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Abstract: Hyperspectral image (HSI) clustering is a challenging work due to its high complexity.
Subspace clustering has been proven to successfully excavate the intrinsic relationships between
data points, while traditional subspace clustering methods ignore the inherent structural information
between data points. This study uses graph convolutional subspace clustering (GCSC) for robust
HSI clustering. The model remaps the self-expression of the data to non-Euclidean domains, which
can generate a robust graph embedding dictionary. The EKGCSC model can achieve a globally
optimal closed-form solution by using a subspace clustering model with the Frobenius norm and a
Gaussian kernel function, making it easier to implement, train, and apply. However, the presence
of noise can have a noteworthy negative impact on the segmentation performance. To diminish
the impact of image noise, the concept of sub-graph affinity is introduced, where each node in the
primary graph is modeled as a sub-graph describing the neighborhood around the node. A statistical
sub-graph affinity matrix is then constructed based on the statistical relationships between sub-graphs
of connected nodes in the primary graph, thus counteracting the uncertainty image noise by using
more information. The model used in this work was named statistical sub-graph affinity kernel graph
convolutional subspace clustering (SSAKGCSC). Experiment results on Salinas, Indian Pines, Pavia
Center, and Pavia University data sets showed that the SSAKGCSC model can achieve improved
segmentation performance and better noise resistance ability.

Keywords: anti-noise algorithm; HSI clustering; semantic segmentation; spectral clustering; sub-graph
affinity model

MSC: 54B05; 49M45; 90C35

1. Introduction

Hyperspectral images (HSI) contain rich spectral and spatial information, which have
been widely used in various fields, such as geological exploration, ocean monitoring,
medical imaging, and forensics [1]. HSI classification, which aims to sort each pixel with
a specific label, is the basis of HSI applications [2]. Supervised classification methods
were the most commonly used for HSI classification [3,4]. In recent years deep learning
models [5,6] and convolutional neural networks (CNNs) [7] have made significant progress
in HSI classification. Due to the high cost of labeling training data, supervised classification
methods are not available in HSI scenarios. Moreover, the supervised classification methods
are challenging to handle unknown objects, since they are molded with existing classes.

To avoid the costs of manual data annotation, many works are devoted to expand-
ing unsupervised HSI classification methods, i.e., HSI clustering. The HSI clustering is
dedicated to seeking the intrinsic relationship between data points and determining la-
bels in unsupervised rules automatically [8]. The critical point of HSI clustering is to
measure the similarity between data points [9]. Traditional clustering methods often use
Euclidean distance as a similarity measurement, such as K-means [10]. Due to unreliable
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measures, measures, mixed pixels, and the redundant banding problems [11], making the
HSI clustering is extremely challenging [12]. Recently, subspace clustering [13] has become
increasingly focused on HSI clustering [14] due to its ability to process high-dimensional
data and its reliable performance. Technically, subspace clustering attempts to describe the
data points as a linear combination of a self-expression dictionary in the same subspace [15].
The subspace clustering models typically include two parts, namely self-representation [16]
and spectral clustering (SC) [17].

To expand the capability of subspace clustering, many works have been devoted to
generating a robust affinity matrix. For example, sparse subspace clustering (SSC) [18] uses
the l1- norm to produce a sparse affinity matrix; low-rank subspace clustering (LRSC) [19]
uses a nuclear norm to enforce the affinity matrix to be low-rank. By taking the spectral and
spatial information into consideration, Zhang et al. proposed a spectral-spatial subspace
clustering (S4C) [14]. By mapping the data into higher kernel spaces, kernel subspace
clustering [20] became a nonlinear extension of the subspace clustering model. In [12], a
modified kernel subspace clustering was utilized in HSI clustering.

The subspace clustering models based on Euclidean data often ignore the inherent
graph structure information contained in HSI data points. HSI data points are easily
affected by noise due to the interference of imaging spectrometers and the atmosphere [21].
Therefore, the traditional subspace model is sensitive to noisy images and abnormal data
in the Euclidean domain. By transforming the HSI clustering into a clustering problem of
non-Euclidean domain, the additional coefficients can be alleviated or even avoided by
structural data.

The graph convolutional subspace clustering (GCSC) model [22] was used to recast
the traditional subspace clustering into the non-Euclidean domain. By utilizing a graph
convolutional self-representation model combining both graph and character information,
the GCSC framework can circumvent noise data and tends to produce a more robust affinity
than the traditional subspace clustering model.

