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Abstract: An extended form of robust continuous-time linear programming problem with time-
dependent matrices is formulated in this paper. This complicated problem is studied theoretically
in this paper. We also design a computational procedure to solve this problem numerically. The
desired data that appeared in the problem are considered to be uncertain quantities, which are treated
according to the concept of robust optimization. A discretization problem of the robust counterpart is
formulated and solved to obtain the e-optimal solutions.
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1. Introduction

The “bottleneck problem” proposed by Bellman [1] initiated the formulation of a
continuous-time linear programming problem. These kinds of problem involving integrals
have received considerable attention for a long time. We denote by L3 [0, T] the space of all
nonnegative and square-integrable real-valued functions defined on the time interval [0, T'.
Tyndall [2,3] studied this problem as follows:

q

y /OT aj(t) - zj(t)dt

=1

q 9 rt
subject to ) Bjj - zj(t) < ¢i(t) + 2/ Kij - zj(s)ds
j=1 j=170

fort € [O,T] andi=1,---,p
zj € L2[0, T forallj=1,---,q,

max

where Bjj and Kjj are nonnegative constants fori=1,---,pandj=1,---,q. Levinson [4]
generalized the results of Tyndall by replacing the constants B;; and Kj; as the nonnegative
real-valued functions B;;(t) and Kj;(t,s) defined on [0, T] and [0, T] x [0, T], respectively,
fori=1,---,pandj=1,---,q. In other words, the following problem was studied:

max ]é /OT aj(t) - zj(t)dt
q q t
subjectto Y Bi(t)-zj(t) < ci(t) + ) /0 Kij(t,s) - zj(s)ds
j=1 j=1

fort € [O,T] andi:ll...’p
zj € 4]0, T)forallj=1,--+ ,q.
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This complicated problem has been solved numerically by Wu [5,6] in which the
functions a i i, Bij and Kjj were assumed to be piecewise continuous.

In the real world, the known data 4;, ¢;, B;; and K;; that appeared in the continuous-
time linear programming problem may be imprecise or uncertain. It means that the
known data may be subject to perturbation. Developing the numerical methodology is
an important issue for studying the different types of optimization problems. Therefore,
Wu [7] developed a methodology to obtain the so-called robust solutions of uncertain
continuous-time linear programming problems with time-dependent matrices in which
the uncertainties of known data were assumed to fall into the pre-determined compact
intervals. More precisely, the following problem was studied by Wu [7]:

max Ji‘{ /OT aj(t) - zj(t)dt

subject to ZBU -zj(t) < ¢t —l—Z/ Kij(t,s) - zj(s)ds

fort€[0,T)andi=1,---,p;
zj € I3[0, T]forj=1,--- ,gand t € [0, T];
aj(t) € Vo (t) fort € [0,T]andj=1,--- ,¢g;
(t) eV (t)fort € [0,T]andi=1,---,p;
Bjj(t) € Up, ( )fort€[0,T],i=1,---,pandj=1,---,q
(t,5) GZ/{KU(t,s) for (t,s) € [0,T] x [0,T],i=1,---,pandj=1,--- ,q,

Ci

l]

where the uncertain functions a;(t), ¢;(t), B;j(t) and K;;(t,s) were assumed to fall into com-
pact intervals U, (t), U, (t), Us, (t) and U, (t,s), respectively. For example, the compact
intervals U, (t,s) are taken to be

U, (t,s) = [K“”(t 5) — Ky(t,5), K[ (t,5) + K\ij(t,s)},

where Kl-(]p) (t,s) > 0 are the known nominal functions of K;;(t,s), and I?l-j(t, s) > 0 are the
uncertainties satisfying Ki(jo) (t,s) — Izij(t,S) > 0.

In this paper, we shall propose the extended form of robust counterpart by using a
similar concept that was introduced by Bertsimas and Sim [8]. The basic idea is described

(B)

below. Recall that I i(B) denotes the set of indices, which says that B;; is uncertain for j € [;
and that B;; is certain for j ¢ Ii(B). Although the data B;; for j € Ii(B) should be uncertain,

sometimes, some of B;; for j € Il-(B) still remain certain (i.e., the data Bi]'(t) still remain
unchanged for t € [0, T]) in a considered problem. Given any fixed i € {1,---,p}, let

(B)

|I i(B) | denote the number of indices in the set I;”’. In the real situation, we may only know

that the number of B;; for j € Il.(B) which are subject to be uncertain is fyl-(B) < |Il-(B) |. We
are not able to know the exact indices for making sure the uncertain data Bij. In this case,
(8)
1

we need to consider all subsets Sl.(B) of Il.(B) with |Si(B)| = v;’, where |Sl.(B)| denotes the

(B) (B)

number of elements in the set S; . The integer 'y can be regarded as the robustness with

respect to the uncertain functlons {Bl ] 1j e I } when i is fixed. The problem studied in

Wu [7] implicitly assumes 'y |I | In other words, the problem studied in this paper
is indeed an extended form of the problem formulated in Wu [7]. This kind of extended
problem will be more complicated and hard to solve. The purpose of this paper is to
develop a computational procedure to solve this new kind of optimization problem.
Many theoretical results of continuous-time linear programming problem have been
obtained by Meidan and Perold [9], Papageorgiou [10], and Schechter [11]. A subclass
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of continuous-time linear programming problem called the separated continuous-time
linear programming problem has been studied by Anderson et al. [12-14], Fleischer and
Sethuraman [15] and Pullan [16-20]. This special type of problem is given below

T
max ./0 al (H)x(t)dt

t
subject to  y(t) +/O Gx(s)ds = c(t)

Hx(t) +z(t) = b(t)
x(t),y(t),z(t) > 0for t € [0,T],

where G and H are constant matrices; the dimensions of x, y and z are ny, np and n3,
respectively; the functions x, z, b and a are bounded and measurable on [0, T]; the functions
¢ and y are absolutely continuous. This problem can be used to model the job-shop
scheduling problems by referring to Anderson et al. ([12], p. 758). On the other hand,
a simplex-like algorithm has also been proposed by Weiss [21] to solve this separated
continuous-time linear programming problem.

The vectorial form of linear type of continuous-time linear programming problems is
written as follows:

T
max /0 al (H)z(t)dt

t
subject to  B(t)z(t) < c(t) +/ K" (t,5)z(s)ds for0 <t < T
0
z(t) > 0fort € [0,T],

In general, Farr and Hanson [22,23], Grinold [24,25], Hanson and Mond [26], Rei-
land [27,28], Reiland and Hanson [29] and Singh [30] studied the nonlinear type of
continuous-time optimization problems. More precisely, the nonlinear problem is for-
mulated as follows:

T
max /0 o(z(t), t)dt

t
subjectto  f(z(t),t) < c(t) —|—/ K" (t5)g(z(s),s)ds for0 <t < T
0
z(t) > 0fort € [0,T],

where f(z(t),t) € R" for t € [0,T], g(z(t),t) € R fort € [0,T], c(t) an m-dimensional
vector-valued function defined on [0, T|, z(¢) an n-dimensional bounded and measurable
vector-valued function defined on [0, T] and K(t,s) an m x p time-dependent matrices
whose entries are bounded and measurable on [0, T] x [0, T]. In particular, when we take

¢(z(t),t) =a' (t)z(t), f(z(t),t) = B(t)z(t) and g(2(s),5) = 2(s),

we see that the nonlinear type covers the linear type.

Zalmai [31-34] investigated the continuous-time fractional programming problems.
Those articles just presented the theoretical results without suggesting useful numerical
methods. On the other hand, many different numerical methods for solving the continuous-
time linear fractional programming problem were developed by Wu [35], and Wen and
Wu [36-38]. More precisely, this problem is formulated as follows:
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maximize

t
subject to  Bx(t) < g(t) —|—/ Kx(s)ds for t € [0, T]
0
x € L*([0, T],RY),

where hy > 0, fo > 0, f € C([0, T],R7), h € C([0,T],R%), g € C([0, T],R}), and B and K
are nonnegative constant matrices.

The optimization problems that involve uncertain data are an attractive research topic.
The stochastic optimization was first introduced by Dantzig [39] in which the probability
theory was invoked to model uncertain data when the exact probability distributions of
uncertain data are not known for sure. The technique of robust optimization suggests
another methodology to solve the optimization problems with uncertain data. Ben-Tal
and Nemirovski [40,41] and El Ghaoui [42,43] independently proposed some concepts to
study the robust optimization. For the main articles on this topic, one can also refer to the
articles contributed by Averbakh and Zhao [44], Ben-Tal et al. [45], Bertsimas et al. [8,46,47],
Chen et al. [48], Erdogan and Iyengar [49], and Zhang [50]. In this paper, we are going to
propose an extended form of a robust counterpart of the continuous-time linear program-
ming problem. We also develop a practical computational procedure to solve this really
complicated problem.

In Section 2, we introduce an extended form of a robust counterpart of a continuous-
time linear programming problem using the similar concept introduced by Bertsimas and
Sim [8]. This extended form of robust counterpart is going to be converted into a traditional
form of continuous-time linear programming. In Section 3, in order to solve the primal
problem obtained in Section 2, we formulate a dual problem by introducing two bilinear
forms, which is inspired by the concept proposed by Anderson and Nash [51]. Under this
formulation, the weak duality theorem can be established. In Section 4, the discretization
problem of the transformed continuous-time linear programming problem will be proposed.
As a matter of fact, this discretization problem is a large-scale linear programming problem.
In order to estimate the error bound, a dual problem of the discretization problem is
formulated. The optimal solutions obtained from the discretization problem are used to
construct the feasible solutions of original continuous-time linear programming problem.
In Section 5, an analytic formula of error bound is derived to obtain the e-optimal solutions.
In Section 6, the properties of weak convergence of approximate solutions are studied,
which will also be used to prove the strong duality theorem. In the final Section 7, based on
the previous results, we design a computational procedure.

2. Robust Continuous-Time Linear Programming Problems

We consider the following continuous-time linear programming problem:
q T
(CLP)  max )] / a;(t) - zj(t)dt
=170
q

9 t

subjectto Y Bjj(t) - zj(t) < ¢i(t) + Z/ Kij(t,s) - zj(s)ds

j=1 j=170
forallt € [0,T]andi=1,---,p

zj € L2[0, T forallj=1,-- ,q,

where Bj; and K;; are assumed to be the nonnegative real-valued functions defined on
[0, T] and [0, T] x [0, T], respectively, fori = 1,--- ,pand j = 1,---,4. We also assume
that some of the functions 4;, ¢;, B;; and Kj; are subject to be pointwise-uncertain. It means
that, given each fixed t € [0, T] and each fixed (t,s) € [0, T] x [0, T], the uncertain data
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(RCLP)

max

a;j(t), ci(t), Bjj(t), and Kjj(t,s) should fall into the corresponding compact intervals Ua(t),
U (t), Us, (t) and U, (t,s). We also allow some of those functions to be certain. In order
not to complicate the considered problem, when any one of the functions a;, ¢;, B;; or Kj; is
assumed to be certain, it will mean that each function value a;(t) ¢;(t), B;j(t) or Kjj(t,s) is
assumed to be certain for all s, t € [0, T|. However, when any one of the functions aj, ¢i, Bjj
or K is assumed to be uncertain, we assume that each function value a;(t) c;(t), B;;(t) or
K;;(t,s) may be certain for some s, t € [0, T].

Let I(@) and I(©) be the sets of indices such that the functions aj and ¢; are uncertain for
je 1@ andi e 109, respectively. For each fixedi =1,---, p, let Il.(B) and 10 be the set of

1
indices such that B;; and K;; are uncertain for j € IZ.(B) l-(K)

to see that Ii(B) and IZ.(K) are subsets of {1,2,--- ,q}.
The robust counterpart of problem (CLP) is formulated as follows:

and j € I.”/, respectively. It is clear

q
y /OT ai(t) - z;(t)dt

=1
q

j=1

subject to Z Bij(t) 'Zj(t) <¢(t) + i /Ot Kij(t,s) . Z]'(S)ds
=1

fort € [0, TJandi=1,---,p;
zi € L3[0,T]forj=1,--- ,gand t € [0, T];
aj(t) € Vo (t) fort € [0,T]andj=1,--- ,¢g;
ci(t) eV, (t)fort € [0,T]andi=1,---,p;
Bji(t) € L{Bi].(t) fort€[0,T],i=1,---,pandj=1,---,q;

Kij(t,s) € Uy, (t,s) for (t,5) € [0,T] x [0,T],i=1,--- ,pandj=1,--- g,

where each piece of uncertain data is assumed to lie in the corresponding uncertainty sets.
We assume that all the uncertain functions will fall into the compact intervals that are
described below.

* ForBjjwithjel i(B) and Kj; withj € [ Z.(K), we assume that the uncertain functions B;;

and K;; will fall into the following compact intervals

Us, (1) = [BYY) (1) = Byj(t), BY (1) + By(1)|

g

and
U, (t,s) = {Kl(f)(t,s) — Ryt,9), K (8,5) + K,(t,s)},

respectively. The known nominal functions BI-(]Q) (t) and Ki(].o) (t,5) of B;;(t) and Kj(t,s),

respectively, are assumed to be nonnegative. The uncertainties Eij( t) and K'j(t, s) are,
of course, nonnegative satisfying

0 5 0 >
B (1) — Byj(t) > 0and K[ (t,5) — Ky (t,5) > 0.
Forj ¢ 1 i(B), we denote by Bl.(]p) (t) the certain functions with uncertainty §1-]-(t) =0.

We also denote by Kl.(].o)

g1,
1
* PFPorag;withjel (@) and ¢; with i € 1(9), we take the following compact intervals

(t,5) the certain functions with uncertainty I?ij(t,s) = 0 for

Usy (1) = [0 (1) = 7j(t), " (1) + (1) | and Us, (1) = [l (1) — @), ¢ (1) + (1),
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(0)
1
not necessarily nonnegative. However, the uncertainties ;(t) and ¢;(t) of a;(t) and

The known nominal functions a](O) (t) and ¢; ’(t) of a;(t) and c;(t), respectively, are

¢;(t), respectively, should be nonnegative. For j ¢ I(2), we denote by a](.o) (t) the certain
(0)

function with uncertainties 4;(t) = 0. We also denote by c; ' (t) the certain function

with uncertainties ¢;(t) = 0 fori ¢ I (e,
In Wu [7], we have derived the following robust counterpart of (CLP)
T

(RCLP1) max i/oT g](,o)(t) -zj(t)dt — ) / aj(t) - zj(t)dt

j=1 jel@

. 10 5 (0) .
subjectto Y B () -z()+ Y By(t)-z(t) < (ci (t)—ci(t))
= {ijer™y

q t b
+ 2K§]Q)(t,s) / z]-(s)ds — Z / Kij(f,S) ~Z]-(s)ds
=1 0 0
fort € [0,T] and i € I(%);

9 ~
VB0 50+ L By =) <)

j=1 {(ijel®y

L (0) b > N
+ ];Kij (t,s)./o Zi(s)ds— Y /OKl](t,s) 2i(s)ds

fort € [0,T]and i ¢ 1.
zj(t) € L3[0, T]forj=1,--- ,q,

which is equivalent to the following problem

(RCLP1) max ¢

9 T T
subjectto ¢ < Z%/o a](,o)(t).zj(t)dt— Y /0 aj(t) - zj(t)dt;
]:

B2+ L Byl 20 < () &)

=1 {jiell”y

q t -
+ zKi(]Q)(t,s)-/O zj(s)ds — ) Kij(t,s)-/

j=1 {ijer} ’
fort € [0,T] and i € I©);
- B0 B v
Y B () zi(t)+ ) Bi(t)-z(t) < ()

=1 {jiell”y

q t R ¢
+ ZKI(]O)(t,S) . / Z]'(S)ds — Z Ki]»(tls) . / Z]'(S)dS
=1 70 (ijer™y 0
fort € [0,T]and i ¢ I'%;
¢ € Rand zj(t) € L3[0, T] forj=1,--- ,q.
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Although I Z.(B) is the set of indices saying that B;; is uncertain for j € I l.(B) and that B;;
(B) (B)

is certain for j & I ; ', sometimes, some of Bij forjel ; still remain certain in a problem.
In the real situation, given any fixed i € {1, -- -, p}, we may only know that the number of

Bjjforjel l.(B) which are subject to be uncertain is 'yi(B). In this case, we need to consider all

subsets SEB) of I l-(B) with |S§B)| = 753), where |S§B)| denotes the number of elements in the

(B)

set S(B) The integer ’)/ can be regarded as the robustness with respect to the uncertain

functions {B;; : j € I } when i is fixed. This similar idea was also suggested by Bertsimas

(K)

and Sim [8]. Now, we can consider the robustness -y;", 7@ and (9 for the uncertain

functions {Kj; : j € Ii(K)}, {aj:je I@} and {c; : i € I(9}, respectively. The notations SI(K),

K)

5(@) and S(©) can be similarly realized as the subsets of 1 l.( S 1 @) and I (C), respectively. In

(B (K
4 1 4

this paper, we assume that I,

integers 'y( ), 'yl( ) 'y(a) and 'y(c) are nonzero.

As we have observed that the robust counterpart (RCLP1) given above shows that the
constraints are taken to be the worst case, in the general situation, the robust counterpart
(RCLP2) that will be formulated below also needs to consider the constraints to be the
worst case. In order to formulate this general type of robust counterpart, fori =1,---,p,
we consider the following optimization problems:

1@ and I(%) are nonempty sets, which says that the

r@(z) = max Z aj(t) - z(t (1)
{S(a);s< ‘S ]ES /
(B) B,
() () = max L By(t)-z(h) @)
(SPSPB ®)  H,
(ng)(z))(t) =« e max Z / Kl] (t,s) - zj(s)ds. 3)
{878 |5 ‘ 71 }{] ]65

Since the original problem (CLP) can be rewritten as

(CLP) max Q

IN
1=
O\
3
R
—
—~
—
\N
—~
~~
—
QU
=~

subjectto ¢

fort €0, TJandi=1,---,p;
qDGRandszLi[O,T] forallj=1,---,q,

the extended form of the robust counterpart of (CLP) is formulated below:
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(RCLP2)

max )

9 T
subjectto ¢ < ):/0 a](O)(t) -zj(t)dt — @ (z);

S 50 (). 2 FB), O e
LB 0+ (P @) 1) < () @)
—l—i tKZJ)(t,s) zj(s)ds — (TEK)(Z)>(1‘) fort € [0,T] and i € I(%;
j=1
Y8005, + (K7 2)) (0 <0 (1
j=1
q

t
+Y K (t,5) / zj(s)ds — (T}K)(z)) (t)fort € [0,T] and i ¢ I©);
1 0
¢ € Rand zj(t) € L3[0,T]forj=1,--- 4.

It is obvious that the robust counterpart (RCLP1) is a special case of the extended form
(RCLP2) in the sense of (@) = |1(), 'ny) =|I i(B)| and 'ny) =|I i(K) |. Since the uncertainties
shown in (1)—(3) are regarded as the largest uncertainties, the constraints given in (RCLP2)
are realized to be the worst case. The main reason is that, if a feasible solution satisfies the
constraints formulated in the worst case, then it will satisfy the constraints formulated by
any uncertainties.

The extended form of robust counterpart (RCLP2) is not easy to solve. In order to
transform the robust counterpart (RCLP2) into a solvable form, we are going to apply the
strong duality theorem of conventional linear programming problem. We first provide
some useful propositions.

Lemma 1. Givene; > 0and0 < A; < 1fori=1,---,n, suppose thatey > ey > -+ > ey. If
M+ Ay + - -+ Ay = Kk is an integer, where k < n, then

Aep +Ager + -+ Ayey <ep e+ +er

Proposition 1. Given z = (zy,- - -, z4), we have the following properties.

