving

β10 = 3.11741± 0.436213.

For the Borel–Leroy summation, we find

u∗ = 2.24838, β10 = 2.46436.

The two summations lead to differing conclusions about the value of index β. The
former result better agrees with the conjectured value of β = 3.

Note that the Mittag–Leffler summation starts generating the predictions, which could
be interpreted in favor of the estimate β ≈ 3 already in the eighth-order of perturbation
theory, with the averages

β8 = 2.9406± 0.39745, β9 = 3.15744± 0.477721.

In the former case, there are three solutions and variance is taken as a measure of
margin of error. One can hope that when and if a few more terms in the expansion become
available, the conjecture will be confirmed even more reliably.

13. Conclusions

Our results for the critical indices are based on a few simple formulas and ideas well
worth discussing in conclusion.

First, we perform the diff-log transformation of the original series. After the Mittag–
Leffler transformation applied to the diff-log transformed series, we can find the part
of a critical index S(u), which follows from the self-similar iterated root approximants
calculated for the transformed series. Here, u stands for the control parameter entering the
Borel–Leroy or Mittag–Leffler transformations. Expressions for the marginal index S(u)
could be written analytically. They depend only on the control parameters.

Second, after inverse Borel–Leroy transformation, the sought critical index β(u) for
the original problem can be expressed as properly scaled by means of a gamma-function,
expression for S(u)

β(u) = S(u) Γ(u).
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Similarly, for the Mittag–Leffler summation, we find that

β(u) = S(u) Γ(1− u).

Third, the control parameters ought to be determined from the rather intuitive con-
ditions of a non-perturbative nature, such as minimal derivative or minimal difference
conditions. The conditions could be imposed on the critical indices β(u) per se.

The examples considered in the paper correspond to the coefficients with widely
varying behaviors. They cover situations with a rapid growth of the coefficients an and with
a fast decay, as well as intermediate cases. The methods of optimal summation are able to
adapt to such a variety of an. Both methods of summation appear to be useful in calculation
of the critical amplitudes and indices by means of the uniformly and systematically applied
technique. The Mittag–Leffler summation seems to work uniformly well for a wider variety
of examples, while Borel–Leroy summation works very well for some selected cases, such
as the critical index for the Ising model susceptibility.

Performance of the Mittag–Leffler summation method depends on its performance at
the two close limits, u = 0 and u = 1. The solution to the optimization problem is often
located at positive u, and close to the bounds set by the two limits. However, negative
optimal values could also come into play, in particular when the truncated series coefficients
an are decreasing with n. This is why the Mittag–Leffler summation covers more physical
cases than Borel summation corresponding only to u = 1. Similar discussion pertains to
the Borel–Leroy summation.

Further generalizations of the Borel summation could be imagined according to Nach-
bin [62], with exponential function in the formula (12) being replaced by some other
function belonging to an exponential type, which includes the sums of exponentials or
trigonometric functions. Even stretched exponentials could be employed in place of the
exponential function, although they do not belong to the exponential type. One can
also envisage applying the transforms iteratively or applying various transforms in a
sequence [2,63].

This section is not mandatory, but may be added if there are patents resulting from the
work reported in this manuscript.
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10. Mera, H.; Pedersen, T.G.; Nikolić, B.K. Nonperturbative quantum physics from low-order perturbation theory. Phys. Rev. Lett.

2015, 115, 143001. [CrossRef] [PubMed]
11. Alvarez, G.; Silverston, H.J. A new method to sum divergent power series: Educated match. J. Phys. Commun. 2017, 1, 025005.

[CrossRef]
12. Mera, H.; Pedersen, T.G.; Nikolić, B.K. Fast summation of divergent series and resurgent transseries in quantum field theories

from Meijer-G approximants. Phys. Rev. D 2018, 97, 105027. [CrossRef]

http://doi.org/10.3390/sym14020332
http://dx.doi.org/10.1103/PhysRevE.51.1894
http://www.ncbi.nlm.nih.gov/pubmed/9962848
http://dx.doi.org/10.4249/scholarpedia.8346
http://dx.doi.org/10.1016/0370-2693(70)90564-2
http://dx.doi.org/10.1063/5.0056008
http://dx.doi.org/10.3934/eect.2019001
http://dx.doi.org/10.1017/S0956792514000163
http://dx.doi.org/10.1103/PhysRevLett.115.143001
http://www.ncbi.nlm.nih.gov/pubmed/26551808
http://dx.doi.org/10.1088/2399-6528/aa8540
http://dx.doi.org/10.1103/PhysRevD.97.105027


Axioms 2022, 11, 202 20 of 21

13. Shalabya, A.M. Weak-coupling, strong-coupling and large-order parametrization of the hypergeometric-Meijer approximants.
Results Phys. 2020, 19, 103376 [CrossRef]

14. Sanders, S.; Holthau, M. Hypergeometric continuation of divergent perturbation series: I. Critical exponents of the Bose-Hubbard
model. New J. Phys. 2017,19, 103036. [CrossRef]

15. Sanders, S.; Holthau, M. Hypergeometric continuation of divergent perturbation series: II. Comparison with Shanks transforma-
tion and Padé approximation. J. Phys. A Math. Theor. 2017, 50, 465302. [CrossRef]

16. Abhignan, V.; Sankaranarayanan, R. Continued functions and perturbation series: Simple tools for convergence of diverging
series in O(n)-symmetric φ4 field theory at weak coupling limit. J. Stat. Phys. 2021, 183, 4. [CrossRef]

17. Johnston, I.G.; Dingle, K.; Greenbury, S.F.; Camargo, C.Q.; Doye, J.P.K.; Ahnert. S.E.; Louis A.A. Symmetry and simplicity
spontaneously emerge from the algorithmic nature of evolution. Proc. Natl. Acad. Sci. USA 2022, 119, e2113883119. [CrossRef]
[PubMed]

18. Andrianov, I.V. The pursuit of simplicity. The scientific heritage of Professor Leonid I. Manevitch. Int. J. Non-Linear Mech. 2022,
142, 103998. [CrossRef]

19. Gluzman, S.; Yukalov, V.I. Critical indices from self-similar root approximants. Eur. Phys. J. Plus 2017, 132, 535. [CrossRef]
20. Gluzman, S. Critical Indices and Self-Similar Power Transform. Axioms 2021, 10, 162. [CrossRef]
21. Sokolov, A.I.; Orlov, E.V. Renormalized sextic coupling constant for the two-dimensional Ising model from field theory. Phys. Rev.

B 1998, 58, 2395–2938. [CrossRef]
22. Hardy, G.H. Divergent Series; Clarendon Press: Oxford, UK, 1949.
23. Mittag–Leffler, G. Sur la représentation arithmétique des fonctions analytiques d’une variable complexe. In Proceedings of the

Atti del IV Congresso Internazionale dei Matematici, Roma, Italy, 6–11 April 1908; Volume I, pp. 67–86.
24. Sidi, S. Practical Extrapolation Methods; Cambridge University Press: Cambridge, UK, 2003.
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