For each pixel, a similarity matrix, or an affinity matrix, W is constructed. In the matrix,
Wuv represents the degree of similarity between pixel u and pixel v [23]. The eigenvectors
of the similarity matrix provide a measurement to identify the most significant features in
the image. Ideally, each prominent image region is reformed into a set of data points in the
eigenvector domain. Using clustering algorithms [24–26], such as k-means or hierarchically
clustering [27], the resulting clusters are identified and labeled. As long as there are a
sufficient number of sound measurements, spectral clustering can be valid for segmenting
the image.

Two crucial challenges faced when applying spectral clustering are the noise-corrupted
measurements and the texture variations within image regions [28]. In such situations,
the pixels may be misclassified using traditional spectral clustering models, given their
heavy reliance on the affinity between connected nodes to construct the affinity weighted
graph; Pardo [29] extended pixel-to-pixel node affinity and proposed the idea of using
region statistics to better classify the edges of regions in noisy images. Assuming that
every region has a uniform intensity, for each part, the standard deviation and the mean
are calculated. Areas with similar statistics are sorted into a single region, which does not
consider the texture or region structure detected by the sub-graph method. Therefore, it is
necessary to provide more robust image segmentation methods in the presence of heavy
noise contamination.

The main contribution of this paper is the introduction of a robust spectral clustering
method for image segmentation under heavy noise. Instead of relying on the node affinity
between connected nodes, the proposed method utilizes the statistical sub-graph affinity
between connected nodes to construct the affinity-weighted graphs [30]. By considering the
spatial-intensity relationships within sub-graphs, it is assumed that the statistical affinity
between sub-graphs is insensitive to noise, which is random and usually does not show
such structural relations. By applying clustering graphs, which relate to the structure of
objects, Luo [31] improves the robustness of spectral clustering. Instead, in the current



Axioms 2022, 11, 269 3 of 21

work, the sub-graph was used to extend the affinity matrix including neighboring regions;
the sub-graph affinity utilized region statistics before the clustering step so that similar
regions, not similar nodes, will be clustered more robustly.

The rest of this article is structured as follows. We first briefly review the subspace
clustering, graph convolutional subspace clustering, and HSI clustering in Section 2. Then,
we present a detailed introduction of our proposed method in Section 3. In Section 4, the
experimental data sets and experimental results are introduced. Finally, we conclude with
a summary and future work in Section 5.

2. Related Work
2.1. Notations

Throughout this article, boldface lowercase italics symbols (e.g., x), boldface uppercase
roman symbols (e.g., X), and regular italics symbols (e.g., xij) denote vectors, matrices, and
scalars, respectively. A graph is represented as G = (V, ε, A), where V denotes the node
set of the graph with vi ∈ V and |V|= N , ε indicates the edge set with (vi, vi) ∈ ε, and
A ∈ RN×N stands for an adjacency matrix. We define the diagonal degree matrix of the
graph as D ∈ RN×N , where Dij ∈ ∑j Aij. The graph Laplacian is defined as L = D− A,
and its normalized version is given by Lsym = D−1/2LD−1/2. In this article, XT denotes
the transposition of matrix X and IN denotes an identity matrix with the size of N. The

Frobenius norm of a matrix is represented as ‖X‖F = (∑ij
∣∣xij
∣∣2)1/2

and the trace of a matrix
is defined as tr(X).

2.2. Subspace Clustering Models

Let X = [x1, x2, . . . , xN ] ∈ Rm×N be a collection of N data points {xi ∈ Rm}N
i=1 and

draw from a union of linear or affinity subspace S1 ∪ S2 ∪ . . .∪ Sn, where N, m and n denote
the number of data points, features, and subspace, respectively. The subspace clustering
model for the given data set is defined as the following self-representation problem [18]:

min
∣∣∣∣W∣∣∣∣p s.t. XW = X, s.t. diag(W) = 0 (1)

where W ∈ RN×N denotes the self-expressive coefficient matrix and diag(W) = 0 enforces
the diagonal elements of W to be zero so that the trivial solutions are avoided. ||W||P
denotes a p− norm of matrix W, e.g., ||W||1(SSC) [18].