(i)  The value T (z) is equal to the optimal objective value of the following linear program-

ming problem:
r@ O T2z
(@)  max ¥y @050
jel@
subjectto ) y](l) < 4@, 4)
jel@
0 <y <1forjer@,
where y}l) are the decision variables for j € 1), Moreover, there is an optimal solution §1*)

1x) _

and a subset 5@ of 1) with |5@)| = (@) satisfying ]7](»1*) =1forje $@ and }7](. 0

forj & S(@),
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(i) Fori=1,---,p, given any t* € [0, T], the value (fSB)(Z)> (t*) is equal to the optimal
objective value of the following linear programming problem:

(@) ) max zyq By(t) - z(t")

]el

subject to Z yI(JZ) < 'yl( ), (5)

jer®

0<y? <1forjer?,

@)

where y;; are the decision variables for j € I, (B) , and the optimal objective values depends on
t*. Moreover, there is an optimal solution y( *) and a subset S ofI ) with |S_I(B)| = 'yi(B)
satisfying y‘l(jz*) =1forje S_Z(B) and yl(jz*) =0forj ¢ Sl.

(iii) Fori =1,---,p, given any t* € [0, T], the value (TZ(K) (z)) (t*) is equal to the optimal
objective value of the following linear programming problem:

((1’5”(2))(1‘*)) max 2 3/13) / zj(s)ds

]EI
subject to Z %(13) < '71( ), (6)
0<y <tforjer),
®)

where y; j

"),

are the decision variables for j € and the optimal objective values depends on

t*. Moreover, there is an optimal solution y( *) and a subset S of 115 with \S | ’ny)
satisfying y‘l(f*) =1forje S_fm and y‘gf*) =0forj¢ Si K,

Proof. We just prove part (i), since parts (ii) and (iii) can be similarly obtained. Suppose
that y is an optimal solution of problem (4). Since @; and z; are nonnegative, in order to
maximize the objective function, we must have

L gi=7" 7)

jel@
We are going to claim that there exists an alternative optimal solution §* satisfying
77 €{0,1} foreachj € 1@); that is, there is a subset 5(@) of I(2) with |5(@)| = (3 satisfying

gi =1forje 5@ and ;i =0forj ¢ S@). Let], = {j1,-- - ,jr} be asubset of I2) satisfying
yj=1forj€ Jyand 0 < y; < 1forj ¢ J;, where r is a positive integer. From (7), we see that

Z yj:’y(a)—rzx<‘1(a)\]r.

]EI \]r

We re-arrange the following finite set

{/OTHJ() 5t )dt}]el D\ J,

in ascending order as

T T T
/Oﬁjl*(t)-zji«(t)dtzfo aj;(t)-zj;(t)dtz---zfo d (1) -z (1),
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where s = |I(2) \ J,| and k < s. Now, we define a new feasible solution §* as follows:
1 ifje];
=41 e i)
0 ifj € {jeyr, o Ji}

Let 5@ = L, U {j,---,j}. Then, |5@)| = 4(2 satisfying g =1forj € 5@ and

y"]’-‘ =0forj ¢ S(a). Next, we are going to claim that §* is an optimal solution. Let

elf/ s ( t)dtand A; = ;- fori =1,

Then, the optimal objective value with respect to the optimal solution ¥ is given by

T
Zy] /o aj(t) - zj(t)dt = Z yj~/0 a(t) - z(t dt+2/ aj(t) - z(t

jeI® JEI@N j€lr
= Z Ael+2/ a(t) - z(t
jel@\J, j€lr
K
Z/ z] £)dt + 2/ t)dt (using Lemma 1) 8)
=1 j€lr

-y y-;f./o at) - z(t)t,

jel@

which says that §* is an optimal solution. Therefore, we conclude that the optimal ob-
jective value of problem (4) can be obtained by taking () variables of y](-l> with value 1,

which is the selection of subset 5@ = J, U {ji,---,ji} C 1@ with |$()| = 4(2) and the
corresponding objective value

given by (8). This shows that the optimal objective value of problem (4) is less than the
value T(2) (z).

On the other hand, if $(2) is an optimal solution of problem (1), then |5(@)| = () with
optimal objective value

which is equivalent to

M =1 for j € 5@ and y}l) =0

for j ¢ 5(@). This shows that the value T()(z) is less than the optimal objective value of
problem (4), and the proof is complete. [J

for some feasible solution (1) of problem (4) satisfying 7

In order to rewrite the robust counterpart (RCLP2) to make it solvable by a numerical
algorithm, we need to consider the dual problems of linear programming problems (4)—(6).
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¢ The dual of problem (4) is given by

(A(a) (z)) min A@ (M 4 Z d; 9)
jel@

T
subjectto  uV) +d; > / aj(t) - zj(t)dt for j € 1¥;
0
u@® > 0 and dj >0forje 1@,

The optimal objective value is denoted by A(@)(z).
e Fori=1,---,p givenany t* € [0, T}, the dual of problem (5) is given by

(A%@) ) min AP+ ¥ e
(et
subject to uf® (¢*) + uf!) () = By(t") - z;(t") for j € 1”);
1(2)( t*) > Oandu( )( t*) > 0forje Il.(B).
The optlmal objective value is denoted by ( (B)( ))(t*)
e Fori=1,---,p, givenany t* € [0, T}, the dual of problem (6) is given by

((AEK)(Z)>(1’*)) min ’yl(K)-uZ@)(t*)—F ) u(-s)(t*)

o)
{iiery
t*
subject to ul@( ) > / i(t j(s)ds for j € I( ),
ul@)( t*) > 0and ufj>( *)>0forje Il.( ),

The optimal objective value is denoted by (AZ(K) (z)) ().

Fori=1,---,p, we define the real-valued functions ¢; on [0, T| by

O s i e 1t
Ci(t)—{ z()(t)_cz(t) lflel() W

() ifi ¢ 109),

We are going to obtain the equivalent form of robust counterpart (RCLP2), which will
turn into a conventional continuous-time linear programming problem.

Proposition 2. The robust counterpart (RCLP2) is equivalent to the following problem:

(RCLP3) max ¢

9 T
i O §y. 2.t — A@
subjectto ¢ SJ;/O a; (t) - zj(t)dt — A% (z)

Y800z + (AP @) 1)+ (A9 @) (0

=1
<t +Z/K0)ts (s)dsfort € [0,TJandi=1,---,p
¢ € Rand z(t) €L3[0,T)forj=1,---,q,

Proof. We consider the primal-dual pairs of problems (4) and (9). Since problem (4)
is feasible and bounded, using Proposition 1 and the strong duality theorem for lin-
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ear programming problem, the dual problem (9) is also feasible and bounded satisfying
'@ (z) = A@)(z). Similarly, we also have

(@)1 = (AP @) () and (19 @) (1) = (A (2)) (1)

for any t € [0, T]. Therefore, we conclude that the problems (RCLP2) and (RCLP3) are
equivalent. This completes the proof. [
For optimization problem (P), we write V(P) to denote the optimal objective value of

problem (P).

Theorem 1. The robust counterpart (RCLP3) is equivalent to the following continuous-time linear
programming problem:

(RCLP4) max ¢

subject to go<2/ dt—( (@) ., 4 Zdj);
jel@

q t
<a(h) + 2/0 KO (t,5) -zi(s)ds for t € [0, T]and i =1, -, p;

ul d; > | a(t)-z(t)dt for j € 1@
) +ul? (1) > Byj(t) - zi(t) fori=1,--- ,p,j € IV and t € [0,T];
t

D) > [ Ryts)-zj(s)dsfori=1,-,p,je ¥ andt € [0,T];
0

¢ € Rand u® >0;

d; > 0forje I

ZjELi[O Tlforj=1,---,q;

ul(), (3)€L2[OT]forl—l P

ul(j)GLi[O,T]forzzlf--,pandjeIi(B);

) e 12[0,T)fori=1,-,pandje I

Proof. Let (¢, z) be an optimal solution of problem (RCLP3). Given this z, the optimal
solutions of problems A(2)(z), (AEB) (z))(t) and (A, AR (z)(t)) are given below:

e Let (2(,d) be an optimal solution of problem A(2)(z). Then, we have

a +d; > /o a;(t) - zj(t)dt, al > Oandd; > Oforj € 1@,

e Fori=1,---,p, givenany t* € [0, T], let (i 112 >( t*), 1‘11.(4)( t*)) be an optimal solution
of problem (A§B)(Z))(t*), where the components of 1‘154)(:% ) are u( )(t*) forj e I( ),
Then, we have

0 (#) +all) (1) > By(t) - z(r), @ (#) > 0and 2 (") > O forj € 1|
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We also write

7 t* o t*
a® ()= | 2 :( anda®(r) = | 2 :( :
iy (1) ay’ ()

[0, T], let (L’tfa) (%), ﬁiS) (t*)) be an optimal solution of
)

are L‘tij)(t*) forj e Ii(K).

Fori=1,---,p, givenany t* €
problem (AEK) (z)(t))(t*), where the components of ﬁl@ (t*
Then, we have

[N
al () +al) (1) > /0 Rij(t",s)-2j(s)ds, @ (t*) > Oand ) (£*) > 0for j € 1|

1

We also write

@)= | ) | anda® = | 20
iy (1) ay (+)

Moreover, we have the optimal objective values as follows:

Aai(z) = ,Y(a) a4 Z d_]

(A" @) ) =" aP )+ L afw)
{j]GIi<B)}
(AY@) ) = al e+ x o adw)

Since t* can be any value in [0, T}, it follows that (¢,z,d, ™), a®,a®,a®,a®))isa
feasible solution of problem (RCLP4), which shows that V(RCLP3) < V(RCLP4).
Conversely, if (§,z, a,L‘t(l),1‘1(2),1‘1(3),1‘1(4),1‘1(5)) is an optimal solution of problem

(RCLP4), then, given any fixed t* € [0, T], we see that (a(!),d), (L‘tfz)(t*),ﬁl@)(t*)) and
(ﬂgg) (t), ﬁ§5) (t*)) are the feasible solutions of problems A(2)(z), (AZ(B) (z))(t*) and
(AgK) (z))(t*), respectively, fori = 1,- - -, p. Therefore, we have

Y@Da® 4 ¥ 4> AR (z),
jel@

which implies
ST s () (1)
Z/O a® (1) -zi(t)dt — | @ a® +
=1 :

Therefore, we obtain
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1

which says that the first constraint of problem (RCLP3) is satisfied. Since (i, 72 (t*) ﬁ(4)( £))
K)

and (1 7 )(t*) a® )(t*))arethefeasible solutions of problems (AEB) (z))(t*) and (A z))(t"),
respectlvely, for i=1,---,p, wealso have
Wi+ L onl) > (A7 @) (11)
{ijer™)
and K)_(3 5 < (K
Wall ey + p ad ) > (AN @) ). (12)
{iier)
Therefore, we obtain
q -
b BY (1) -2(8) + (A" (2) () + (A @) (1)

(by the feasibility of (¢,z,d, 21, a?,a®,a®,a®) for problem (RCLP4)).

Since t* can be any number in [0, T], it follows that (¢, ) is a feasible solution of
problem (RCLP3). In other words, we have V(RCLP4) < V(RCLP3). Therefore, we obtain
V(RCLP4) = V(RCLP3), which shows the equivalence of problems (RCLP4) and (RCLP3).
This completes the proof. [

Problem (RCLP4) is equivalent to the following continuous-time linear program-
ming problem:

\ LT (@) . ()
(RCLP*)  max ];/0 al (t).zj(t)dt—‘ZI;)djf'y o
= jel@

q
subjectto ) Bl.(;))(t) -zj(t) + ’Y(B) , M(Z)(t) i ,Y(K) ‘u(?’)(t)
1
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uAZ)(t) + u@)(t) > §ij(t) zi(t)fori=1,--- ,p,j€ IZ.(B) and t € [0, T];

t

i =N Izij(t,s) -zj(s)dsfori=1,---,p,j € Il.(K) and t € [0, T};

(

1

ul@(t) + u(S)(t) >
u®™ > 0and dj > 0forje 1@;

zj € I3[0, T forj=1,---,q;

u® u® e 12(0, T fori=1,---,p;

ul) € 12[0,T)fori=1,-,pandj € I|"”;
”1(]‘5) € Li[O,T] fori=1,---,pandj € Ii(K).

When the real-valued functions c; are assumed to be nonnegative foralli =1,-- -, p, it
is clear to see that the zero vector-valued function is a feasible solution of problem (RCLP*).

3. Formulation of the Dual Problem

For eachi = 1,---,p, we define the vector-valued functions u§4)(t) and ufs) that

)

consist of uf;l) forj ¢ Ii( ) and u( forje I () , respectively. We also write

u® = (u§4),~ . ,u§,4)) and u® = (u&S),- - ,u£,5)).

Now, we define the following functions:

A (20,0 (1), u®) (1), (1), (1)) = ZBI, O+ 7" w0+ ¥ )

L w0+ T u?(t)—g/oKff)(ffsfzf(s)dsfori—11"'IP;

{J"J‘€I<B)} (i€}
A](‘2) (z(t),d,u( )) —d; +/ t)dt for j € 1);
Ay (z<t>,u<2><t>,u<4><t>) =7 (1) - <4>< 0+ By(t) -zt fori =1, pand j € 117

AW (z(t),u(3)(t),u(5)(t)> = —u (1) —ul (1) +/O Rij(t,s) - zj(s)ds fori=1,--- ,pand j € I{).

We write

1t

1

o

I.(B) ‘ and aK) =

K)
1)

I
—
I

and consider the following product spaces

£ = L2([0,T],R7) x RI™! x R x L2([0, T], R?) x L3([0, T], R?)
x L2<[0, T},R“(B)) x Lz([o, T],R“(K))

and
£ = 1([o, T R?) x R 12([o, 7, R*Y) < 12 ([0, T, B*).
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Then, we define the operator A : £ — £* by
A(z(t),d,u<l>,u<2>(t),u<3>(t),u<4>(t),u<5>(t))
- (A<1> (z(t), u@ (1), u® (1), u® (1), u® (t)),A(Z) (z(t), d, u<1>),
A® (z(t),u<2>(t),u<4>(t)),A<4> (z(t),u<3>(t),u<5>(t))),
M

where A() consists of A fori=1,---,p, A®) consists of A](-z) forj e 1@, A®) consists
of Af]s) fori=1,---,pandj ¢ Ii(B), and A™) consists of Af;l) fori=1,---,pandj € Ii(K).

We also define a bilinear form (-, -); on £ x L by

=1 je](ﬂ) i=1
P T [4 T P T
©) gy . 7 @) . 24 5) /5 (5
SO RRCRUECEEDS z |- ma+ Py ) -a)
i JE4

We write ¢(t) = (ci(t),---,cp(t)). We denote by 1@ a vector in RI'™! consisting
of all 1 with indices in I(®). Now, the problem (RCLP*) is rewritten as the following
compact form:

(RCLP*)  max <( (), d,u,u@ ),u(3)(t),u(4)(t),u(5)(t)),(a(o)(t),fl(a),77(3),0,0,0,0>>1
(£),d, 1, u@ (8),u® (), u® (1), u) (1))

(c(1),0,0,0) fort € [0, T]

>0,d e Rz e 12(0,7),RY), u®,u® e 12(j0, T],RY)
u<)el?(ULTLRﬁ“)andu6>elﬂ(ﬁLTLkﬁm).

subject to A(
<

e

Let v(1) be a vector consisting of vj(l) forj € 1@, Foreachi =1, - -, p, we define the

vector-valued functions vfz) and v( ) that consist of v( ) for JEL (B) and v( ) for jEL &),
respectively. We also write

o = (v, ) and v = (v, ),
We define the following indicator functions on the finite set {1,2,- - - ,q}:

o a i B s K
(a):{l if j e 1 (3)2{1 ifjerl” A0 _ {1 ifj e 11

BT o @ T o aye ™ T T Lo i
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We also define the following functions:

A (wit), vV, v (), v (1))

|4
=Y B0 2/ KO (s,1) - wi(s)ds + " -aj(1) - ol
i=1
L (B) 5 T o :
+2Xi]- - Bij( l +le] /t K (s,t) v (s)dsforj=1,---,q;
i=1
A(*z)(v(l)) = ]( ) forj e 1@
AP (v0) == 3 oY
jel@
Az(*4) (w(t),v(z)(t)) _ ’y( -y v Bfori=1,---,p;
]EI (B)
A7 (Wi v ) = i) = L ol W tori =1,y
]EI
AE;G) (W(t),v(z)(t)) =w;(t) — vl(jz)(t) fori=1,---,pandj€ Il.(B);

A7 (w(t), v (t)) =w;(t)—v; (t)fori=1,--- ,pand j€ [,
57 (w(t), v (1)) = wilt) — o) (1) § pandje [

which are used to define the following operator: A* : £* — £ by
A* (w(t),v<1>,v<2> (t),v<3>(t))
— (AL (w0, v, 0 (1), v (1)), AL2) (v, 409 (v0), ACH (wi(t), v (1)),
A() (w(t),v(3) (t)),A(*é) (w(t),v(z) (t)),A(*7) (w(t),v(3)(t)))

We define another bilinear form (-, -), on £* x L* by

w0 DO 0), (w0, 90, 900,90 0)),

/\
A
/\
—

PoT
=Y [ wi(t) @ty + Y otV .ol
i=17/0 ic1(a) !
jel
p p
+Y Y /O D) oPwar+y ¥ / o (1) -0 (1)t
i=1 Ii(B) i=1 ]-EIZ_(K)

(DRCLP*)  min <( (),0,0,0), ( (),v<1>,v<2>(t),v<3>(t))>
subject to A*( 1), v, v t),v(3)(t))
> (a<0>( ),—l(a),—v(a),0,0,0,0> for t € [0, T]
v e RI™ w e 12([0, ), R”)
v@ e LZ([O, T],R’ﬁ’”) and v® ¢ L2([o, T],Rﬁ(“).

After some algebraic calculations, the dual problem (DRCLP*) can be rewritten as follows:
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P T PoT T
(DRCLP*)  min 2/ Gi(t) - wi()dt = 2/ Oty wi(tydt— Y / Gi(t) - wi()dt
i=1 0 i=1 0 ielc) 0
P
~ ©) (4 . 20, @ 7). oW B)  B.(p). @
subject to ;sz (£) - wi(t) +x;° - aj(t) - v; +i:21)(ij Byj(t) - v;i” (t)
Ly A / "Rii(s, 1) -0 (s)ds (13)
i:lxl} g
O 4y [ KO :
> a; (t) + 2/ K (s,t)-wi(s)dsfort € [0,T]andj=1,---,q;
i=1"t
Y@ >y U](,l); (14)
jer@
’y(B) cwi(t) > ) v(z)(t) fort € [0,T)andi=1,---,p; (15)
i i\t) = ij ’ S
jeIfB)
7 wi(t) > Y o (t) fort € [0,T]andi=1,--,p; (16)
jell.(K)
1> vj(l) forje 1@, 17)
w;(t) > vl{f)(t) fort € [0,T],i=1,---,pandj € Ii(B),‘ (18)
w;(t) > vlgf)(t) fort € [0,T],i=1,---,pandj € Ii(K); (19)

w; € LZ([O/T],R+) fori=1,--- P
v;l) >0forje 1@,
Ul(jz) € L*([0,T],R;) fori=1,--- ,pand j € Il.(B),-

Ul(]?') € L?([0,T],R;) fori=1,--- ,pandj € Ii(K).
Proposition 3. A* is an adjoint operator of A in the sense of

<A(z(t),d,u<1>,u<2>(t),u<3>(t),u<4>(t),u<5>(t)), (w(t),v<1>,v<2>(t),v<3>(t))>

2
= ((2(t), d,u™, 0@ (1), u® (1), u® (), u® (1)), A" (w(t), v, v (1), v

),

Proof. Applying the Fubini’s theorem to Ki(]Q) and I/<\i]~, we have

i=1 j=1
q t
TS MR URIED W LOED o N S USRS I
{jjer®y (el =1
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p M (3 @ ® ,
+§j§m/o [vq () ( i (1) — u (t)+/0 Kii(t,s) ()dsﬂd
:]é /OT l‘z](t) (é Bi(]p)(t) Z/ K7 (s, t) - w;( )d5+X]a) ai(t) ey
L T
+Z;XZ(]B) Bl] )+ le] /t (s,t) - 1(]3>( )dS)]dt
—uM. U Z dj- zJ —1-2/ zB) wi(t)— Y UI(JZ)U) dt
e jer®

i=1 jGIi(K)
P T P T
L R (oo o)ae 0 (o)

This completes the proof. [

The feasibility of primal and dual pair of problems (RCLP*) and (DRCLP*) will be
given below in Propositions 6 and 7, respectively.

Theorem 2 (Weak Duality Theorem). Consider the primal and dual pair of problems (RCLP*)
and (DRCLP*). Given any feasible solution (z(t),d,u™),u@ (£),u® (t),u®(t),u®(t)) of
primal problem (RCLP*) and any feasible solution (w(t),v("),v(?)(t),v(3)(t)) of dual problem
(DRCLP*), we have the following inequality:

4 T
~ Y di—q (t)d o) - w; (D).
]g) +2/ z](t)tgi;/oc(t)w(t)t

In other words, we have
V(RCLP*) < V(DRCLP").

Proof. We have
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(by the constraint of dual problem (DRCLP*))
= <A<z(t),d,u(l),u(z)(t),u(3)(t),u(4)(t),u(5)(t)), (w(t),v(l),v(z)(t),v(3)(t))>

(since A* is the adjoint of A by Proposition 3)

< <(c(t),0, 0,0), (w(t),v<1>,v<2)(t),v<3>(t))>2
(by the constraint of primal problem (RCLP*))

= /OT(c(t))Tw(t)dt = ié/f ci(t) - w;(t)dt

This completes the proof. [

2

4. Discretization

In order to design the computational procedure, we are going to formulate a discretiza-
tion problem, which will be a conventional linear programming problem. Therefore, we
need some mild assumptions to achieve this purpose.

A1) The real-valued functions B(O), K.(.O) a;, ¢, §i- and I?l-- are assumed to be nonnegative
ij 1% j j &

(sfvi (0) (0)
satlsfymgB.. B > 0and Kj; —K]20.

(A2) The real-valued functlons a](O), cl(O), Bl.(]m, KZ.(].O), A], C;, Bij and I?i]« are assumed to be

piecewise continuous on [0, T].
(A3) For each t € [0,T] and j = 1,---,q, we assume that the following positivities

are satisfied:
14 p

Y B (t) >0and Y B (t) > 0; (20)

i=1 i=1

(A4) We assume that the following positivities are satisfied:

£ (B9 BP9 >0l=0>0 21

H}l_r{p]rr}m/qtel[r(}ﬂ{ ORI ORIy (21)
and 0) (1 . 7(0)

inf {BO1): B9 >0l=5>0. 22

rr}m,p]m’m,qtel{&ﬂ{ ij () ij () } o (22)

In other words, given any t € [0, T], 1fB ()750 thenB( )( t) > o, and1fB ()7&0
thenBi(j)( )>0foralli=1,--- ,pand]_1,~- ,q.

Since the involved functions are assumed to be piecewise continuous, it means that
the discontinuities should be excluded in the discussion. We denote by 2, i, B and Rij
the set of discontinuities of the corresponding real-valued functions 4;, ¢;, Bjj and Kj;. Itis
clear to see that 2;, &; and B;; are finite subsets of [0, T|, and that ;; is a finite subset of
[0, T] x [0, T]. For convenience, we also write

_ 1) )
.ﬁi]' = ﬁij X R ,

)

where jol) and ﬁsz) are a finite subset of [0, T]. In order to formulate the discretization

problem, we need to divide the time interval [0, T] into many subintervals by determining
a finite subset of points in [0, T]. In order to make the involved functions to be continuous
on the subintervals, we are going to take the discontinuities to be the set of partition of
[0, T]. Therefore, we consider the following set

() uGe)u(Gu (GG Ju(G0 e uen
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Then, D is a finite subset of [0, T] written by
D= {d01d1/d2/ T /di’}/

where dy = 0 and d, = T. We remark that dy and d, can be the continuities of functions aj,
ci,Bij andKijfori: 1,---,pandj=1,---,q.

Let P, be a partition of [0, T| satisfying D C P,, which means that each compact
interval [d,,dy 1] forv =0,1,--- ,r — 1 s also divided into many compact subintervals.
Now, we write

P = (A, ),
where eén) = 0 and eEln) = T. In this case, we have n compact subintervals that are
denoted by

El(") = [el(i)l,el(")} forl=1,---,n.

For further discussion, we also write

B = (o), o) and E? = o), ).

We denote by Dl(n) the length of compact interval E l("). We also define the follow-
ing quantity:
| Pn ||= max Dl(">
=1, ,n
and assume that
|| Pn||— 0asn — oo.

We also assume that there exists 14, n* € N satisfying

T
ne-r<n<n*-rand | Py, HSW (23)

It is clear to see that n, — co implies n — co. In the paper, when we say that n — oo, it
implicitly means n, — oo.

Let [, denote the length of compact interval [d,,dy 1] forv = 0,1,--- ,r —1. We
consider two different types of partitions of [0, T].

Example 1. We assume that each compact interval [dy, dy1] is equally divided by n,. subintervals
forv=0,1,---,r — 1. In this case, the total number of subintervals are n = n, - r satisfying
n. = n*. It is clear to see that

1 T . .
| Pn H:W' [mhax 1[v§ﬁ’ and n — oo if and only if n. — co.
V=l , "..,r_

Example 2. Let
"= max [
0=0,1, r—1
We assume that that each compact subinterval [d,, dy1] is equally divided by n, subintervals
forv=20,1,---,r— 1. Then, the total number of subintervals is given by

n= i Ny.
v=1

Let

n*= max Mpandn,= min 1.
v=0,1,,r—1 v=0,1, r—1
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Assume that the partition satisfies

Then, we obtain
ne-r<n<n*-rand | Pyll= max — < —<

It is clear to see that n, — oo implies n — 0.

Now, we can construct a partition P, according to the above setting. In this case, we
see that the real-valued functions aj, ¢; and Bj; are continuous on the open interval El(”). We

also see that the real-valued function Kj; is continuous on the open rectangle El(n) X E,En) for
Lk=1,---,n. Fori=1,---,p, from (10), we define

O gy _ = e~ 1(0)
cl(f) = inf ¢;(t) = inf { Cl@(t) alt) lfl © I(C) (24)
teE™ ™ ¢ (1) ifi g I'.
Forj=1,---,q, wealso define
El(]m = sup a;(t) forj e 1@ and al(;') = inf a(.o)(t). (25)
teE,(") teE"l(”)
It is clear to see that
a¥(t) >4, a(t) <af) and ci(t) > |}’ (26)
(n)

fori=1,---,p,j=1,--- ,gandt € E;".

Considering the matrices B 0) and KO, the (i, j)-th entries of matrices Bl(") and Kl(;: ),
forl,k=1,---,n, are denoted and defined by

Bl(l.’;) = sup Bi(]Q)(t) and KI(IZ; = inf I(Z.(].O)(t,s). (27)
tegW (t,s)eEl(")xE}((")
1

From (21), it follows that, if Bl(;;) # 0, then Bl(;;) >0 >0foralli =1,---,p,j =
1,---,gand [ =1, ,n. Itis clear to see that

BO(t) < B™ and KO (t,5) > K (28)

fort ¢ El(") and (t,s) € El(”) X E]E"), respectively, for Lk =1,--- ,n.

Remark 1. From (21), we see that Bl(;) # 0 implies Bl(;;) >0 >0foralli =1,---,p,
j=1,---,qandl =1,--- ,n. Given any fixed t € E"l(n),from (20), forany j =1,--- ,q, there
exists i € {1,- -, p} satisfying Bj;(t) > 0, which also says that Bl(:]) #0,ie, BZ(ZJ) >0 >0.

Therefore, for each j and 1, there exists ij; € {1,2,- -+, p} satisfying Bl(l':)] >o0>0.
]
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Considering the matrices B and K, the (i, j)-th entries of matrices El( ") and Kl(k ), for
LLk=1,---,n,are denoted and defined by

El(i}}) = sup Bl]( ) and Kl(kz; sup Kij(t,s). (29)
teE( (t,s)eEl(”) X E,(C”>

It is clear to see that

-~

B(t) < B™ and K(t,s) < K\ (30)
fort € El(") and (t,s) € El(n) X E",En), respectively, for [,k = 1,--- ,n. We also see that
Kl(l?zz KI(IZ; > 0 implies KI.(].O)(t,s) — K;i(t,s) > 0for (t,5) € El(") X E_IE").

1j
Now, we formulate the following linear programming problem:

(P,)  max ) Zal(") '“1(;1) czyi— Y dj— y@ (M)
1=1 j:1 ]‘el(a)
q
subject to ) BYY -2y + 4" gt 4w+ g+ uy;)
= {ijer™y (e’
<c('.1) fori=1,---,p; (31)
2 K 3 4 5
Z Bll] "2l + ’Y( ) Z/ll(l) 1( ) ul(l) + Z ul(l]) + Z ul(l])
{ieri™} (et}
<Clz +Zzak lklj jfori:1,~~,pandl:2,~--,n; (32)
j=1lk=
n
dj > E al] zjjforj e 1@; (33)
ul +u§q) > B( Vozjfori=1,-,pjel®andl =1, ,n (34)
ugi)—b—ugi].) >0fori=1,---,pandj € Il.(K); (35)
-1
®3) (5) (n) p(n) .
w2 kgbk KIIZ] Zkjs (36)

fOri:1,~~~,p,j€Ii(K) and [ =2, ---,n;
ey >0andd; >0forje 1@,
zl],ul(zz),ul(l) >0forl=1,-
ul(l]) Zoforlzll,n,lzlllpandjell(B),

ul(?j) >0forl=1,---,ni=1,---,pandj € Ii(K)'

We note that the constraint (35) is redundant. However, we present it for the purpose
of comparing it to the constraint (36). We also adopt the following notations:
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*  Thevector 1, € R has all entries 1.
e  The vector 1@ € RI!™| has all entries 1 with indices jera,
(B)
e Foreachi=1,---,p,the vector II(B) € RIE | has all entries 1 with indices j € Ii(B).

(X)
e Foreachi=1,---,p,the vector IEK) € R/ | has all entries 1 with indices j € Il.(K).
* Given a vector a € R7, we denote by diag(a) a g x q diagonal matrix with a; for
j=1,---,q appearing in the diagonal.

Now, the problem (P, ) is rewritten as the following standard form:

(Py) max b x
subjectto Mx < band x > 0,
where the decision vector x is defined by
X = (Z]/ ctt 2y, d/u(l)/u§2) ui(’l )/ug?’)/ o /u}(’ls)/

4 4 4 5 5 5 5
i e )

and = () anduld = (uf)
li lij je l() li lij jell-(K)

forl=1,---,nandi=1,---,p. The data b and b are defined by

b:@ﬁﬁ%&w(W~ ygp,<q_¢qqqag
and
b= (an)/ an)/ t ,CS[Z),O, 0, 0)/
where
Cl(”) = (Clllczz,' - /Clp)'
To obtain the matrix M, we need to carefully determine its submatrices that are
given below
1 1 1 1 1 1
W M M
L I T S s s A M &
I T T TR T N
M7 M,7 M, i M7 Mg M,

The details for these submatrices are described below.

e  For the first row, we have

1(375)”)(”) ?’1) °
) I W
My’ = | =0 Ky =0, Ky, B 0
S oy ol




Axioms 2022, 11, 211

25 of 80

diag(vp) 0 0
0 diag(vp) 0
1
M‘(l = : :
L0 0 diag(yp)
diag(yk) 0 0 ]
0 diag(yk) 0
1
Mé ) = : :
L0 0 diag(yk)
[ (1) ]
— (1 1 0 0
3 0(1) ’ ( 1 ) B\ "
0 M _ 0 1 0
M = 6 o | with MV = (")
) T
0 0 Mg 0 0 (11(03))
[ (10) ' ]
- (1 1 0 0
4 —(zn ) (K)) T
0 _ 0 1 0
M = 7 with M = (°)
A0 T
0 0 M, 0 0 (1;10)
where the vectors 5 and g consist of %(B) and %(K), respectively, fori =1,-- -, p.

e  For the second row, we first define il(n) e Rl @ with the entries

we define

Mgz) = [ Dgn)diag(ﬁgn)) Dgn)diag(ﬁén)>

M§2) —diag(l(a)>, Méz) - 1@

e  For the third row, we first define ]31(1” ) S

we define

m® =

Then, the submatrix M§3) is defined by

3
1
0
0

mP

Zz\l(f) forj e 113 Now,

D,Sn)diag (EEZ")) }

and MP =M =MP = MP —o.

RILY with the entries El(;) forj e 1'®. Now,

diag lA)l(f )
diag ‘lA)l(é1 )

diag(l;l(;))
0 0 |
0 0
—(3
SR

0 0 mY |
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We also define the following submatrices:

MP = MY = mP =M =0

MY o 0 ] -1 o
M@= | O M.f) 0 with i = | ° 1:§B) 0
L o o 'f’) | 0 0 1)
I ) -
| 0
L 0o o Mf) ]
~diag(1") 0 0
with M) = 0 _diag(lgm) 0
0 0 —dig(1?)

— (K) = )
For the fourth row, we first define kl(:l.) € RIL| with the entries KI(IQ forj e Il-(K). Now,

we define ) )
Ok" diag Ekll?l;
() Jino (R
o, 'diag(k
-4 | % 1k2
Mlk - .
09 diae (R
Ok" diag (k”?p)
Then, the submatrix M§4) is defined by
[0 0 0 0]
(4
%i; e .
M = aw M, 0 0
(@) o4 4 '
U U
We also define the following submatrices:
M = MY = MY = MY o
_ (4 K
é | 0(4) : —1§ | O(K)
0 Vi _ 0 -1 0
M = > with MY = 2
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A
0 M 0
| O W
0 o0 i
. ]
—dlag(ng)) 0 0
e (160)
_ 0 —d 0
with MY = tag (15"
. T
_ 0 0 o —diag(1Y)

Now, the dual problem of (P, ) is given by the following standard form:
(Dy) min b'y
subjectto M'y>bandy >0,

where the decision vector y is defined by

v 2 (2) @, 2) () [C) BN ) B ) )

Vi Ve Vs Vap Vi Vst Vst s Vg

v,(lz) (vl(lzj))] 1 and V(3) = (vl(?]'))jeli(’()

forl=1,---,nandi=1,---,p. After some algebraic calculations, it can be written as the
following form:

y: <W1, /Wn/

and

n P
(Dy) min Z Z cl(f) - wy;

subject to Z Blz] - Wy —|—X(a) (") ?il 1) + ZX B 21112])

= j ll]
20 () LN ()
+ Z ZX kll] vkz] >Dl Z Z klz] " Wki
k=I+1i= k=I+1i=1

forl—l,---,n—landjzl R

p
3B w4 2 2l o +ZX1]B) B 5@ 5 5w

nij m] n]
i=1 i=

'ny)-wliZ Z vl(?j)forl: ,ooo,mandi=1,---,p;

'yl(K)~wli2 2 vl(?j)forlzl,'--,nandizl,---,p;
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w1i20§i2j)forl=1,~~~,n,izl,---,pandjeli(B);
wziZUI(?j)forl:l,-",n,izl,---,pandjeli(K);

w; >0forl=1,--- ,nandi=1,---,p;
U](-l) >0forje I(a);
vl(l.zj)>0forl:1--- n,z':l,---,pandjeli(B);
vl(l)>0forl—1 izl,---,pandjeli(K).
Let 2 2 3 3
Wi = al(n) - Wi, Ul(ij) = bln) 'ﬁij) and Ul(ij) = al(n) 7751])
Then, we obtain
n p (n
(Dy) min ZZDI Clz Wy,
1=1i=1
. (n)  pn) (n) (@) (n) . (B) n(n) ~(2)
subject to ZD Bll] i+ “Xj al] —i—ZD " Xij Bll] " Tjjj
LN (K)o () pln)  5(3)
O X o Ky Oy
k=I+1i=1
) ( (n)  ~
> o) “l]n + Z Za - Kyij + Wi
k=1+1i=
forlzl,~~,n—1andj:1--- q;
P
= 2
207(1”) Bi(ﬂ]) wm+051) X]() n‘ Za” Xz] n’:]) A{nz])
i=
ZDEZH) (”) forj=1,---,q;
v](-l)<1for]61( );
) > Z v );
]EI a)
fyl.(B) P> 2 Dl forl—l ,mandi=1,---,p;
]61 B)
'yl.(K)-Dl(n)~@1i2 Z D§n)-z7§i3j)forl:1,---,nandi:1,~~~,p;
jeI(K)
al(")-zmiZDZ() %71(12])forl:1,---,n,i:1, ,pand]ell(B)
Dl(n)iuvliZO,() 51(,3])forl:1,'~,n,i:1, ,pandjell(K),
o @y > 0forl=1,--- ,nandi=1,---,p;
v](.l) >0 forje I®;
Ol() f)fj)>Oforl:1,---,n,i:1,~~~,pandjeli(8);

o5 > 0forl =1, mi=1,

-,pandj € Ii(K).

which is equivalent to the following problem, by re-naming the decision variables,
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(Dy) min i ib(n) ¢y
n 1 b Wi
I=1i=1
subject to i B ., —i—)((. 2) 5t ) 4 Z)( B . (2 (37)
=~ lij li j l] ij lz] lij
+ZZ ()v()>a +220 KM
X k klz] kij lj k klz] ki
k=I+1i= k=I+1i=
forl—l,--- n—landjzl e, g
P
N 1 2
~ Br(z;lj) " Whi +X]('a) nn‘ ) + sz] r:] ) 1(11]) = 617(1]) (38)
i=
forj=1,---,q;
(1),
y@ > P (39)
jel@
7i(B) cw > Y vl(l.zj) forl=1,---,nandi=1,---,p; (40)
o
JEL;
75K) Swy > 2 Ul(iaj) forl=1,--- ,nandi=1,---,p; (41)
jeIl.(K)
1> v}l) forj e 1); (42)
w->vl(l.2].)forl=1~~- n,i:1,~~~,pandj61i(3),' (43)
>vl(l])forl—1 ,izl,---,pandjeli(K); (44)
w; >0forl=1,--- ,nandi=1,---,p;
v](.l) > 0forje I®; (45)
vl(?j) >0forl=1,---,ni=1,---,pandj € Ii(B);
vl(?].) >0forl=1,---,ni=1,---,pandj € Il.(K).
The feasible solution of problem (P, ) is denoted by
XM = (Z<n>,d(n)/u(lm)/u(z;n),u(s,-n)’u(zz,-n),u(sm)),
where
20 = (o, ) with ") = (222,20
)= (a2, ), ) it = (o, 2,2
) = (W, )it = (2, )
a®n — (uﬁ;n),_ o ’ugi;n),_ N ul(;l Vl),. .. ’ul(f;;n)" .. 'u£l41m)/' u}(ﬁﬂn)) and
WO = (W3, Y i
(&n) _ (, (&n)  (4n) (4n) (5m) _ (, (5m)  (5m) (5:m)
;" ( AT ulzqn ) and u;; " = (”liln Mg ’uliqn )

forl:1,~-,nandzzl,---,p,
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In addition, the feasible solution of problem (Dj,) is denoted by

y(n) _ (w(n)’ V(l;n)’ V(Z;n)’ V(S;n) ) ,

where

wi — (wg ). ,wl("),- x ,Wgzn)) with Wz(n) = (wl(l)’wl(Z)" o ’wl(g)>

V(Z;”) = ( ﬁ n), e rvﬁy;n)/ ‘e /vl(lz;n),. c. rvl(rzym)/ e ,v}(121;n)/ . V.Slzpn)) and
v — (vﬁ ", ,Vg"n), o ,vl(lam),- o 'Vl(z;n)" o ,vgn),- v;(%n)) with
2n 2n 2n 2n 3n 3;n 3;n 3n
Vl(z ) = <vl(11 : 01(12 )’” Z)l(zq )) and vl(i : = (Ul(zl : 01(12 )’” Z)l(zq ))

fOI'l:l/...,nandzzll...,p.