In the SSC model, the self-expressive coefficient matrix is conceived to be sparse so
the self-representation problem is formulated as:

argmin
W

∣∣∣∣∣∣∣∣XW − X
∣∣∣∣|2F + λ

∣∣∣∣∣∣∣∣W∣∣∣∣∣∣∣∣1, s.t. diag(W) = 0 (2)

Here, the l1 − norm tends to cause a sparse coefficient matrix. By using a nuclear norm,
LRSC [19] rewrites the self-expression problem as:

argmin
W

∣∣∣∣∣∣∣∣XW − X
∣∣∣∣|22,1 + λ

∣∣∣∣∣∣∣∣W∣∣∣∣∣∣∣∣∗, s.t. diag(W) = 0 (3)

where ||·||∗ and ||·||2,1 denote the nuclear norm and l2,1 − norm of a matrix. LRSC has
been proven to incorporate the structure of data effectively. The above problem can be
solved by using the alternating direction method of multipliers (ADMM [32]). Once the
coefficient matrix W is found, the subspace clustering pursues the partition of affinity
matrix A = (1/2)(|W|+|W|T) using the SC method [24].
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2.3. GCSC Framework

By incorporating graph embedding into subspace clustering, we refer to the framework
as GCSC. The aim of the GCSC framework is to use graph convolution to learn a robust
affinity. For this target, we modify the traditional self-representation as follows:

X = XAZ, s.t. diag(Z) = 0. (4)

Here, Z ∈ RN×N is the self-representing coefficient matrix and A = D̃−1/2 ÃD̃−1/2 denotes
the normalized adjacency matrix with self-loops [28]. The XAZ operation will preserve the
structure and inherent attributes of the graph by embedding the graph into vector space.
We call (4) a graph convolutional self-representation. Similar to the traditional subspace
clustering model, the GCSC framework can be rewritten as:

argmin
Z

1
2

∣∣∣∣∣∣∣∣XAZ− X
∣∣∣∣∣∣∣∣q + λ

2

∣∣∣∣∣∣∣∣Z∣∣∣∣∣∣∣∣p, s.t. diag(Z) = 0 (5)

where q and p denote any suitable matrix norm, such as p, q = 0, (1/2), 1, 2 and nuclear
norm, and λ is a trade-off coefficient. It is easy to prove that the traditional subspace models
are a special case of this framework, i.e., the traditional subspace clustering models depend
only on data features. For example, when the Frobenius norm and p = 1 (5) becomes
an extension of the classical SSC [18], while q is l2,1 − norm and p is nuclear norm, (5)
degenerates to LRSC [19]. Equation (5) can be efficiently solved by the same methods
adopted in traditional subspace clustering methods. Once the self-represented coefficient
matrix is obtained, the spectral clustering (SC) can be used to generate clustering results.

2.4. HSI Clustering Using the GCSC Models

Two essential matters need to be solved before we use the GCSC model. First, HSI data
usually contain many spectral bands with redundancy, so it is difficult to obtain acceptable
performance using only spectral features. Second, the HSI uses Euclidean data, whereas
GCSC models are based on graph-structured data [29].

To solve the first problem, we use principal component analysis (PCA) to reduce the
spectral dimension by retaining the top d PCs [30]. This not only reduces the redundant
information contained in the HSI data but also improves the computational efficiency
during model training. To take spectral and spatial information into consideration, we
represent each data point by extracting three-dimensional data blocks [31]. Specifically,
every data point is represented by the central and neighboring pixels. This method has
been widely used in different HSI spectral-spatial classification models [32]. For the second
problem, a k-nearest neighbor (k-NN) graph was constructed to substitute the graph
structure of the data points. Specifically, each data point is viewed as a node in the graph,
and the k-NNs of xi consist of edge relations. The adjacency matrix A of a k-NN graph is
defined as:

Aij =

{
1, xj ∈ Nk(xi)
0, otherwise

(6)

where Nk(xi) indicates the k-NNs of xi, which is determined by computing the pairwise
Euclidean distance between the PCA reduced data points.

3. Methodology
SSAKGCSC

Based on the GCSC framework, statistical sub-graph affinity model, and Gaussian ker-
nel function mentioned above, the statistical sub-graph affinity kernel GCSC (SSAKGCSC)
is proposed. In this section, we introduce the establishment and the derivation process of
the SSAKGCSC model.
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We set both q and p to be the Frobenius norm in the GCSC model. Formally, we denote
it as:

argmin
Z

1
2

∣∣∣∣∣∣∣∣XAZ− X
∣∣∣∣|2F + λ

2

∣∣∣∣∣∣∣∣Z∣∣∣∣|2F. (7)

Ji et al. [33] has proven that the Frobenius norm will not obtain trivial results even
without the constraint diag(Z) = 0. Solving the above equation leads to a dense matrix of
self-representing coefficients and a valid closed-form solution. We can rewrite (7) as:

L(Z) = 1
2

∣∣∣∣∣∣XAZ− X
∣∣∣|2F + λ

2 ‖Z‖
2
F

= 1
2 tr[(XAZ− X)

T
(XAZ− X) + λZTZ]

= 1
2 tr(ZT ATXTXAZ + XTX− 2XTXAZ + λZTZ)

(8)

According to matrix trace and matrix derivative, the partial derivative of L for Z can
be expressed as:

∂L
∂Z = ATXTXAZ− ATXTX + λZ

= (ATXTXA + λIN)Z− ATXTX.
(9)

Let ∂L
∂Z = 0; we get:

(ATXTXA + λIN)Z = ATXTX. (10)

Finally, matrix Z can be expressed as:

Z = (ATXTXA + λIN)
−1

ATXTX. (11)

Due to ATXTXA + λIN being positive semi-definite, its inverse matrix always exist.
Unlike traditional subspace clustering models that usually require iterative optimiza-

tion, this algorithm ensures high computational efficiency. Once matrix Z is obtained, we
can use it to build an affinity matrix for spectral clustering. Most works compute the affinity
matrix by C =|Z|T+|Z| or |Z| [34]. In this work, we use the heuristic method employed
by efficient dense subspace clustering (EDSC) [35] to enhance the block structure, which
has been shown to benefit the accuracy of clustering.

Due to the complexity and nonlinearity of HSI, a large body of works has demonstrated
that nonlinear models will achieve better performance than their linear counterparts [36].
Therefore, we use the kernel trick for its nonlinear extension.

Let φ : Rm → H be a mapping from the input space to the regeneration kernel Hilbert
space H; we define a positive semi-definite kernel Gram matrix KXX ∈ RN×N as:

[KXX ]ij = [〈φ(X), φ(X)〉H ] = φ(xi)
Tφ(xj) (12)

where k : Rm × Rm → R denotes the kernel function. The Gaussian kernel has been widely
used in other subspace clustering models, i.e., k(xi, xj) = exp(−γ

∣∣∣∣xi − xj
∣∣∣∣2), where γ

is the parameter of the Gaussian kernel function [37]. Then the EKGCSC model can be
expressed as:

argmin
Z

1
2

∣∣∣∣∣∣∣∣φ(X)AZ− φ(X)

∣∣∣∣|2F + λ

2

∣∣∣∣∣∣∣∣Z∣∣∣∣|2F. (13)

By using the kernel trick, (13) can be rewritten as:

argmin
Z

1
2

tr(ZT ATKXX AZ− 2KXX AZ + KXX + λZTZ). (14)

The above equation can be solved by taking the partial derivative of Z and setting the
result to zero, so (14) can be reformulated as:

L(Z) =
1
2

tr(ZT ATKXX AZ− 2KXX AZ + KXX + λZTZ). (15)
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The partial derivative of L for Z can be expressed as:

∂L
∂Z = ATKXX AZ− ATKXX + λZ

= (ATKXX AZ + λIN)Z− ATKXX .
(16)

Let ∂L
∂Z = 0; we obtain the closed form solution as:

Z = (ATKXX A + λIN)
−1

ATKXX . (17)

This model maps the data points onto a higher-dimensional space, thus making a
linearly inseparable issue a detachable one.

The model improves the robustness of spectral clustering by replacing the node affinity
KXX used in (17) with the concept of statistical sub-graph affinity.

Wuv = exp
{
− (xu − xv)

2σ2

}
(18)

To create an affinity matrix, the connectivity of each node must be expressed by a
connectivity graph G. G is implicitly constructed from graph kernels K. The kernel weights,
elements of K, manifest the connectivity between a node and its neighbor. The method
introduces a statistical sub-graph affinity model to substitute the node affinity model [38].
Instead of comparing xu to xv for v in the neighbor of u, the sub-graph Pu is compared
against each sub-graph Pv, which is illustrated in Figure 1.
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Figure 1. Comparison of node affinity to sub-graph affinity. xu (red), xv (green), Pu (light red), Pv

(light green). (a) Node affinity. (b) Node affinity with neighborhood statistics. (c) Sub-graph affinity.