Recall that Dl(n) denotes the length of compact interval E l(n). Now, we define
(n) (n)
= [
5 k1 ox, Ok
Then,
51(”) - max{al(n)/bl(:l-)l" te /Dﬁln)} = max{bl(n)lﬁl(j-)l}/
which says that

sl(") > al( and || Py, ||> 51 ) > 51(+)1

forl =1,---,n— 1. We also adopt the following notations:

() _ : (n) , p(n) () _ s s
= :r{unp]:nlunq{B y Blz] > 0} and 0, —kirlun 0y

=

=
S
|
=)
job)
X
=
)
o X
-
—N—
™~

= |

m&mmgﬁm#

—_

431(") = max max {ZK]EZZ;} and 4)1") = ax J)IE")

k=1,-- ni=1,--,p

T = max a( )and ()— max Tk(")
i=1, k=l n

lj
j=1-q

and the following notations

é— max  sup ci(t)
P telo,T]

T= max sup ﬂ(o)(t)
=LA g0,
L 0)
V= max sup ZKij (t,S)
=14 (1,5)€00,T] x [0,T] i=1
)
¢ = max sup ZKij (t,s).
=L (s)€f0,T)x[0,T) j=1

It is obvious that

tW <M<, g <<y, g <o <pandd™ >0 >0 >0

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)
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foranyn € Nand!/ =1,---,n. We also define

- NN
R (1 +5" . L > (57)
o o

forl=1,---,n.
Given a feasible solution y(”) = (w(”), v(ln) y(2n) v(3"”)) of problem (Dj,), we define

(2m)
lij ()
Gl(il]?m) - wz(ﬁ) ifw; " #0 forl=1,---,n,i=1,---,pandj € Ii(B) (58)
1
0 if wl(l.”) =0
and
A
g . n
Hl(lf]?;n) - wl(‘n) ifw; " #0 forl=1,---,n,i=1,---,pandj € Ii(K). (59)
1
0 ifw)) =0

From the constraints (43) and (44), we have Gl(i?;"),Gl(l.I;m) € [0,1]. From the con-
straints (40) and (41), we also have

i

. B . K
jel® je1®

i

'ny) > Y 91(1.1;;") and 'y(K) > ) GI(Z.I;;") forl=1,---,nandi=1,---,p. (60)

Forl=1,---,n, we write

ay) =aff) = x® ol af (61)
< B B; ~
By = By + 11 -6} - Bl (62

g(n) _ (n) (K)  p(Kin)  2(n)
KkZ‘j = Kk?z’j —Xij O ! 'Kk;lij‘ (63)
Proposition 4. Given a feasible solution y(") = (w("),v(11),v(21) v(3m)) of problem (D,,), we
have the following properties.

(i) Fori=1,---,p,j=1,---,qandl=1,--- ,n,let

o) =w”, o7 =0 wi”, 5" =6l wf" and 5" = o1,

Then,
S(n) _ (W(H), v(l;n), V(Z;n)/ /‘7(3;71))

is a feasible solution of problem (D,,) satisfying the following inequalities:

~(n n T v
wl(i):ml()gg-exp(r-T-g) (64)

forallneN,i=1,--- ,pandl =1,--- ,n
(i) Fori=1,---,pandl=1,---,n,let

_(n . n n —(2;n B;n _(n _(3;n K;n _(n _(L;n
) = min{w,wi"}, o =0 @)l o = o af and ol = o

lij lij
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Then, ) = (w(m),v(lin) () g(3in)) s q feasible solution of problem (D,,) satisfying the
following inequalities

wl(ln) < ml(") < g -exp (r -T- g) (65)

foralmeN,i=1,---,p,j=1,--- ,qand ] =1,--- ,n. We further assume that each
c,(i") is nonnegative and y") is an optimal solution of problem (D,,). Then, ") is also an

optimal solution of problem (Dy,).

Proof. By (20), for each j, there exists i; € {1,2,-- -, p} satisfying B-(O-) (t) > 0. Therefore, by

(n) > 0, which

referring to (27), for each j and I, there exists ij; € {1,2,- -, p} sat1sfy1ng Bl i

also implies 0 < (Tl( ) < Bl(Z )] < 31(17)] Forl=1,---,n,wehave
Ij j

: B o S gm0 g T(n) (n) l(n) B (n) n) 1/l(n) "
i:Zl lij l ZBlil]-j i Bliljj 0.1(") (1 +5 0-l(")> le (1 +ﬁl (n)) . (66)

Since
Py ) (1) e () ) T w (n) _ (n)
Yoo Ky o <) s Kklz] ) <1+5k : Izn)> (by (47) and Ky, < Kpjio)
i=1 i=1

O
—k

o
145" ’z) (by (49)),
k

it follows that, for =1, - -1,

<(n) % 1) ) ()
0+ ) Z:al(cn) Klglz; oy <“z; + Z Eakn Kyii - oy
k=1+1i=1 k=I+1i=

W v -0 £
= k k

;o (m)\ "
1+ Z 51 ) <1+51(n) O_I(n)>

k=I+1 g ;

(1’!) n—lI
n n) VY
= Tl( ). (1 +5l( ). l(n)> . (67)

o

Therefore, from (66), we obtain

AN ONER - (n) | ) .
B vV = ) Yy
1 k=I+1i=1

M‘c

which implies, by (61)—(63),
(B
Z Bll] +X]( Y al] + ZXZ] lz’; lij " ml(n)

P n p n
K) n K;n n n n n n
+§1<ZX( klz? Glgij )'ml(c)zaz(j)+z; )y U;E)'Kéli;'m;({ g
i=1k=

I
—
-

Il
-
+
LN
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which shows that the constraint (37) is satisfied. For I = n, from (66), we also have

B o) 5 £0n 5 40

nij n] 4

=

1

which implies, by the nonnegativity,

p
n) (Bim)  gn) . (n) (n)
ZlB nij +X] + ZXU 9111] m] Wy > anj :
1=

This shows that the constraint (38) is satisfied. From (60), we have

B) ~(n n B;n n 2;n
) =l ol 2 T i = T e

jer® jer®
and K)o _ () (1) (Kon) () ~(3m)
~(n n n n n
vy =y ) > ) Oy o = )3 Ui

jer® jer™®

which says that the constraints (40) and (41) are satisfied. The other constraints can be
easily realized. This shows that 7" is indeed a feasible solution of problem (D). On the
other hand, from (23) and (47), we have

(n) (m)\ "1 : )
- T .T
rl(n).<1+s§n>_vl(n)> g (1+||7>n\| 7) sg <1+n*.(’;) g;-<1+’n.(’;> .
U'I g'l

Since

T n
(1 + rT :;) T exp (r -T- g) as n* — oo in the limiting case,

ie, n — oo, this proves (64).
To prove part (ii), foreach/ =1,--- ,nandj =1, - ,q, we define the index set

={i:B l i > 0}.
Then,
Y Bl = T Bl )
i=1 i€]);
We also define the index set
Jij = {i €yl = ml(”)}. (69)
Foreachfixedj=1,---,gand ! =1,---,n, we consider the following cases.

*  Suppose that J;; # @, i.e., there exists ij; satisfying Bl(l )] > 0and wl(l ") ml( ") In this

case, we have

W) ) (1) _ o) | N ) p(n) (1) N s(n) ()
“1] +Z 2 O Ky @ <+ ) Yo Ko < Y By (70)
i=1k=Il+1 k=Il+1i=1 i=1
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forl=1,--- ,n—1and

(71)

nj = nij ni
Therefore, we obtain
3 (@ 50n) _g(Bn) ()
Z lz] +X] al] +27(1] lz] lz; 'wli
i=1
DNt (K)o ) (K)o
+ZZX1] D Klij " Vkij Wi
i=1k=I
> (") "3 o K o (by (61)(63) and (70
a); +Zlk;1 Ky - @y (by (61)-(63) and (70))
i +

forl=1,--- ,n—1,and

o

(1)

(n B;
1 B,(”]) wm) + X]( ) n " 4 2)(1] ,;] ,(”]") w, > afg) (by (71)),
=
which show that the constraints (37) and (38) are satisfied.
*  Suppose that ]_l]' = Q,ie, wl(l") = wl( ") for i € Jij. In this case, for I = 1,---,n,

using (68), we have

p p
ZBZ(Z])wl(z) = Z Bl(z])wl(l Y = - Z Bl(zj)wl(z) - ZB

i=1 i€][j iG][j

() gy, (72)

Forl=1,---,n—1,since w,(j) > ZD,(:) and IZ,% > 0, using (72), we have

p
Z Z ak klz] wkl = Z[ lij wlz Z 0k klz] wl(cz) : (73)
i=1 k=I+1 k=I+1
which implies, by using (62) and (63) and adding 77](1;") = v](.l;") on both sides,
Sl AR ONER CRE RN ) (B) 5(n) o(Bm)  —(n)
Y B wm =), )y Kklz; Wy +ZX By O Wy
i=1 i=1k=T+1
p n
K n =(n K;n _(n a) ~(n _(1;n
+Z )3 ij)‘al(c)'KIEli}'Glgij )'wl(ci)JfX]()'”l(j)‘ ]( )
i=1k=I1+1
S g0 ) Y o) k(1) ) Y (B) ) g(B) | ()
> Y By cwy =) 3 Kgwg + ) x; By 07wy
i=1 i=1k=111 =
p n
K) (K; (n) ~ 1;
+) ) Xz(] 182 Gkijn) Wy +X]() “l(;l)'v](‘ g
i=1k=I1+1
Do) )y N o) ) () (@) o(n) (1)
=) By w =) Z O Kygij i x5 a0

p

i=1 i=1k=I+1

> al(;z (by the feasibility of y()).

p n
B (2 K % 3;
+ ZXZ(] ) Bl(zr]l) lz] o + 2 Z X( . 71 I(clz; Z)I(a]n

]

(by (58) and (59))
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For I = n, by (68), we also have

:A

n)

p
Z ]w ZBm] nz ZBm]

\
ﬁplqm

wl’ll 4
i=1 i€ly; i€ly;
which implies
D) o) (@) ) B0 g(Bm) o0
‘Z‘{ nij Whi +X] n] ’ +2X1] m] m] T Wy
1=

A~

] nij ~ “nij ni

P n n
=Y B ) a,j;) (171 +ZX1,B) B L gBm) )
i=1

=1

(n) (by the feasibility of y(")),

which show that the constraints (37) and (38) are satisfied.

From (60), we have

and

which says that the constraints (40) and (41) are satisfied. The other constraints can be
easily realized. This shows that §(") is a feasible solution of problem (D,,). In addition, the
inequality (65) follows from (64) immediately.

Finally, since the objective values satisfy

it is clear to see that if y(*) is an optimal solution of problem (D), then §(") is an optimal
solution of problem (D,,). This completes the proof. [

Next, we shall prove that the feasible solutions of problem (P, ) are uniformly bounded.

Proposition 5. Let x(") be a feasible solution of primal problem (Py,) given by

7 7 7

N (z<n>,d<n>,u<1;n) 1@ o G3n) u<4;n>,u<5;n>>.

Then, we have the following properties.
(i) We have

0< 2 gg p<r.T.j’;>, (74)

forallj=1,---,9,1=1,--- ,nandn € N.
(i)  We have

CRRUAEE BT VTSR v
(jjer®y (1™}

§§+r~(p-T~g-eXp<r-T~i>,
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which says that there is a constant ky satisfying

max{ul(]zn) ”1(13 ") ul(s ) ”1(15]}1)} <k (75)

foralli=1,---,p,j=1,---,q1=1,--- ,nandn € N.
(iii)  Suppose that x") is an optimal solution of problem (P,) given by

x(n) — (2(”), dm gtn) §@n) §Gn) gn) ﬁ(S;n)> )

We have

'r(a)-a(l"”wjelz(a)d?n) <Q'T-r-T-§-eXp(r-T-f>,

which says that there is a constant ky satisfying
max{aﬂ;"),d*j")} < ko (76)
forallj=1,--- ,gandn € N.
Proof. To prove part (i), by the feasibility, we have

q
YRy m e e  wi pwg <aq? o)

=1 (jjer®y (1™}

and, for/ =2,--- ,n,

ZBlz] Zz] ) <qf +Z;k20(") KUQ Zky)
]
B 2;n K 3n 4n 5n
_’71( ) ul(z )_71( : ul(z - Z(B) ul(l] = Z(K) ul(I] :
{7l ™} (el ™}

)+ Z 2 Dkn : lkz j Zk]) (by the nonnegativity)
j=1k=

< Clz + ” P || Zlkz Klkz] Zk] (78)
]
By (20), for each j, there exists i; € {1,2,-- -, p} satisfying B; .(0.) (t) > 0. Therefore, by

(n) > 0, which

referring to (27), for each j and I, there exists ij; € {1,2,-- -, p} satlsfymg By i

also implies Bl(z )] > 0 > 0by (48) and (56). From (56), if ¢ = 0O, then cpl = 0, which says

that the matrix Kl(k ") is a zero matrix. In this case, using (77) and (52), we have

(n) ~ pn) (n)
0< U'le Bll}] Zl] Z Blzl is le Cll, <¢

which implies
¢
o

0<Zl] <

For the case of ¢ # 0, we want to show that

-1
A <L (1 L)
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forallj=1,---,gand! =1, .- ,n. Weshall prove it by induction on /. For | = 1, from (77),
we have
! (n)
Z Bll] < Clz ’
j=
which says that

(n)
lllj] Zl] EBlzls le —Clzl

Therefore, for each j, we obtain

Suppose that
1-1
20 <& (1422
] o o

forl =1,2,--- ,n— 1. Then, for each j, we have

n—1
(1+ | Pu |l f) —1]. (79)

n—1 —
() o C( ¢) 7
L= Z(, P <SR

Therefore, for each j, we obtain

q
n'fn]] ;(1 Z mm + || Pull - Z Z Knkz zkh (by (78))
h=1 k=1 h=
> mn )+ | Pa |l - Z Z K Zkh) for some (t,s) € E, x Ej
4

47 n—1
<1+ Il Pl '0) 1] (by (79))

(n) (0)
<o+ | Pal-) K7(ts) —r -
Nip; || n || h;l ln]h( ) (P “ rpn ||

n—1
S HICAEEY —1] (by (5))

which implies
g n—1
A< (14 Pl -2

Therefore, by induction, we obtain

< (enm?) <L (e L)

forallj=1,---,4,1=1,--- ,nand n € N. From (23), we have

m ) s () s ()

Since

(1 + rnT ¢> T exp <r .T- ?) as n* — oo in the limiting case,

ie., n — oo, this proves (74).
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To prove part (ii), by the feasibility of x(") foreach! =2,--- ,n, it follows that

9
(n) (n) (B) ., (@n) _ (K)  (3n)
21 Blz] Zl] < Clz + H P ” Zlkz Klkl] Zk] - W Ty
] J

4 5
Z ul(l]n) - Z ul(z] "
{jje1®}y (771}
<c(”)+(l—1)~||73 ||~§-ex ,,,T,? .iK(n)_ (B) ,@m) _ (K)  (3n)
- il g P o) = tkij — Vi li Ti li
- L ”1(3 ) ull] (usmg inequality (74))
(ijel™®y (€19}
which implies
B 3;n 5:n
AP s T s T
(e} {j:je1™®y

<=1 1Pl ep(r - 2) ZKH«J ZBm &

<TH(I-1)-¢- l g xp(r-T-(P) (by (23), (50) and (56))
4

<f+r-¢-T- exp(r T- (P>(smcel—1<n) (80)
Since ul(2 ) ul(3 ) ul(4m) and ul(S;") are nonnegative, according to (80), they must be

uniformly bounded. Therefore, we conclude that there exists a constant k; such that (75)
is satisfied.

To prove part (iii), according to the objective function of problem (P,,), since x) = 0
is a feasible solution, we have 0 < V(Py), i.e

]el(a) l:l]=1
<Cop(rT-2) . 3y o lity (74
S rexplr 0 ZZDZ aj; (using inequality (74))
1=1j=1
AWR RO ¢
<| Pl -2 exp(r T >-22ul]. <n-g-t || Pl -2 exp(r T )
v/ == 7
r-T ( ¢
<ngor- Dl p(r T )(by(23))
_ ¢ 7.0
—qTrTUexp(rTa

which says that «(") and d;n) must be uniformly bounded forj =1,--- ,gand n € Nby

the nonnegativity of #(1) and d("). Therefore, we conclude that there exists a constant k;
such that (76) is satisfied. This completes the proof. [
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The feasible solution of problem (RCLT*) is denoted by
x(t) = (z(t),d,u<l>,u<2>(t),u<3>(t),u<4>(t),u<5>(t)),

where

2() = (z1(8), -+ 2j(8), -+, 2 (1)

d= (dl,... ydj, - ,dq)

u@(t) = (ugz)(t),- .. ,uj(z)(t),- . ,ugz)(t))

a® () = (1), 1), ud @)

a® () = (@, @, @l Ol 1), (1)
w0ty = (u @, @l O 0, (1)),

Let (") be an optimal solution of problem (P,,) given by

x(n) — (z(n), dm (n) g@n) §Gn) gn) ﬁ(S;n)> )

We construct the vector-valued step functions Z(") : [0, T] — R7 and ("), a6

[0, T] — R as follows:

20 = (5" 0,270,271
2

where, foreachi=1,--- ,pandj=1,---,g,

s(n) . (n) —
z,.) ifteF"/forl=1,---,n
=3 1, ! (81)
z,) ift=T
]
2z (n) —
~2m) N _ ) T ifte F/ forl=1,---,n
u t) = h. 82
Y {afj'”) ift="T 62
2 (1) — 2" ifte " forl =1, ,n .
’ ao™ ifr=T.
We also construct the vector-valued step functions ﬁ1(4; ”>, ﬁ§5m) : [0, T] — R1 by
~(4; ~(4; ~(4; ~4
a () = (a7 .55 @), 0" o)
and (5m) 6m) gy 757 (5m)
ﬁi ¥ (t) — (ﬁil’n (t), ﬁiz,n (t), .. ’ﬁiq’n (t)),
where (o) "
_(4n . n
_(4; ;.. ifte F/forl=1,---,n
™ () = { i ! (84)

[z ift="T
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and
i ) for1 =1,
2y — “f Uk [ Bl s it B forr =1 (85)
1 )
o +/ K 2 4j”)( )ds ift=T
_ Ml(l] )+(t7€1< >1) 1(;11]) I<j> iffGFl(n>forl:1,.../n

fori=1,---,pandj=1,---,q. We also write

u(4;n)(t) _ (ﬁ§4;n)(t),ﬁ£4;n)(t),~ B ,ﬁ](g4m)(t))

and

u(5;n)(t) _ ( §5 n)(t)’ﬁé&n)(t)/ . /ﬁ§75;n)(t)).