A mathematical description is used to understand how sub-graphs can improve
classification accuracy. Assuming the node u belonging to a class Ck, the node features, xu
can be regarded as the random processes, Xu, subject to independent identical distribution
(i.i.d.) noise, N:

Xu = µu + N, (19)

where µu is the mean of all node features belonging to class Ck.
The sub-graph contains the connectivity of node u to its neighbors. When using node

affinity, the probability that two nodes, u and v, belong to the same class, P(u ∈ Ck and v ∈
Ck), denoted as Pu,v,node, is the probability that the difference between Xu and Xv is equal
to zero:

Pu,v,node = P(Xu − Xv = 0
∣∣Ck). (20)

Since Xu and Xv are i.i.d., then Pu,v,node can be confirmed using the Laplace distribu-
tion [39]:

Pu,v,node =
1

(2b)n exp(−|xu − xv|
b

) (21)
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where b is a coefficient related to N. The sub-graph affinity restrains the noise compared to
the node affinity. The obtained sub-graph affinity probability Psub is equal to:

Pu,v,sub = ∏
i

P(Xu,i − Xv,i = 0|Ck) . (22)

Pu,v,sub = ∏
i

1
(2b)n exp(−|xu,i − xv,i|

b
) (23)

where i is the index of each factor in Pu and the corresponding element in Pv. The more
similar the distribution in each sub-graph, the smaller xu,i − xv,i becomes, and the larger
the probability of P(u ∈ Ck and v ∈ Ck). So, the local neighborhood information can help
suppress the noise.

Given the proposed statistical sub-graph affinity model, we incorporated this model
into the spectral clustering framework by introducing a weighting matrix into (17) [40].
The density of W mainly depends on the complexity of G and is independent of Pu. The
value of W, which depends on the kernel weights and the statistical sub-graph affinity, can
be defined as:

wuv = Ku−v∏
i

exp

{
− ((xu+i − xv+i) · Pu,i)

2

2σ2

}
(24)

For node u and node v, The weights related with Ku and Pu are also imported to allow
spatial weighting.

The following shows how Ku and Pu influence the size of the neighborhood and
the computational complexity of (23). Increasing the size of K increases the size of the
neighborhood; therefore, the number of xu and xv increases, which leads to decreasing
the sparsity of W. Increasing the size of Pu does not affect the neighborhood size and,
consequently, it does not affect the sparsity of W. The increased size of Pu only increases
the computational complexity of calculating wuv moderately. The difference of xu and xv
can be saved after first calculation. Hence, the size of K makes a more noteworthy effect on
the overall computational complexity than the size of Pu.

By choosing a radially symmetric kernel, the algorithm can be rotationally invariant.
The kernel can also empower distance information so that the weights or connectivity of the
sub-graph can be a function of spatial distance, i.e., the intensity difference of the relevant
pixel can be weighted according to the distance from the center of the sub-graph [41]. By
integrating the spatial intensity relationships within the sub-graph into the construction
of the affinity weighted graph, the constructed graph is less sensitive to random noise.
Consequently, the statistical sub-graph affinity model is stronger against noise.

We use (24) as a newly introduced ‘Gaussian kernel’ to implement the combination of
the sub-graph affinity model with the GCSC model, which we denote as K0; the result of
multiplying (24) with the Gaussian kernel is denoted as K0 × K1.

4. Experiments Results
4.1. Setup
4.1.1. Data Sets and Preprocessing

We implemented experiments on four HSI data sets: Salinas, Indian Pines corrected,
Pavia Center, and Pavia University. For computational efficiency, we take a sub-scene of
each of these data sets for evaluation [35,36], Specifically, these sub-scenes are located at
[591–676, 158–240], [30–115, 24–94], [100–250, 200–350], and [150–350, 100–200], respectively.
The sub-scenes obtained from the Salinas data set is referred to as the SalinasA data set.
The detailed information of these four data sets were demonstrated in Table 1. In the data
preprocessing phase, we reduced the spectral bands into four by retaining at least 96% of
the cumulative percent variance (CPV) by PCA [42]. We constructed the spectral-spatial
blocks by setting the neighborhood size to be nine for data sets. All data points were
normalized by scaling into [0, 1] before clustering.
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Table 1. Summary of SalinasA, Indian Pines, Pavia University, and Pavia Center data sets.

Data Sets SalinasA Indian Pines Corrected Pavia University Pavia Center

Pixels 83 × 86 85 × 70 140 × 150 150 × 150
Channels 204 200 103 103
Clusters 6 4 8 7
Samples 5348 4391 6445 5710
Sensor AVIRIS AVIRIS ROSIS ROSIS

Since the HSI image with considerable noise cannot be obtained, we decided to add
noise into these images manually. In the process of adding noise to HSI images, we noticed
that, due to the unique characteristics of HSI images, the maximum value in each channel
was no longer 255 as in RGB images, but varied from dozens to 8000. If all dimensions of a
hyperspectral image are normalized uniformly, it is easy to produce smaller numbers and
affect the algorithm’s stability. For these reasons, each dimension of the HSI image was
normalized separately, and then Gaussian noise and salt and pepper noise was added to it.