Then, we have the following result.

Proposition 6. Suppose that X\") is an optimal solution of primal problem (P,). Let X") be
constructed from x(") according to the above procedure given by

%M (1) = (’Z\(”)(t),a(”),a(l;n)lﬁ(z}”)(t),ﬁ(:”;”)(t)’ﬁ(‘l;”)(t)lﬁ(5}”)(t)). (86)
Then, X") is a feasible solution of problem (RCLP*).
Proof. We first have, for! =1,---,n,
T n
~ A(") (n)  (An)
/O (@) -2 (1))t = Z/ (1))dt < z;D’ (a2 oy o)
< a1 4 d; (by (33)).

We consider the following cases:

*  Suppose that t € Fl(n) forl=1,--- ,n.Forl =1, we have

q . .
Y B (1) 2/ K (t5) -2 (s)ds + o™ - a2 (6) + - a7 (1)
j=1
+ ¥ Af;}n)(t)-i- yarme
{ijel®} {ier}
q 9  ,t
= 231‘(]'0)(”'2%]‘)_2/0 K§1l)]2§ )(S)ds—l-’h( ) ”gz )+’Yz( ) ”S )
j= =
+ Yy o+ Loai+ ¥ / R 2" (s)ds by (59)
(e} {iel} {jel®}
q
< 2352).25?)+71(3) u%n)Jr%(K) ag?n)
j=1
fromte o ): / (Kith — K1t) 2" (s)ds (by 29))
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n) - K
< Z Bll]) Zl] +r)/l( : ugz )+71( : ull
{isjer® )} {ier}

(since K{y}; — R{}). = Kayi; > 0)
<) (by (31))
= ci(t) (by (26)).

Forl =2,---,n,wehave

8" ()ds + 0”70 + a7 ()

v B0 1) Z/K(O (t,5)

ij
j=1
+ Z ul(;l’")(t)—{— Z uZ(].S’")(t)
{7er™} ety
< ZBW () z o K2 [, ) ]
+yi” <2”>< >+fy“‘) 2" () + . a™ )+ Y al™ () by (28)
{jer®} {71y
7 1-1
B ST 3} SR NS LR LR L S
=1 j=1k=1 (e}
N t —>(n n
+ Z ﬁl(l5]/ )+ Z (1) Kl(li]) j Z Klll] A( (S)dS (bY (85))
(e} (jijer®y "
7 1-1
_ - B 4
< BZ(Z) 21(7)_2 Dl(cn)Kl(I’:zz (?)4_71( )'ul(z )_'_’)/z( : ul(z )+ 2 ul(1]n)
j= j=lk=1 {jjer®y
1
_(5;n n =(n n . =(n
+ ) ul(z = Z/M (Kl(li]? _Kl(li]?) E]( )(S)ds (since Kl(li]) >0)
(e} =1
7 1-1
(n)  5(n) =( (K) (4
<YB -5 =y Yo ki 2 4o a4 i+ 3 "
j=1 j=lk=1 {jjel®y
+ Z ﬂ,(?jm) (since Kl(ll]) Kl(l’:]) ”1] >0)
{ijer}
< ¢ (by (32)
= ci(t) (by (26)).
Forl=1,---,n,by (30) and (34), we have
BO () 200(0) < B 2 < ) 12l = a0 + 2 ).
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For/=1,---,n,by (30) and (36), we have
b
A R (t,5) - 2" (s)ds < 2/ Ki 2 ds+/ K”’j]) 2" (s)ds
o g 2
=) % Klkz] Zk] +/n nij "% (s)ds
k=1
<ag™ +al" + /e o K2 (s)ds = 2> (1) + 2" (1),
-1
Suppose that t = T. We have
q . .
Y B (T) 2" / K 2 (s)ds + 2" - 1) (1) + ) al®(T)
j=1
+ ¥ ﬁ§ff”>(T)+ Y ﬁ§f'")(T)
{iier™} {isief}
q
<y B M-y 2/ K2 (s 2 o Koo 3" 01
j=1 j=1k=
+ P aP (1) 44 & 2P+ ﬁl(;l"”)(T)—k Y a()

(jjer®y {jer™}
1 q
_ (m) 5(1) (n)  z(n)
e SLUREES 2 o K2 = 1 [ K2 (5)ds
j=1 j=1k= j=1"En

4B g >+,y(> PO a%”)
{f-fel“”}

_(5;n
+ Z uf(qij ) + Z / Krlm] j )d
(el {1y
q q
< VB X Lol ) ol ol
_(4;
+ 2 ufqijn) + ( m] 2/ nm] nnz;) -f](.n)(s)ds
L) ) N ) ) < ) B g2y () G
S. 1Bm’]"znj 7;;ak 'Knki] +i +7i

+ 2 a4 Z a5 (smceK() ~ R = g >0)

{ier™} " {jie1™)y " anij - nnij T anij =
<t (by (32)
= ci(t) (by (26)).
We also have

BT (1) < B2 <l a =@t (T) + (1)
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and

n—1
= k_zlal(c ) 'K1(1kz)] Zl(q + /—(n) K1(1n)1] 2\]( )(S)ds

<al a0+ [ Ry 2 (s = (1) 427 (7)

nnij  “~j

This shows that X(") is a feasible solution of problem (RCLP*), and the proof
is complete. O

5. Analytic Formula of the Error Bound

Recall that V(P) denotes the optimal objective value of problem (P). Since x(") is an
optimal solution of problem (P,) and X(") constructed from x(") is a feasible solution of
problem (RCLP*), it follows that

q T
Z/O a](O)(t) -%")(t)dt _ Z d‘](”) _ ,),(a) L (Ln)

j=1 jel@
. ) 1;
= Z 2/ al] Zl] 2 d]‘ - ’Y(a) ’ 1/—‘( ) (by (26))
= Z Yoo a5 — ¥ 4 — 4@ )~ v(p,). (87)
I=1j=1 jel@

Therefore, we have

* A(n 7(n) _(1; iy
V(RCLP*) Z/ (Hdt— Y ;i — v@ . 71" (by Proposition 6)
jel(@

> V(Py) (by (87)).

According to the weak duality theorem for the primal and dual pair of problems
(DRCLP*) and (RCLP*) presented in Theorem 2, we see that

V(DRCLP*) > V(RCLP*) > V(P,) = V(Dy). (88)
In the sequel, we are going to claim

lim V(D,) = V(DRCLP*). (89)

n—oo

The feasible solution of problem (DRCLT*) is denoted by

y(1) = (win), v, v (), v 1)),

where

vﬁ)(t),“' ,vﬁ)(t),m ,01(12)(,5),... ’01(172)(t)" . ,Uézl)(t),. .. vézq)(t))

v = (o (1), o0 (), o), ol (1), o (), o ).
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Let y() = (w(®, vl y(Zn) y(31) be an optimal solution of problem (D,). Ac-
cording to part (ii) of Proposition 4, we can construct another optimal solution y(") =
(W), 5(ln) g(2n) g5n)) of problem (D)) such that the following inequalities are satisfied:

wl(.") < ml(”) < g -exp (r -T- (Kr) (90)

foralln e N,i=1,--- ,pand! =1, - ,n. From (58) and (59), we also define

91(]5;71) limm 9( ") and 9( )=lim1n 91(1] ") 91)

Foreachi=1,--- ,pandj=1,---,q, we define the real-valued functions Eij and ij
on [0, T}, and Kj; on [0, T] x [0, T], respectively, by

B (5) =B (1) + 17 -0 - By(t) (92)
K476 = K0(01) 205 e ©3)
ii](n) (f) _ a](O)(t) . X](‘a) .5](1;71) . Zl\](t) (94)

Then, given any ¢ € Fl(") and (s, t) € Fk(") X F,(n) forl,k=1,---,n,wehave

BV (h) < B, KM(s,t) > K and al” (1) > )", (95)

()

Foreach! =1,--- ,nandj =1, ,q, we define the real-valued functions hl i

by

on

fll(]n)(t) = ( > i ll] wll + Z( lij — 1 )> wl(zn) (96)

=1

el N .
+; Ix (Kg@(s,t SK) -alds+ Y / 0 - ki) - ds.

k=I+1i=1

Foreachj=1,---,q, we also define the constants

Forl=1,---,n,let

ﬁl(") = max sup [le(]")(t) + ﬁ](-")(t) - ’jl(?)} (97)
J= A e
and
”l(n) _ kin‘?(,n ﬁlg )
Then,
)~ ma A, A2 = max{ 20, 70} o8
which says that

i) (99)

and
A" > 7" > () + a0 (1) - ) (100)
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forl=1,---,n—1landj=1,---,q. We want to prove

lim nl( " = =0= lim nl( ).
n—oo n—oo

Some useful lemmas will be provided below.

Lemma?2. Fori=1,---,p,j=1,---,gandl =1,--- ,n, we have

l(z]) B(n)( )‘ — 0asn — oo.

a;”ﬁ)—ag)
teEl(”) teEl(")

Proof. Using the argument of Lemma 4.1 in Wu [6], for ] =1, - - - ,n, we can show that

A ~ € 1 . a 0 €
P al(]@ - aj(t)‘ <3 NORECT) forj e I and 0 < sug)’a](. )(t) - al(]m <3
teE, Xj Y teE,
and
g € 1 e (B) B ()] €
< i i e . hd
0 su(pn) Blz] Bl](t)‘ <3 GIED forjeI; P (t) — Blz] 5
teE) X] ij teE)
Therefore, for j € 1(2), we obtain
sup " (1) — )| < sup [|af” (1) — ol | + |xI - oA — X101
e teE
a) _(1; A~ a) _(1; ~ € €
< s [0 Y+ up - ) <22 0] < 54§ =
€E, teE,
and, forj e I i(B), we obtain
o B; = B B;
s |80 ) = sup [ ) 3+ [ B,00— 05|
eE™ ee™
< sup HB )= B |+ 0P By - P 0 B || oy 01
tek!"
(0) (n) ( ). gBmn) pn) _  (B) o(Bin) o €€ _
<w%(0 B ) 0,7 B —x; -0 %uﬂ§2+2_e
teE, teE!"

This completes the proof. [

Lemma 3. We have

K (s, 1) — Kiji -

i w,g?)ds] — 0asn — oo.

Jeo

k

sup [
teE,(")

Proof. Since w,(j) is bounded by (90), using the argument of Lemma 4.2 in Wu [6], for
=1, ---,n,we can show that

Jeo

k

I/<\ij (S, i’) - K\IEZ;

! 2 LK) p(Kn)

~ZD}(<’.1)ds] P forje Ii(K)
Xij O

sup [
teE,(")
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and
_ €
sup /E(”) Kij(s,t) — KISZ w](;)ds <3
tee™ L7k
Therefore, forj € I i(K), we obtain
(1) g(n)| - (n)
sup [/E(") Kj; (s,t) — K| - @y, ds]
teE,(") k

K Kn) K K;n) $(n
- Ryt KL

) . w,(;’)ds]

) : wg;us] (by (91))

ij (S’ t) - KIEIJ

S sup /E,(fn)(

teE,(") L

S sup /EI(:,)(

teE,(”> L

< sup /E,ﬁ”)

teE,(”> L

) G(K;”)-I?i]-(S,t) XZ(JK) GSJK;H)'IZIEZ;

ij I
/ X Q(K n) .

i(s,1) — K1)

K,‘]'(S, t) — K\,Sg

1

ii(s,t) = Kijol| -y ds

+ sup

. w](:.l)ds]

This completes the proof. 0

Lemma 4. We have

From (23), since
(n) r-T
0,7 <[ Py || — —0asn — oo,

it follows that, by (90),

p
(el(n) _ t) . ZKI({Z’) oy < al ZKllz] w;; — 0asn — oo.

Now we have

teEI(")
() ) ) 4y () (m) _ g
<o Y Ky wy + )@ lij — Bij (t)’
i=1 i=1 teEl( )
+ ZZ sup [/ ( )(s t) — K,EZ? -wl(;)ds + sup ﬁ](")(t) —al(])
k=li=1tcg" teE™

Using Lemmas 2 and 3, we complete the proof. [
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For convenience, we adopt the following notations:
2n) _ )
§ = max sup ZKij (s,t)
=1 (s,t)e[el(f)l,T] XEZ(") i=1
and
5" = mi inf ig.(.")(t)
S P =
From (20) and (21), we see that
El(") <vand bl(”) > min { inf ) B(.”)(t) > min { inf ) B.(-O)(t) >0 >0.
j=Lq | telo 1= Y j=Laq | telo 1= Y
Let
4" = max B <vandp” = min 5" >0 (101)
n = n

Then, 0 < b{") and
e > ") and 6! <6} (102)
Now we define the real-valued functions u(") and v(") on [0, T] by

(n) . (n) 1
u(")(t) _ El(n) ifte F"/ forl =1, N
g, ift=T

and

n(”)(t): bl(") iftEFl(")forlzl,---,n
no ift=T.
Then, we have
u(t) <vand o™ (t) > o fort € [0,T] (103)
Using (90) and Lemmas 2 and 3, we see that the sequence {fll(]n) }o° 4 is uniformly

bounded. This also says that the sequence {711(") }o°_; is uniformly bounded. In this case,

there exists a constant ¢ satisfying 711(") <ztforalln € Nand! = 1,---,n. For further

discussion, we define a real-valued function p(") on [0, T] given by

r ift:el(f)lforlzl,---,n
(n)

p(n)(t): 7T iftEEl(n)forl:L.../n
_max {r}”) +a"(T) - zz,ﬁ’]?)} ifr=el = T.
Then, we have

p () <rforalln e Nand t € [0, T).

(104)
Lemma 5. We define a real-valued function §) : [0, T] — R given by
(n) (M) ($) . (T — ¢
e B0 [ul@)- (T
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Then, forj =1,--- ,q, we have
M % 50 = 70y 5y 2 v [Ty ) (n)
f (t)-;Bij (t) = Iy (1) + 3,7 (t) — &), +; t " (s) - K (s, t)ds  fort € ™.

and

We also have that the sequence of real-valued functions {§") o is uniformly bounded.

Proof. Fort € Pl(n), from (105), we have

T IO u(s) - (T )
/t §00) (s)ds = t D(H)(S)exp[ NOIS ]ds

) __(n) () (n) (n)
e g (T — 1L e (T —
/1 nén) 'eXpl 1 ((n) s) ds Z /4@ né(n) -exp[ k ((n) S)]ds

o0 () (m (1 _ : () o
< 'eXprl e 5L 'eXp[l g S)]ds
£t p)" b," k=r+17 B b b,
(by (99) and (102))
:/T nl(n)-ex 5" (T —s) ds:ﬂ- ex 40 (1-1) -1 (106)
e pm ORI e\ FPIT o
1 1 1 1

Since

b

(1)
e (T—t
;'exp[l(()] ift:el(f)lforlzl,---,n
by (1) = !

(n)
g (T—t
2 exp | T ey e B0 for 1 — 1, i,
1 p b(n) i
]

using (106), it follows that, for t € Pl(n),

(n)
e T
r <1+ w / f(”>(5)ds> ift =g forl =1, ,n
6" -5 (t) > m"
nl(”) + gl(”) . / f(”)(s)ds ift € El(n) forl=1,---,n.
t
T
> m(”) +?l(n) / £() (s)ds (since ﬂz(n) Srforalll =1,---,n). (107)
t
Fort = e,(zn) = T, we also have

1) = max [ - (108)

Foreachj=1,--- ,gand! =1,---,n, we consider the following cases:

e Fort= e,(f) =T, from (108), we have

=

B (1) - §0(T) > 0 §0(T) > 7 (1) ).

I
—_
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e Forte Fl(n), by (100) and (107), we have

1=
T3¢
=i
=
—
—~
—
—n
=
=
e~
Na
(=2l
NA
=
—n
PEN
=
=
—
—
=2
—
=
—n
PEN
=
=
—
—~
—

Finally, using (103) and (104), it is clear to see that the sequence of real-valued functions
{§(m}e_ is uniformly bounded, and the proof is complete. [J

Now, we define a vector-valued function W™ (t) : [0, T] — R? by

w00 (1) = w450 (01, ifte Fforl=1,---,n 109)
w4+ §00(T)1, ift=T

Remark 2. Lemma 5 says that the sequence of real-valued functions {f(”)}"o is uniformly
bounded. Using (90), it is clear to see that the family of vector-valued functions {W"},cy is
uniformly bounded.

Proposition 7. Let y(") = (w(®),v(ln) v(2n) v31)) be an optimal solution of problem (Dy,),
and let yW = (w51 ", v ) VA )) be another optimal solution of problem (D,,) constructed
from part (ii) of Proposition 4. Let w( ") be constructed from (109). We define

ot =5, 52 (1) = 0P ") () and 557 (1) = 6, - @) (1)

fori=1,---,pandj=1,---,q, where 61.(].3;") and 91.(],K;”) are defined in (91). Then,
5 () = (W (), 90, 53 (1), 9697 (1)
is a feasible solution of problem (DRCLP*).

Proof. For/ =1,--- ,nandj=1,- - ,q, we define the real-valued functions b](") on Fl(”) by

(n)

n P n 5 (n —_(n € > (n > (n —(n
b (1) = Y (B (1) - B ) ol — Z/t (SRICHES S RCREE

P
1) Y B =Y [ ()R (s, )ds, (110)
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Therefore, by adding the term (el(") —t)- e

1 Kiij - ;; on both sides, we obtain

p p |4 T < (n
(=) By 50 S0 0
p
- (el(”) - t) : ZK{;:]) Wy + ;(B{i’;) - Bl.(].’”(t)) o\

7!

P e
zf(wuw K)o 55 T [ (K960 - K45) ol

k=1+1i=1
i (8).

which implies

> a](.”) (t) — al(]’?) (by Lemma 5) (111)

Now, from (109) and (110), we obtain

P PoT
2 B1]n)(t) w n)(t) - Z Kl] (S, l’) w ") (s)ds
i=1 i=1 t
14 5(n) - (n) P re () o g (1) (M gg 4 p(M
— ;Blz] wll - Z]»A Klll] wlz S_k; ;/E(") Kkll] wkl s+ j (t)
= = =I+1i=1"Ek
o) 2 B) a(n) ,(Bn) - (n) Py
= ZBli' -wli‘f'le" Bl1 gli' C Wy — (el _t) : EKlli' - Wy
i=1 4 i=1 / / ] = ]
- Dk") CHEL R sz o K0 w5 ()
k=1+1i= k=I+1i=
(by (62) and (63))
nop
2 —
—Z%JW+E% By o) = ) YooK
k=I+1i=1
P
+klzlzxq % kll? v’("f)+b()()7(61()70';[(1(117?'@11'
+11 iz

(by the construction of 7" from part (ii) of Proposition 4)
‘n p ~
> (n) _ X}(a) Al(]”) ﬁ](l, ) 4 bj(n)(t) _ (el(") _ t) ) ;Kl(l’:]) -y
(by (37) for the feasibility of (™))
|4
0 () SRl o ey o
1=

> dl((«) +ﬁ](n)(t) - dl(].”) (by (111))
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which says that, by (92)—-(94),

(n P 5(n 3(n —(n P 5 (n
b = Y (BY(T) — By ) -l + 50 (T) - Y BY(T),

—~ P ~(n n
b = —r" +§00(T) - Y BI(T) > " (T) — 4 (by Lemma 5) (112)

Pt ij i Pt ij ni j
L) N (B) a(n) a(Bm) ()
- ZBnij 'wm+ZX1] Bnij 'an] wm+b
i=1 i=1
L) P ) g -2) =)
- Z%B”"f " Wni + -Z%Xil Byij - Ouij +b;
1= 1=

- ﬁ£l7) + b(”) (by (61))
> ﬁ’(;]?) i d](")(T) — 57(1’]?) (using (112))

I
R
S~~~

=
=
~—~
~
N—
<

which says that, by (92) and (94),

? N ~\n a ~Ln ~
) B (T)- 0" (T) +le, By(T)- 6" - " (1) + " -9 -ay(T) > 4°(T).

= ] ]
that is
p N o~
Z Bi(jO)(T + sz] 1] 1(]2 71)( ) +X]('a) : ’(/)\]('l’ ) ’ aj(T) > g](‘O)(T)'
i=1

Therefore, we conclude that the constraint (13) is satisfied.
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From (60) and (91), we have

ez T et -aln > ¥ et e m = ¥ o

. B
jel®

and

el > Lo a0 > oo e =L o),
(K)

jeIl-I< jeI(K) jeI,.(K>

which say that the constraints (15) and (16) are satisfied. The other constraints can be easily
realized, which says that §(") is a feasible solution of problem (DRCLP*). This completes
the proof. O

Fori=1,---,pandj=1,---,q, we define the step functions ﬁ](-") :[0,T] = Rand
e . [0, T] — R as follows:

1

a(’?) ift="T.

n

{ al(?l) ifteFl(n)forlzl,---,n

and
—(”)(t): Cl(ln) iftEFl(n)fOI‘l:1,~-~,n
W fr =T,
respectively. Fori =1,- - -, p, we also define step function wl.(") (t):[0,T] — Rby
w(”)(t): ﬂ_)l(ln) iftEFl(n)fOI‘l:1,~-~,n
l @ ift=T.

ni

Lemma6. Fori=1,--- ,pandj=1,--- ,q, we have

/OT [a](‘”(t) - a](’”(t)] 2" (t)dt — 0asn — oo (113)
and
/T [c-(t) - c‘(n)(t)} @™ (H)dt — 0asn — oo (114)
0 1 i i :

Proof. We can see that the following functions

[a]@(t) - a]@(t)} 2" (t) and [ci(t) - c-§”>(t)} @™ (1)

are continuous a.e. on [0, T|, which says that they are Riemann-integrable on [0, T]. For

i=1,---,nandt € El("), using Lemma 2, we have

0< a](.o)(t) - ﬁ](”)(t) = a(.o)(t) - al(]m < su%)) a](»o)(t) - al(j")] —0asn — oo
teg)"

and
0 < ci(t) =™ (1) = ;) — e < sup [ci(t) - c,(;”] 5 0asn — oo,
teE,(")

which implies

a(.o)(t) - ﬁ](")(t) — 0and ¢;(t) — c‘l(n)(t) —0asn — o0a.e. on [0, T].
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Using Proposition 5, we see that the sequence {Z'#n) }o° , is uniformly bounded. Since
the Riemann integral and Lebesgue integral are identical in this lemma, we can use the
Lebesgue bounded convergence theorem to obtain (113). Using (90), we also see that the

sequence {wf’” }o°_; is uniformly bounded. Therefore, we can use the Lebesgue bounded
convergence theorem again to obtain (114). This completes the proof. [

Theorem 3. We have the following properties.

(i)  We have
limsup V(D,,) = V(DRCLP*) and 0 < V(DRCLP*) — V(D,) < ¢y,
n—oo
where
e = V(D) + Y ) [, alt)-afdt
1=1i=1"k
(n) (n)
non s g (T—1t)
+ /_n L_ . exp ll] -ci(t)dt (115)
PRPRY AT e

satisfying €, — 0as n — oco. There also exists a convergent subsequence {V (D) }3>; of

{V(Dn) )52, satisfying
lim V(Dy,) = V(DRCLP"). (116)
— 00

(i) (No Duality Gap). Suppose that the primal problem (P,,) is feasible. Then, we have

V(DRCLP*) = V(RCLP*) = limsup V(D,) = limsup V(P,)

n—oo n—oo

and
0 < V(RCLP*) — V(P,) < ¢y.

Proof. To prove part (i), we have

0 < V(DRCLP*) — V(D,) (by (88))

n p n P
— V(DRCLP*) — Y Y o™ . ¢ . ) = V(DRCLP*) — Y / ™ .M ar
1=1i=1 1=1i=1
PoT
§Z/ ci(t) - A(") ZZ/ Clz wll)dt (by Proposition 7) (117)
i=17/0 =1i=1
n p
=) Z/—w (Ci(t) _Cl(in)) )+ Z/ i
1=1i=1"k i=17/0
=gy
which implies
V(Dy) < V(DRCLP*) < V(Dy) + . (118)

Using Lemma 6, we obtain
LI T
0< z_Zl/Ef”) (it —cl}”) - fdr = /O [ait) =& (1)) - @ (1)t — 0as n — oo, (119)

From (101), we have {fl(n) <vand bl(") > ¢ for all n. Using Lemma 4, we have nl(n) —0
as 1 — co. Therefore, we obtain p(™) — 0asn — oo a.e. on [0, T]. This also shows that
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§" — 0asn — oo a.e. on [0, T]. We can use the Lebesgue bounded convergence theorem
to obtain
/ ) Bdt — 0 as n — oo, (120)

From (119) and (120), we conclude that ¢, — 0 as n — co. From (118), we also obtain

limsup V(D;) < V(DRCLP*) < limsup V(D) + limsup ¢, = limsup V(Dj).

n—oo n—oo n—oo n—oo

Using part (ii) of Proposition 4, it follows that {V(D;)}?> ; is a bounded | sequence. This
says that there exists a convergent subsequence {V(an)} o, of {V(Dy)}5 . Using (118),
we can obtain the equality (116). It is clear to see that ¢, can be written as (115)

To prove part (ii), using part (i) and inequality (88), we obtain

V(DRCLP*) > V(RCLP*) > limsup V(D,) = V(DRCLP*).

n—oo

Since V(D,,) = V(P,) for each n € N, we also have

V(DRCLP*) = V(RCLP*) = limsup V(D,) = limsup V(P,)

n—o00 n—o0

and
0 < V(RCLP*) — V(P,) = V(DCLP) — V(D,) < ¢.

This completes the proof. [

Proposition 8. We have the following properties.
(i) Suppose that x\") is an optimal solution of primal problem (Py,). Let X(") be constructed from
x(") as given in Proposition 6 by

%0 (1) = (’Z\(”)(t),a(”),g(l;")’ﬁ(z;”)(t),ﬁ(:”;ﬂ)(,{),ﬁ(‘l;”)(t)[ﬁ(&”)(t)).

The error between the optimal objective value V(RCLP*) and the objective value at X" (t) is
less than or equal to e, defined in (115), i.e

q T
0 < V(RCLP*) — Z/O a](.o)(t) .z](.")(t)dt -y d§"> — @ gl < ¢
=1 jel(@

(ii)  Suppose that y() = (w(?), v, y(21) y(3m)Y is an optimal solution of problem (D,,). Let
g = (wm, g(tin) (2n) 3n)) be another optimal solution of problem (D) constructed
from part (ii) of Proposition 4. Let W) be constructed from (109). We define

A(ln) S(Ln)  S2m) gy _ g(Bin) | ~(n) 5Gin) oy _ g(Kin) | ~(n)
=7, ;7 () = 0,7 @ (8) and 07 (1) = 6,7 - @ ()

57 )
fori=1,--- ,pandj=1,---,q, where 91.(].3;") and 91.(]-B;n) are defined in (91). Then,
7 (1) = (W (1), 907,52 (1), 5O (1))

is a feasible solution of problem (DRCLP™), and the error between the optimal objective value
V(DRCLP*) and the objective value at §\") (t) is less than or equal to e, i.e.,

0< Z / Gilt t)dt — V(DRCLP®) < ¢,
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Proof. To prove part (i), using Proposition 6, we see that %" is a feasible solution of
problem (RCLP*) with the following objective value

9 T 3
Z/ () g(tdt— Y dj—@ . a,
=170 jer

Then,

[ q T
0 < V(RCLP*) — 2/0 V(1) -2(at— Y J]-—ry<a>-a<1>]

(4 T _
V(RCLP*) — Z/O al(].”)~2j(t)dt— y dj—%a)-a(l)]

(since al(?) < aj(o)(t) fort e El("))
[ 9 =n _
=VRCLP) — [V Yo al) zy— Y dj— 4@ a®
j=11=1 jel@

= V(RCLP*) — V(P,)
< ¢, (by part (ii) of Theorem 3).

To prove part (ii), we have

P
0< Z/ 5")(t)dt — V(DRCLP*) (by Proposition 7)

=

@™ (t)dt — V(D
<L) w2V,

(since V(D,,) < V(DRCLP*) by part (i) of Theorem 3)
= ¢, (by (117) and (118))

This completes the proof. [
Definition 1. Given any € > 0, we say that the feasible solution
X (1) = (z(e)(t),d(e),u(l;e),u(z""’)(t),u(3;€)(t),u(4"€)(t),u(5;€)(t))

of problem (RCLP*) is an e-optimal solution when
* - (€) _ (@), ,(Le)
0 < V(RCLP*) Z ) (t)dt ) 47—\ u <e.

We say that the feasible solution

of problem V(DRCLP*) is an e-optimal solution when
P T )
2/ 0 (+)dt — V(DRCLP*) < e
=1

Theorem 4. Given any € > 0, we have the following properties.
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(i)  There exists an integer n € N such that X\") obtained from Proposition § satisfies x(¢) = x(")
and e, < €. This also means that the e-optimal solution of problem (RCLP*) exists.

(ii)  There exists an integer n € N such that ") obtained from Proposition 8 satisfies y'¢) = y(*)
and e, < €. This also means that the e-optimal solutions of problem (DRCLP*) exists.

Proof. Part (i) of Theorem clp2t30 says that e, — 0 as n — co. Given any € > 0, using
Proposition 8, there exists n € N satisfying e, < €. In this case, the desired results follow
immediately. O

6. Convergence of Approximate Solutions

We are going to study the convergent properties of the sequence {X") o, thatis
constructed from the optimal solutions X" of problem (P,) and the sequence {y(")}%_,

that is constructed from the optimal solutions §) of problem (Dj,).
Let y be a feasible solution of dual problem (DRCLP*) given by

y(t) = (w(t), v, v (1), v (1)),

For t € [0, T], we define the functions

(2)
v (¢
ij i (1)
91(]6)(f) _ wl(”)(t) if w; (t) #0 fori=1,---,pandj € Ii(B) (121)
0 if w!™ (£) = 0
and @
v () )
0 (t) = o o A0 Leric1, o pandje 1N, a2
0 if w™ (£) = 0

The constraints (18) and (19) say that 91.(]3) (t) <1and 91.(].K) (t) <1fort € [0, T]. From
the constraints (15) and (16), we also have
1> Y 6P (and Y > Y 6t fori=1,- ,pandte(0,T].  (123)
(B) . (K)
jel

i i

jel
Fori=1,---,pandj=1,:--,q, we also define the functions
19 B B ~
Bi(t) =B (1) +xi - 07 (1) - By (1) (124)

and
> 0 K) (K =
Kij(t,s) = K (t,5) = X 011 (5) - Rig(1,9). (125)
Let ¢ = max{c,0}, where ¢ and ¢ are given in (21) and (22), respectively. For
convenience, we define a real-valued function 7j on [0, T| by

i(t) = g - exp {V' U{;_ t)]- (126)

Then, a useful lemma is given below.

Lemma 7. Let y be a feasible solution of dual problem (DRCLP*) given by

y(5) = (w(t), v, v@ (1), v (1)).
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Foreachi=1,--- ,pandj=1,---,q, we define

(1) = min{w;(1), (1)} and 0" = 0",
where 7j(t) is defined in (126). We also define the functions
o2 (1) = 0P (1) - w;(t) fori=1,--- ,pand j € I|P

and

o) (6) = 0 (t) - wi(t) fori =1, pand j e 11,

where 01.(].3) (t) and 01.(]. )(t) are defined in (121) and (122), respectively. Then,

y(t) = (w(r), v, 9@ (), v (1))
is a feasible solution of dual problem (DRCLP*).

Proof. We first have
p
)3 Bz‘(]p)(t) ~w;(t) + X](a) a;(t) 'UJ('D T EXE]B) ‘91‘(1’3)“) By(t) - wil®)
' i=1
F TR g ) R
+Z/ Xij -0 (s) - Kij(t,s) - wi(s)ds
p
Z B(O wl( ) +X]( ) + ZXz] Z] 1(]2) (t)
/ X Ef) (5)ds
T
]( (t) + E/ K( )(t s) - w;(s)ds (by the feasibility of y again),
i=1"t

which implies

)+ Z / (t,s)wi(s)ds  (by (124) and (125))

0) t) + Z;./t Kij(t,s)wi(s)ds (since Kij(t,s) > 0and @;(t) < w;(t)).

For any fixed t € [0, T], we define the index sets

Jo ={jrwi(t) <ij(t)}and J> = {j: w;(t) > 7j(t) }
and consider

p
ZBij(t> ~wi(t) = Y Bij(t) - wi(t) + Y Bij(t) - w;(t)

i=1 i€]< i€l

Then, for each fixed j, three cases are considered below.

(127)
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Suppose that |~ = @ (i.e., the second sum is zero). Then, w;(t) = w;(t) for all i.
Therefore, from (127), we have

P P
3" By(t) - @i(0) + 1,7 a0 o = Y By(t) - wilt) + - () - o)
i=1 i=1

0) t)+Z/TKij(t,s) - @;(s)ds.
i=171

U:k

Suppose that J> # @ and Bi]'(t) =0foralli € J. Then,

p
Y Bi(t) - mi(t) = ) Byj(e) -@i(t) + ) Byj(t) - @it)

i=1 ic]< i€]s
P
= Y Bij(t)-wi(t) + Y Bij(t) - wi(t) = Y By(t) - wi(t).
ic]< €] i=1
Using (127) again, we obtain
P 14 T
(a) - (1) (0) % -
,:21 z] +X (t) : ZJ]» > (1]- (t) + 121/; Ki]'(t,s) : wi(s)ds.

Suppose that [» # @ and there exists j* € |- with Bi] (t) #0. If B (t) # 0, ie,

B (t) > o by (1) then By (t) > B (t) > o £ B (t) = 0 then B (1) # 0, ie,

Ei]-* (t) = ]§i(j0*) (t) > 7 by (22). Therefore, we conclude that

Bjj+(t) > max{c,7} = 0. (128)
From (54), we also have
P P (0)
Y Kij(t,s) < ) K (ts) <v. (129)
i=1 i=1
From (126), we see that
T
5 i (1) :T—l-v'/ ii(s)ds (130)
t

for t € [0, T]. By (53) and (128)—(130), foreachj =1,--- ,gand t € [0, T|, we have

P 5 o ) PooT 5
By 0t = -0 2 a0+ Y- [ Ry(hs)-ieds. (3D
=17t

=1

Therefore, we obtain

0) B+ i/T Kij(t,s)ﬁ(s)ds (using (131))

> 0" (1 +2/ Ri(t5) - i(s)ds (since () < (1))

which implies, by the nonnegativity,
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f Bi(t) - mi(t) + 1 ay(t) o)) > f By(t) - wi(t) > 0¥ (1) + ) /T Kij(t,s) - @y(s)ds.
i=1 =17t

i=1

Combining the above cases, we conclude that

L0y @ a0 o)

Z ZBU (t) - @i(t) + x; - aj(t) —i—le] Byi(t) - wi(t)
[Tk ince 51 — oV

+Z/ Xii - Kij(t,s) - @;(s)ds (81ncez7]. =7 )
i1 Jt

KO (t,5)w;(s)ds  (applying (124) and (125) to (132)),

This shows that the constraint (13) is satisfied.
From (123), we have

and

. (K) )
jeL; jeL;

which say that the constraints (15) and (16) are satisfied. The other constraints can be easily
realized. This shows that y is indeed a feasible solution of (DRCLP*), and the proof is
complete. O

We also need the following useful lemmas.

Lemma 8 (Riesz and Sz.-Nagy ([52], p. 64)). Suppose that the sequence {f;}$> , in L2[0, T] is
uniformly bounded with respect to || - ||2. Then, exists a subsequence { fi }°° 1 such that it weakly

converges to f € L2[0, T]. More precisely, we have

lim fk Fdt = / F(1)g()dt for any g € L2[0, T).

]%oo
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Lemma 9. (Levinson [4]) Suppose that the sequence { fi } >, is uniformly bounded on [0, T] with
respect to || - || such that it weakly converges to f € L*[0, T]. Then, we have

f(t) <limsup fi(t) and f(t) > ligglffk(t) a.e. on [0, T].

k—o0

Lemma 10. Suppose that {f}3> | and {g}3>, are two sequences in L?[0, T such that they
weakly converge to fo and go in L2[0, T|, respectively.

(i) If the function 1 defined on [0, T| is bounded, then the sequence {1 - fi } 2, weakly converges
to 17 fo.
(i)  The sequence { fi + gk} 3>, weakly converges to fo + go.

Proof. To prove part (i), given any h € L?[0, T}, it is clear to see that i - 7 € L?[0, T]. The
concept of weak convergence says that
' T . T T T
tim [ (- fddt = lim [C(nn)- fiat = [ D) fodt = [Che(- fo)s

k—o0 JO

This shows that the sequence {7 - fi } -, weakly converges to 7 - fo.
To prove part (ii), given any I € 12 [0, T], we have

lim T(fk(t) + g1 (1)) - h(t)dt = lim (/ fi(t) -h(t)dt + /OT k(1) -h(t)dt>

k—o0 JO k—ro0

T
— /0 fo(t) - h(t)dt + /0 go(t) - h(t)dt

(using the weak convergence for {fi};° ; and {g} )
T
= || (olt) + so(0)) - n(t)a.

This completes the proof. [

Let {f;}3”, be a sequence of m-dimensional vector-valued functions, i.e.,

fo = (fa, fror o o fiom)-

We say that {f; };° ; weakly converges to another m-dimensional vector-valued function

fo = (for, foz, -+ + fom)

when each sequence { f;; }12, weakly converges to f; fori =1,--- ,m.

Proposition 9. Suppose that
(g} = {27 0,am, a0, @@ (1), 557 (1), 56 (1), 55 (1) }

is a sequence constructed from the optimal solutions x(") of problem (Py) according to part (i)

of Proposition 8. Then, there is a subsequence {x(”k Yeoq of {x oy such that the following

properties hold true.

e The subsequences of functions {z ”k)}o" {a@m) ey {u 3”k)}°° {ﬁ(“;”k)},f’:l and
{uGmo) Yooy are weakly convergent to some z*, @(?*), (3*), @) and u( *), respectively.

e The subsequences of constants {d(") tooq and {a(mo) Yooy are convergent to some d* and
() respectively,

®  The vector-valued function

(9]

n=1

/)E*(t) _ (A*( ) d* /\(1*) (2*)(t),ﬁ(l’)*)(t)lﬁ(ll*)(t),ﬁ(S*)(t))
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formed by the above limits is a feasible solution of primal problem (RCLP*).

Proof. From Proposition 5, we see that the sequence {x(n) }o° 1 is uniformly bounded with

respect to || - ||2. Let 3?](’1) be the jth component of X"). We also regard (%) and d(") as

[e9)

(1)
constant functions. Lemma 8 says that there exists a subsequence {J?YI" ) } of {J?Yl) } .
k=1 n=
that weakly converges to some 55%0) € L2[0,T]. Using Lemma 8 again, there exists a

7

e8] (1) [o 0]
subsequence {A( &) } of {fg ) } that weakly converges to some 3?&0) € L2[0, T]. By
k=1 k=

—~

A

n(])) o0 A( )) 0
K } of { " } that weakly converges
o L k=1

to some 55](»0) € L2[0, T] for each j. Therefore, we can construct a subsequence {X(")}%

induction, there exists a subsequence {

~.

that weakly converges to X(?), where
%) (1) = (g(nk)(t),a(nk),ﬂ(l;nk),ﬁ(Z;nk)(t),ﬁ(S;nk)(t),ﬁ(élmk)(t),ﬁ(S;nk)(t))

and

%O (1) = (2(0)( ),d®, 710 §20) (1) GG (¢), u(4F0)(t),ﬁ(5}0)(t)),

which also says that the sequences {ﬂ(l"”k)};"zl and {c_l(”k)},‘f’zl converge to @0 and
d(0), respectively, and the sequences {2(”k)},i°:1, {a@m) Jp {aGmo) Jp {ﬁ(4""k)};°:1 and
a0, B30 g0 §G0) respectively. Then, the
subsequence {X("¥)}*  of {x(")}%_, is weakly convergent to X(?). From Lemma 9, for each
j, we have

{ﬁ(5?”k)};°:l weakly converge to 70),

lim sup E("k)(t) > E](.O)(t) > lim inf%?"")(t) >0a.e.in |0, T]

k—soc0 ] k—00

lim sup % "")(t) > l//l\(-Z;O)( t) > lim inf 7% n")(t) >0a.e. in [0, T]
koo / k—oo J

lim sup % ”k)(t) > ﬁ(3;0)(t) > liminfﬂ(.3;nk)(t) >0ae. in|0,T]
k— o0 / k—oo

lim sup u(4nk)( t) > T )( ) > hmmfu( )(t) >0a.e. in [0, T]
k—s00 g koo 1

lim sup u( k)( t) > AZ(SO)( t) > hmmfu( ")( t) > 0a.e. in [0, T]
koo ! koo Y

which says that
i@aﬁ:@WUL$Wﬂm%ﬁmmyﬁmkmﬁWW0ﬁ@mm)ZanmmJL (133)

Since x(") is a feasible solution of problem (RCLP*) for each 1y, we have

ZBi(jO)(t) /\]( )( )+,Yl( ). (2 ”k)( )+'71( ). (3 ”k)(t) + Z ﬁl(;:;nk)(t)
= {iet®y
+ Y AP <ol + Z / KO (t,5) -2 (s)ds (134)

(e
fort €0, TJandi=1,---,p;
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— TA . a
ame) 4+ 3, > /0 (1) 2™ (t)dt for j € 10; (135)
@ (1) + 2™ (1) > By() 2" (1) fori =1, ,p,je [P and t € [0,T);  (136)
N ~\on t/\ n
al®m (1) +uf]-5’ O(t) > /o Kij(t,s) 5]( Y (s)ds (137)

fori=1,---,p,j€ Ii(K) andt € [0, T] for t € [0, T].

We define the following sequences of vector-valued functions:

(o) = ([0 0 A 0) )
[0V = {00400, i o)}
{0} = {0 W A0}

k=
by

q
() = LB (02 () + A a2 (1) + 4 7 ()

j=1

+ Y am™e+ Y ai™w;

(e} (el

W) = By(1) 2" (1) — a7 (1) — ™ (1) < 0 (by (136));
3(;1k)(t) _ ﬁl@mk)(t) + ﬁgf;nk)(t)'

Then, the sequences {fg"")};f:l, {fgnk)}}f’:l and {fé"k)},‘f:l are uniformly bounded,
since the sequence {x(") }o°_, is uniformly bounded. Lemma 10 also says that the sequences
{fgnk)},‘f’zl, {fg"k)};f’:l and {fénk)};"zl weakly converge to fgo), féo) and féo), respectively,

given by
q . a
(0 =L B0 0200+ a0+ > )
j=1
{iel™} (e}
3 (5) = By(r) - 20 () — ™ (1) — a7 (1) < 0
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Using Lemma 9, we obtain

q o ~ -
Y8020+ a0+ a i+ L a0+ Loae
=1 {ijer®y {ijer™}

= A0 < hr;supfl”'f (1)
<ci(t) —|—hmsup2/ K )( )ds
(by taking the limit superior on both sides of (134))
q t
<ci(t)+ 2/0 Kl.(].o) (t,s) ~’z§0) (s)ds a.e. in [0, T] (by the weak convergence). (138)
=1

We also have

By() 27 (1) — 1™ (1) — a0 (1) = £ (t) < limsup i/ (t) < Oace. in [0, T]. (139)

k—o0

By the weak convergence for the sequence {z](."") }eo4, the inequalities (135) and (137)

say that
T
a0 4 d; > /O a(t) -2 (t)dt.
and
t

b -
/0 Kij(t,s) -2](0) (s)ds = lim | Kj(t,s) -2](-'1") (s)ds (by the weak convergence)

k—o0 JO

t
= 11m1r1f Kij(t,s) - ’(nk)( Yds < hmmf( 1(3 nk)( )+”(5nk)(t)>

k—oo k—o0

= hin inf f; n")( t) < fé?) (t) a.e. in [0, T] (by Lemma 9)

= a0 (1) + a7 (t) ae. in [0,T), (140)

respectively. Let 7, NV, and N3 be the subsets of [0, T| on which the inequalities (138)—(140)
are Violated respectlvely, foralli=1,---,pandj=1,---,q, let Ny be the subset of [0, T|
on which x(0) () % 0 by referring to (133), and let

N:N1 UNZ UN3UN4.

We define

~ x(0 '
(30, 8,30,5),a09(0, 500,55 () =x°( = { & K2

where the set A has measure zero. Then, X*(t) > 0 for t € [0, T].
e Suppose that t ¢ N. Since z*(t) = Z2(O)(t) a.e. in [0, T], from (138), we have
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O ROl R R el O EED DIl ()RS DIl ()
=1 {isier®y {isier}
q . . .
=Y B0 200+ a0 )+ 1+ L al -+ Y )
=1 {j7e1™y {771y
q t q t
. ) o). 20\ g6 — o )4 o). 5%
gcl(t)+];/0 K (t,s) Z; (s)dscl(t)—k];/o K (t,s) - Zj (s)ds.
From (139), we have
Bi(t) -2 (1) — ™) (1) — (1) = By(r) - 210 () — 2> (1) — ") (1) < 0
From (140), we have
't/\ o ot ~ ~(3; ~(5; ~3x% ~[ D%
/0 Ki;(t,s) 'z (s)ds :/0 Ki;(t,s) -Efo)(s)ds < ufg’o)(t) —|-ul(].50)(t) = ”1(3 )(t)+ul(j5 )(t),
*  Suppose that t € N. We have
I O R (O el O R R O R DIl O E S SR O
j=1 {ijer®y {ier}
q t
—0<¢(b) +]; K (1) /O £ (s)ds.

We also have 5 .
Bj(r) 2 (1) " (1) — i (1) =0
and ,
/O Ri(t,s) -2 (s)ds = 0 < 0= 2 (1) +- 27" (1),
which shows that X* is a feasible solution of primal problem (RCLP*). Since X*(t) = x(0)(¢)
a.e. on [0, T], we see that the subsequence {X("*)}%  is weakly convergent to X*, and the
proof is complete. [

Proposition 10. Suppose that

{y(ﬂ)(t)}w _ {(w(">(t),v<1:">,v<2m>(t),v(3m>(t))}

n=1 -

[e9)

n=1

is a sequence that is constructed from the optimal solutions 5 of problem (D,,) according to part
(ii) of Proposition 8. For t € [0, T|, we define the functions

i’\z(jz;n)(t) o (n)

85" (1) = 2 (1) FOO A0 i1, pandje 1
0 ifo!" (t) =0

and )
;" (1)
ij e ~(n)

@]K;”)(t) = z@i(n)(t) ;7 (t) # 0 fori=1,---,pandj € Il.(K).

0 ifo!™ () =0
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Foreachi=1,--- ,pandj=1,---,q, we define

2" (1) = min{w§">(t),;7(t)} and ") = 5",

1

where 7j(t) is defined in (126). We also define the functions

o7 (0 = 07" (1) - (" (1) fori =1, ,pand j € I[P (141)

and
a7 (1) = 8 (1) " (1) fori =1, pand j € I (142)

for t € [0, T]. Then, each

sV = L (w (), 0, 5@ (1) y@m (1)) 1
o), = {(w 0 @0, s )y
is a feasible solution of dual problem (DRCLP*), and there is a subsequence {}“I(”k)},‘f’zl of
{0 o1 such that the following properties hold true.

e The subsequence of functions {w(") Yooy is weakly convergent to w*.

[e9)
*  The subsequence of constants {V(l;”k) }kil is convergent to v(1%).

®  The vector-valued function

formed by the above limits and ¥(2*) (t),%C5%) (t) given by (156) in the proof below is a feasible
solution of dual problem (DRCLP*), where ¥(2*) (t) and ¥3*) (t) are constructed from the
subsequence {y\") Yoq

Proof. Since (") is a feasible solution of problem (DRCLP*), Lemma 7 says that §() is also
a feasible solution of problem (DRCLP*) satisfying wf”) (1) < @5") (1), ﬁl(j2;n) (1) < @E") (1)
(8;n)

o)
says that the sequence {w(") }o2_, is uniformly bounded, which implies that the sequence

and 0.7 (t) < @fn)(t) foreachi=1,---,p,j=1,--- ,gand t € [0, T]. Remark 2 also

{y™}%_, is uniformly bounded. Therefore, the sequence {y("}%_, is also uniformly
bounded with respect to || - ||2. Using Lemma 8 and the proof of Proposition 9, we can sim-

ilarly show that there is a subsequence {Sr(”k) }Zo . of {3“7(”) }oo ) such that the subsequence
= n=

e}
of functions {Vv("k) } weakly converges to some w(?) and the subsequence of constants

{V(link) }kfl converges to some v(10), According to the constraints (17) and (14), we have

(L) (a) o (Lng)
9, <land9'® > ) ;"
jel@

which implies, by taking the limit on both sides,

5](.1;0) <1land 4@ > Z() 5]@0). (143)
jera

By applying the equalities (141) and (142) to the constraints (15) and (16), we have

Wy o (and Y > ¥ o). (144)
(B) :—1(K)
JEL

i i

jEl
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We also see that @(].B;")(t) <land él-(ij)(t) < 1. Let

ij n—voo i ij

5(B) 5(K) -
Then, 0;; (t) <1and 0;j (t) < 1. From (144), we obtain

B > liminf Z(B 6 | > ¥ iminf () = ¥ 07 (1) (45)
JEL

n—oo )

jeI® jel!

and

7 > liminf 0 ()| > ¥ iminfd (= ¥ 000 46
jer® jer® jer®
Now, we define

0200 =8P () 0 (1) fori=1,-- ,pand j € 1" (147)

and
570 (1) =01 (1) - w” (t) fori=1,--+ ,pand j € I[¥ (148)

(2:0) (3,0)

Then, 0;; (1) < wf")(t) and 3 (1) < wl@)(t). Since y") is a feasible solution of

problem (DRCLP*), we have w}”k)(t) >0forte€[0,T)andi=1,---,p, and
E () () (@) = s(Um) v (B) B ()
» B (t) - w;" (1) + x; - aj(t) -0 + ZX -Byj(t) -9, (1)

p R T pooT .,
+ in(jK) -Kij(t,s) - /t 771(]3 ")(s)ds > a](o)(t) +) / KZ-(]-O)(t,s) zbl( ")(s)ds (149)
i=1 : '

fort € [0,T]andj=1,---,4q. From Lemma 9, for each i, we have

limsup @™ (t) > &% (t) > liminf o™ (£) > 0 a.e. in [0, T). (150)

k—oc0 k—oc0

We define the following sequence of vector-valued functions:

Ew}, = {( o0, s o))

k=1

by
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Then, the sequence {g(™) } oy is uniformly bounded, since the sequence {ym }oo s
uniformly bounded. Lemma 10 also says that the sequence {g (") } o, weakly converges to
some g(©) given by

g (t) = ZBZO)(D (1) + () Y+ Zx,] Bi(t) - 57" (1)

p T
+ ZXZ(].K) /t Ki(t,s) - (fo)(s)ds.
i=1

Then, we obtain

M‘w

- p -~
Y8 0 - w0+ 7 w0+ Yo By(t) -9 (0

I
—

+ 2)(1] /t i(t,s) - 171(]3;0) (s)ds = gj(o)( ) > hmmfg ( ) (by Lemma 9)

ne—
> a(o) ) + lim inf Z / K t s) nk)(s)ds
- ng—roo 4
(by taking the limit inferior on both sides of (149))

Oy 43 [TKO sy ;
=a;’(t) + Z/t K’ (t,s) - @; 7 (s)ds a.e. in [0, T] (by the weak convergence) (151)
i=1

We define

n(t) = g - exp {1/(7(;—:%)] (152)

Since & > o, it is clear to see that ij(t) < #(t) for t € [0, T]. Since w(n")( t) <ij(t) for
€ [0, T}, it follows that w(nk)( t) <n(t) for t € [0, T]. Using Lemma 9, we obtain

zbl(o)( ) < lim supw (t) <(t)ae. onl0,T]. (153)

N— 00

Let //\\/0 and J/\\ﬂ be the subsets of [0, T] on which the inequalities (151) and (153) are
violated forallj = 1,--- ,q, let N be the subset of [0, T] on which w(®) () # 0, and let
N = Ny UN7 UN,. We define

n(t) = (n(t),n(t), - ,n(t)) € RV
and

w

") = wO (1) ift g N
T\ g ifteN,

where the set A has measure zero. Therefore, we have w*(t) > 0 for t € [0,T] and
Sk

w*(t) = w( (t) a.e. on [0, T], which implies, using (153),
w7 (t) < n(t)a.e. on|0,T]. (154)

1

Let

09H = min 8P andd® ()= min 6 (155)
ic{1,-p}jel’®) ic{1, p}jel™
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v(20) N v(30) if t ¢ N

@)y — J VD) ift ¢ G ) YO ift ¢ N
®) { 0B (1) y(t) ifteN, ° dvEi®) 0K () - y(t) ifteN, (156)
Since 771(].2;0)(1‘) < wl(o)(t),zﬁg"o)(t) < wfo)(t),(a( )(t) < 1and 6% (t) < 1, it follows that

Let

Then, 7*(t) = y(© (t) a.e. on [0, T]. Next, we want to show that §* is a feasible solution
of (DRCLPY).
e  Suppose that t ¢ . We have

4 P
) (a) | (1) B 5 (1. 52
;B] (6) +x; - aj(t) - 9 +;Xif -Byj(t) - 9,7 (1)
4 T
w . [To (31)
+§Xu /t Kij(t,s) -9, (s)ds
P
= 2 BZ(]Q)(t) 'ZZ)i(O)(t) +X](a) 0 4 EX . (]2 0)(t)
i=1
4 T
K. [To (30)
+,:21X” /t Kij(t,s) ¥ (s)ds
P T
zafo)(tw; /t K (t,5) - w0 (s)ds (by (151))
4 T
=a”(t) ) KD 1) -3 (5)ds Gsince 0l 1) = @7 1) ae. on [0,T)

jer® jer® jer®
and
K) -~ K) (0 K - (0 (3,0 3%
o ) wi(t)—')’z( ) wi()(t)z Z éfj)(ﬂ'wz()(t): 2 Uz(j )(t): 2 Az(j )(t)
]eIi(K) jel ) ]eI,.(K)
*  Suppose thatt € N. From (152), we see that
T
o-n(t) :T+V-/ 1(s)ds (157)
t

fort € [0, T]. By (20), (21) and (157), foreachj =1,--- ,gand t € [0, T], we have

P
ZBI'(]Q)(t)'U(t) >o-n(t) > ]( +Z/ KO) t,s)-n(s)ds. (158)
i=1
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Therefore, we obtain

3 n (2%
Z%Bzo () + a0 + Z%XEJ-B) By() -9 (1)

T .
+sz] /t i(t,5) - 55 (s)ds

B, ]O>( ) - w; (t) (by the nonnegativity)

IV
M'm

I
—

|
M‘c

Bq‘”( )-n(t)

Il
_

+Z / KO (t,5) - 5(s)ds (by (158))

0¥t +2/ K (t,5) - @7 (s)ds (by (154)).

From (155), we also have

jer,” jer® je1®

and

VR ORR DR MUAICIO RS MO RTOESS M IO
jeI,'(K) ]'GI.(K) jGIi(K)

Finally, from (143), we have
~(1x) (1)
RS land 7@ > Y 5,
which shows that §* is a feasible solution of (DRCLP*). Since w*(t) = w(©)(t) a.e. on
[0, T], we see that the subsequence {w (") +o, is weakly convergent to w*, and the proof

is complete. O

Theorem 5 (Strong Duality Theorem). According to Proposition 8, assume that the sequence
() [z g ) qam) @) 4y @Gm gy a@n) (), 561
{Zm) = {(2"®,am,at,a@n ), 75 @), a4 (5,56 (1)) }
is constructed from the optimal solutions x(") of problem (P,,), and that the sequence

{ (n)( )}n = {(W(n)(t),q(l;n),v(zn)(t),Q(B;n)(t)) }oo

n=1

()

n=1

is constructed from the optimal solutions §") of problem (Dy,). Then, the feasible solutions X*
and y* obtained from Propositions 9 and 10, respectively, are also the optimal solutions of primal
problem (RCLP*) and dual problem (DRCLP*), respectively. Moreover, we have

V(DRCLP*) = V(RCLP").
Proof. In Proposition 9, regarding the subsequence {x(") tooq with

%) — (’Z‘(”k)(t),a(nk),ﬂ(l;”k),ﬁ(zﬁlk)(t)/ﬁ(35nk)(t),a(4;”k)(t),ﬁ(5?”k)(t)),
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we have the primal objective value

q T
©) 4y . 5lmo) _ ) _ o (a) . o(Ling)
ZA%(Q% @ﬂ.zdf @) (e
j=1 jel@
=3 o (100 —aff) 0+ D3 [ el 2
_]-:11:1 E“,("k) j lj i =5 El(nk) 1j i
— ¥ Wy gl
jel@
ERCRe (O ¢4y _ g0m0) " m) ) | )
=L X fo (70—l e ol e
- ¥ A @) glim)
jel@
L
= L1 o (570 ) 2 veen),
j=11=1"%

where {2](-"" ) }oo4 is weakly convergent to ?]“ In Proposition 10, regarding the subsequence
{3} | with
g = (W(”k)(t),{;(l;”k)li;(z?nk)(t>,§(3}nk)(t)),

we also have the dual objective value

<
S—
b\]
Ry
—
—~
S~—
=)
=
—~
S~—
[
~~
|
7=
‘\
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B T
[
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Il
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_
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—
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——
=~
=

P P
) .wl(ink)dt+zza(nk)cl(lnk) ZDl(ln)JrE/ ci(F) - 1) (D)t

) i=11=1 i=10

@\"dt + V(D) + Z/ ) -5 (£)dt.

I
—_
—

Il
—_

I
1=
1=

=
31‘\
T
=
/—/
O
~~

-~
S~—

|

o
=

3

T

Therefore, we obtain

q T
V) = 3 [ a0 20— T a0

j=1 jel(@
"y O)(py _ Y . 5 4 %
_121:1 /Efnk) (aj () = ) ;e at (159)
and
p T P ng
VD) = Y [t a wde = Y3 [, (o) ) - afa
i=1 i=11=1"5
PoooT
- 2%) Ci(t) . f(”k)(t)dt' (160)
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Since V(P,,) = V(Dy,) and wj(ﬂk) < @Snk), where zbf”") is given in the proof of
Proposition 10 satisfying that {w}”k ) } e, is weakly convergent to @;, from (159) and (160),

we have
LTy 20m) ) _ (@), o) _ Yo 4 © (m0)Y . 5(me)
.Z{/o a; (t)-zj (t)dt — Z(:)dj — g\ _'Z{z 1/]§(nk><aj (t)—al]. )‘le dt
1= jela j=11=1""1
5ot )¢ )N o)
>3 [ a0 a @ - S Y L (o ) o
i=1 i=11=1
P T
-y /0 ci(t) - 5 (). (161)
i=1
Using Lemma 6, we have
0 _(n
0§ o B0 -]
Z
T
= [a]@(t)—a/(”@(t)} 2™ (F)dt — 0 as k — oo (162)
and
1
0<2 ‘("k) [Ci(t)—cl(lnk)} wl(nk)dt
—/ ci(t) — e t)}.zbl(nk)(t)dt%Oask%oo. (163)

By taking limit on both sides of (161), and using (120), (162) and (163), we obtain

(khm y / )dt) Y d0 — 9@ a0 > dim Yo [ e(t) - ™ (1)at.
—00 § =

jel@

Using the weak convergence, we also obtain

q T N P T
L[ a0 g @i 5 &=y at > ) [Fat) @i

j=1 jEI(a)

According to the weak duality theorem between problems (RCLP*) and (DRCLP*),
we have that

q T ~
V(RCLP*):Z/ dO(t) 2Ot~ Y & -yt
j=170 jel®

p T
=)y /0 ¢i(t) - @ (H)dt = V(DRCLP*),

which show that X* and y* are the optimal solutions of problems (RCLP*) and (DRCLP¥),
respectively. Theorem 3 also says that V(DRCLP*) = V(RCLP*). This completes
the proof. [

7. Computational Procedure and Numerical Example

In the sequel, we are are going to design the computational procedure. The purpose is
to obtain the approximate optimal solutions of problem (RCLP*). According to the above
settings, we see that the approximate optimal solutions are step functions. We shall also
use Proposition 8 to obtain the appropriate step functions.
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Theorem 3 says that the error between the approximate objective value and the (theo-
retical) optimal objective value is

Dn—i-ZZ/ wll dt

=1i=1
(n) ()
no2 T & - (T—1t)
+ZZ/_n L -expl L ] -ci(t)dt (164)
== /E o o™ 1
In order to obtain nl("), using (97), we have to solve the following problem
sup {ﬁ}ﬁ(t) + a]<.”>(t)}. (165)
teg™
I

We first note that the function le(]n) (t) in (96) can be rewritten as follows:

p n
e =Y (B - BY®) ol + ) [ R 0 @) ds
Fort e Fl(n) and/ =1,---,n, we define

and

P () (1) 4
~Y B (1) - aff +2/ 1< (s,) - ds+22/ R (s, 1)l ds. (166)

i=1 k=I+1i=1

(n)

Then, the real-valued function fll j - can be rewritten as

() =W+ 0 (@) for t & . (167)

B (1) +a" (1) ift e E"
im (A7) +a" (@) ift =™
n () = Hg,m( 0+ 0) o
im (R +a" () it =ef”.
t—>el(")—
Since a;j, a ], Bjj and B,] are continuous on E; (n) , and K;; and I?ij are continuous on

(m) | ()
()

E,(n), which implies that hl(;q) is continuous on the interval E,

EIE ") X E l( ), respectively, forall [,k =1,--- ,n, we see that h is also continuous on

. Therefore, we have

sup hl(?)(t) = max hl(?)(t),
teE™ teE]"
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which says that the supremum in (165) can be obtained by the following equality:

s HO(t) = max{h;p ()0 (o), sup (K1) + a;%}}. .

teE™ beE™

In order to use the Newton’s method, we assume that the functions a i B,'j, aj, B,], Kjj
and Kij are twice-differentiable on [0, T] and [0, T| x [0, T], respectively, which also says
l]l a Bl]/ n)
and open rectangle E]E ) X El( ), respectively, forall [,k =1, - -, n. According to (168), the
following simple type of optimization problem will be solved

that the functions a;, B;; Kjjand I?l-]- are twice-differentiable on the open interval E l(

max hl(m (t). (169)
el <t<e™

Then, the optimal solution is given by

= el(ﬂ ort* = ez(n) or satisfying % (hl(fl'q)(t» ’t:t* =0

Using (167), we see that the optimal solution of problem (169) is given by

o or i — o™ or satisfying L (5 (¢) 4+ 4™ _
t* =e¢_ ort* =¢ ’ or satisfying o (hlj (t)—i—aj (t))‘t:t* =0.

We denote by Zl(]. ") the set of all zeros of the real-valued function r (h(”)( B+ a“](.n) (1)).

Then, we have

h(”)

ij (el<n>>, sup (~l(]l)(t*)+aj(t*)> , ifZl(].n) £Q

(n) (,(n)
max hlj <el 1)
t*eZl(i”>

max{hl(] ) (61( )1> hl(] ) (el( )> }, if Zl(jn) — 0.

Therefore, using (168) and (170), we can obtain the desired supremum (165). From (166),
we also have

S W) =

max b (t) = (170)

teEl(”)

Bl(]n) (t) a )

0=
C
=
=32
|
—
=3
E
Q..
&

i
8
i

_|_

(1)
/tel EK(H) (S £) - wl( )dS — K,‘(]ﬁ)(t/ t) wl(;l)]

i=1 at 1]
n p 3
u(n) _(n)
+k:lz+l z; E;EH) & 1 (S/ t) wkz ds
dz -~ P42 . i P _
ﬁ( (n)(t)) = - ; ﬁBz‘(]ﬁ)(t) wl(zn) _ ; ﬁKl(]n)(t,t) wl(l”)
P 2 _ .
+i[; /f ﬁKl(] )(S’t) wl(zn)ds N ng(]n)(S,t) s=t wl(z.n)
) ) (n)
+k:;+1 zg /Ein) g Nij (5:1) W ds

Two cases are considered below.



Axioms 2022, 11,211 74 of 80
Suppose that E;f) + a”](n) is a linear function of t on El(") assumed by
R () + (1) = 0y £+ b
forj=1,---,q. Using (168), we obtain
max hl(;) el(ﬁ)l ,hl(?) el(") , bj} if a; =0
m:agf) hl(;)(t) = { max hl(;l) el(f)l 'hl(jn) el(n) ,a; el(n) + b]-} ifa; >0 (171)

max hl(}q) el(f)l ,hl(;l) el(n) ,aj-el(f)l—i—bj} ifaj <0

() 4 4l

Newton’s method to generate a sequence {t,,}°_, satisfying t,, — t* as m — oo such

Suppose that h is not a linear function of t. We are going to apply the

that t* is the zero of % (E;f) (t) + ﬁ](.") (t)). More precisely, the iteration is given by

t/
b =t — 2, a72)

m

where

d d ~ d 0 d ~
tn = Ehl(?)(t)‘t:tm - Ehl(?)(t)‘t:tm * Eaf(' )(t)‘t:tm _X](a) i) 1=t
and
o) & ) @ (0 @ &
G= gt Ol gt O, a0l T s

form =0,1,2,---. The initial guess is ty. We are going to apply the Newton’s method
by taking as many as possible for the initial guesses t(’s in order to obtain all the zeros

of the real-valued function % (El(]n) (t) + d](.n) ().

Now, the more detailed computational procedure is presented below.

Step 1. Set the error tolerance € that is used to stop the iteration. Set the initial value
of natural number n € N, where the new value of n for the next iteration can refer to
Step 6.

Step 2. Use the simplex method to solve the dual problem (Dj,) that is a large-scale
linear programming problem. In this case, we can obtain the optimal objective value
V(D,) and the optimal solution Ww.

Step 3. Use the Newton method presented in (172) to obtain the set Zl(]ﬁ) of all zeros of

the real-valued function 4 (’El(]n) (t) + ﬁ](-n) (1)).

Step 4. Use (170) and (171) to evaluate the maximum presented in (169). Use (168) to
evaluate the supremum presented in (165).

Step 5. Use the supremum obtained in Step 4 to evaluate 7"(1(”) presented in (97). Use

the values of ﬁl(”) to evaluate 7'[[(") presented in (98).

Step 6. Use formula (164) to evaluate the error bound ¢,. If ¢, < €, then go to Step
7. Otherwise, one more subdivision for each compact subinterval must be taken. Set
n < n + 1 for some integer 77 € N and go to Step 2, where 7 is the number of new
points of subdivisions for all the compact subintervals. For example, in Example 1, we
can set n* <— n* 4 1. In this case, we have 7 = r. In Example 2, we can set n, <— n, + 1
forv=20,1,---,r — 1. In this case, we also have 71 = r.

Step 7. Use the simplex method to solve the primal problem (P, ) that is a large-scale

linear programming problem. In this case, we obtain the optimal solution z(").
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e Step 8. Use (81) to set the step function z(") (t). This step function is the approximate
optimal solution of problem V(RCLP*). Using Proposition 8, we see that the actual
error between the optimal objective value V(RCLP*) and the objective value at Z(") (t)
is less than or equal to the error bound ¢;,. In this case, the error tolerance € is reached
for this partition P.

A numerical example is given below

maximize /0 Nan(8) - 21(8) + an(t) - za (1))t
subjectto by (t) -z (t) < c1(t) + /Ot[kl(t,s) -21(8) + ka(t,s) - za(s)]ds for t € [0,1]

ba(f) - zp(t) < co(t) + /Ot[kg(t,s) -21(8) + kq(t,s) - zp(s)]ds for t € [0, 1]
z = (zl,zz)T € L%[O, 1],

where the desired functions are taken to be the piecewise continuous functions on the
time interval [0, T] with T = 1. The data a1 and a; are assumed to be uncertain with the
nominal data

ef, if0<t<02 2t, if0<t<05
D)= sint, if02<t<06 andal)(t)={ t, if05<t<07

2, ifo6<t<1 2 907 <t<1

and the uncertainties

0.0lsint, if02<t<0.6 and@(t) =4 001, if05<t<07

0.01ef, ifo<t<02 0.02t, f0<t<05
a(t) =
0.0212, ifo6<t<i 0.02£2, if07 <t<1,

respectively. The data c; and c; are assumed to be uncertain with the nominal data

£, if0<t<03 t, if0<t<04
0, ) (Int)?, if0.3<t<05 ©),,. ) 5t if04<t<05
o =9 p if05<t<0s ™2 =915 io5<r<o08

cost, if08<t<1 2, if08<t<1.

and the uncertainties

0.01£, if0<t<03 0.01f, if0<t<04
am =10 03<H<05 o= ] 002 if04<t<05
7Y 00312, 05 <t<0.8 27 0018, if05<t<08

0, if0.8<t<1 0.02£2, if0.8<t<1.
The uncertain time-dependent matrices B(t) and K(¢, s) are given below:

[ Bu®) Bu® ] [m() 0
s = poty o2 | =170 e |

and
[ Ku(t,s) Kua(t,s) | [ ki(t,s) ka(t,s)
K(t,s) = { Ki(t,i) Kﬁ(t,; } B [ k;(f,z) ki(t/z) ]

The data b; = By1 and b, = By, are assumed to be uncertain with the nominal data

BU(t) =b{”(t) = { 25sint, if02<t<06

20cost, if0<t<0.2
2742, ifo6<t<i
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and

BY) (1) = b (1) = {

and the uncertainties

0.01 cost,
Bll(t) = 1(t> = 0.01sint,
0.03t2,

and

~

0.01 cost,
B22(t) = 2(1‘) = 0.01¢,
0.02¢2,

25 cost,
22¢, if05<t<07
25¢2, if07<t<1

if0<t<05

if0<t<02
if0.2 <t <0.6
if0.6 <t<1

if0<t<05
if0.5 <t <07
if0.7<t<1

The data k1 = Ky, ko = Ky, k3 = K31 and k4 = Ky are assumed to be uncertain with

the nominal data

K9 (ts) =K (t,5) =

K (t,5) = K (1,5) =

0 0
KD (t,5) =kV(t,5) =
and the uncertainties

Kii(ts) =ki(t,s) =

Kia(t,s) =ko(t,s) =

K21(t,5) = /k\3(t,S) =

Rap(t,s) = ky(t,s) =

£+ 52,
2 + sin s,

(Int)? +3e7%,

cost+5e7%,
3. g2
2. sins,
(Int)?2-e7%,
312 . gins,

7

312 . gins,
2t -2,

(Int)? + (coss)?,

.52
2 + 52,
sint +s2,

(cost)? +3e7%,

213 . sz,

0.05¢% + 0.02s2

f0<t<08and0<s5<0.5
if0<t<08and05<s<1
f08<t<land0<s<05
if0.8<t<land05<s<1

f0<t<06and0<s<0.7
if0<t<06and07<s<1
if06<t<land0<s<0.7
if06<t<land07<s<1

f0<t<03and0<s<0.6
if0<t<03and0.6 <s<1
if03<t<land0<s<0.6
if03<t<land06<s<1

f0<t<05and0<s<03
f0<t<05and03<s<1
if05<t<land0<s5<0.3
if05<t<land 03 <s<1.

, f0<t<08and0<s5s<0.5

0.03t2 +0.02sins, if0<t<08and05<s<1
0.01e73, f08<t<land0<s<05
0.01e~5, if0.8<t<land05<s<1
0.02£3 - §2, f0<t<06and0<s<0.7
0.03#2-sins, if0<t<06and0.7<s<1
0.01e73, if0.6<t<land0<s<07

0.02¢2 - sins,
0.03#2 - sins,

ifob6<t<land 0.7 <s<1
f0<t<03and0<s<0.6

0.04f - 2, f0<t<03and0.6<s<1
0, if0.3<t<land0<s<0.6
0.01£3 - 52, if03<t<land06<s<1
0.01t% 4 0.02s2, if0<t<05and0<s5<03
0.01sint+0.02s2, if0<t<05and03<s<1
0.03¢73, if05<t<1land0<s<03

0.0213 - 52,

if05<t<land03 <s <1
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It is clear to see that the component functions B Z.(].O) (t) and Eij(t) satisfy the required
assumptions. In order to set the partition P, we consider the discontinuities of a1, a3, c1,
2, by, by, ky, ko, k3, kg. In this example, we see that » = 8 and

D = {dy =0,dy = 0.2,d, = 0.3,d3 = 0.4,d, = 0.5,d5 = 0.6,ds = 0.7,dy = 0.8,dg = 1}.

We also take n* = 2. This means that each compact interval [dy, d,1] is equally divided
by two subintervals for v = 0,1, - -7. Therefore, we have n = 2-8 = 16 and obtain a
partition Pyg.

From the robust counterpart (RCLP*), we see that the robustness (¢} does not appear
in the problem. In other words, the robustness (¢) does not affect the robust counterpart.
In this example, we take the robustness

foreachi =1and 2.
The approximate optimal objective value of problem (RCLP*) is denoted by

* _(n)f (a) , 7(1n)
V(RCLP;) 2/ 2 (1dt — Zdj . gln
jel(@
Using Theorem 3 and Proposition 8, we see that
0 < V(RCLP*) — V(RCLP}) < ¢,

and
0 < V(RCLP;) — V(P,) < V(RCLP*) — V(P,) < ¢,.

Now, the numerical results are presented in the following table.

n* n=n*-8 &n V(Py) V(RCLP})
2 16 0.0287743 0.0303098 0.0327923
10 80 0.0057072 0.0369034 0.0374853
50 400 0.0012095 0.0383882 0.0385083
100 800 0.0005689 0.0385781 0.0386384
200 1600 0.0002850 0.0386741 0.0387004
300 2400 0.0001902 0.0387057 0.0387259
400 3200 0.0001427 0.0387219 0.0387370
500 4000 0.0001142 0.0387316 0.0387437

We use the commercial software MATLAB to perform this computation. The active
set method that is built in MATLAB is used to solve the large scale linear programming
problems. Assume that the decision-maker can tolerate the error € = 0.0002. It means that

* = 300 is sufficient to achieve this error tolerance € in which the corresponding error
bound is given by ¢, = 0.0001902 satisfying ¢, < €.

8. Conclusions

The main issue of this paper is to solve the continuous-time linear programming
problem with time-dependent matrices by considering the data to be uncertain and laying
in the specified bounded closed intervals. In this case, the technique of so-called robust
optimization is adopted to formulate an extended form of robust counterpart. Solving this
extended form is indeed difficult even for the time-dependent matrices are involved in the
problem. Using some technical derivations, this extended form of robust counterpart is
transformed into a conventional form of continuous-time linear programming problem
with time-dependent matrices. The remaining effort is to solve this more complicated
transformed problem by using the discretization technique.
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It is impossible to directly solve the original problem, since the Riemann integrals are
involved in the problem. Instead of solving the original problem, we solve its corresponding
discretization problem. The technique for formulating the discretization problem has
also been adopted in Wu [7]. In fact, the discretization problem is a conventional linear
programming problem such that the well-known simplex method can be used. However,
the challenge issue is to estimate the error between the actual solution and approximate
solution. Theorem 3 presents an analytic formula of the error bound ¢, satisfying

0 < V(RCLP*) — V(P,) <ey,and e, — 0asn — oo,

where problem (P,) is the discretization problem (i.e., a linear programming problem) of
the original problem (RCLP*).
The weak convergence of approximate solutions to the actual solution is also studied
to demonstrate its asymptotic behavior by referring to Propositions 9 and 10. Finally, a
computational procedure is also designed to obtain the approximate optimal solutions.
The important issue of this paper is to derive an analytic formula of error bound
given by

Dn+22/ b odt

0 (p_
+ZZ/ “ﬂ%bﬁtWﬂ@ﬂ (173)

which is presented in Theorem 3. In order to calculate this error bound, we need to solve
the dual problem (D) to obtain —V(D,) and Wl(”). We also have

limsup V(D,) = V(DRCLP*) and 0 < V(DRCLP*) — V(D,,) < ¢y,

n—o00

where ¢, — 0as n — oo. Therefore, studying the dual problems (D,) and (DRCLP*)
is another important issue. Theorem 3 also shows that the primal problem (RCLP*)
and dual problem (DRCLP*) have no duality gap by saying that their optimal objective
values are identical given by V(DRCLP*) = V(RCLP*). Moreover, the strong duality
is also established in Theorem 5 saying that the optimal solutions of problems (RCLP*)
and (DRCLP*) indeed exist such that their optimal objective values are identical with
V(DRCLP*) = V(RCLP*). In the theory of optimization, when we want to say that a
newly formulated problem is a dual problem of the original primal problem, we need to
establish their strong duality. In this case, instead of solving the primal problem, we can
just solve its dual problem. Because the strong duality is established in Theorem 5, we
can really say that (RCLP*) and (DRCLP*) are primal and dual pair of problems. In other
words, instead of solving the primal problem (RCLP*), we can also solve the dual problem
(DRCLP*). This paper is mainly solving the dual problem to obtain the analytic formula of

error bound ¢, as shown in (173), which includes the quantities —V (D, ) and Wl(") of dual
problem. Therefore, based on the strong duality theorem, it is possible to design a more
efficient computational procedure to obtain another analytic formula of error bound ¢, by
solving the primal problem, which can be future research.

The discretization problem formulated in this paper is a large scale of linear program-
ming problem. Solving this large scale problem consumes huge computer resources and
sometimes the personal computer is not capable of handling the computations. In order to
increase the performance and efficiency of the methodology proposed in this paper, we
may need some high-level computers like super computers. In future research, we may try
to develop a new computational procedure involving parallel computation that can save
on the running time of computation.
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