4.1.2. Evaluation Metrics

Three noted metrics [12,25,35], are used to estimate the clustering performance of the
clustering model, i.e., overall accuracy (OA), normalized mutual information (NMI), and
Kappa coefficient (Kappa). These metrics range from 0 to 1, where the larger the value are,
the more exact the clustering results are obtained. To assess the computational complexity
of the models, we compared the running time of different models in our experiments.

4.1.3. Compared Methods

We compared the SSAKGCSC method with some HSI clustering methods, includ-
ing traditional clustering methods and superior methods. To be specific, the traditional
clustering methods include sparse subspace clustering (SSC) [6], efficient dense subspace
clustering (EDSC) [24], and low-rank subspace clustering (LRSC) [27]. The relatively
superior HSI clustering methods are spectral-spatial subspace clustering (S4C) [15], effi-
cient graph convolutional subspace clustering (EGCSC) [31], and efficient kernel graph
convolutional subspace clustering (EKGCSC) [31].

We follow their settings published in the corresponding paper for the HSI clustering
methods mentioned above. The hyperparameters of SSAKGCSC are given in Table 2. All
the compared methods are implemented with Python 3.7 running on an Intel(R) Core (TM)
i5-5200U CPU @ 2.20GHz CPU with 8GB RAM.

Table 2. Settings of the important hyperparameters in SSAKGCSC.

Data Sets Noise REG_Coef GAMMA NEIGHBOR RO post_proC Kernel

- 1 100 0.2
SalinasA. +sp 2 0.01 0.2 30 0.8 8, 18 K0

+gs 3 100 0.2
+sg 4 1 0.2

- 1 10,000 10
Indian Pines. +sp 2 100,000 0.1 30 0.8 17, 15 K0 × K1

+gs 3 100,000 0.01
+sg 4 1,000,000 0.001

- 1 60,000 65
Pavia

University +sp 2 150 100 30 0.8 8, 18 K0 × K1

+gs 3 10 100
+sg 4 500 100

- 1 0.01 100
Pavia Center +sp 2 1100 100 30 0.8 8, 18 K0

+gs 3 0.6 100
+sg 4 1000 100

1 ‘-’ means the original image; 2 ‘sp’ means salt and pepper noise; 3 ‘gs’ means Gaussian noise; 4 ‘sg’ means salt
and pepper noise and Gaussian noise.
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4.2. Test Results

To observe the clustering results, below we illustrate the clustering maps and partial
enlarged detail of the different clustering methods mentioned above. It should be noted
that the color of the same class may vary in different class maps. This is because label
characters can be arranged by different clustering methods.

4.2.1. Images without Noise

The performance of different clustering methods on the SalinasA, Indian Pines, Pavia
Center, and Pavia University data sets are shown in Figures 2–5. From those figures, it can
be seen that the SSAKGCSC algorithm achieved extremely high classification accuracy on
the four data sets. Compared to other models, SSAKGCSC shows better class maps in all
three HSI data sets. In comparison, the class maps obtained by the other methods (e.g.,
SSC, LRSC, and EDSC) contain more noisy points caused by misclassification. The results
indicate the effectiveness and advantages of the GCSC framework.
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Figure 5. Clustering results obtained using different methods on the Pavia Center data set. (a) Ground
truth. (b) LRSC 53.06%. (c) SSC 60.26%. (d) S4C 72.80%. (e) EDSC 75.39%. (f) EGCSC 80.30%.
(g) EKGCSC 94.48%. (h) MEKGCSC 93.89%.

Table 3 shows the clustering performance comparison of different methods evaluated
on SalinasA, Indian Pines, Pavia Center, and Pavia University data sets. From the results,
it can be seen that the proposed methods achieve pretty adequate segmentation results
on the HSI data sets without additional noise. It even outperforms the EKGCSC model in
some aspects of OA, NMI, and Kappa coefficient. We can find a conspicuous progress in
the performance of the traditional subspace clustering model with graph convolution from
the SSAKGCSC significantly outperforming the EDSC results. Secondly, the SSAKGCSC
algorithm that analyzes the nonlinear relationship between data points outperforms the
EGCSC algorithm on all three data sets. That is, the GCSC algorithm with a nonlinear
model can significantly improve the clustering performance by learning a more robust
affinity matrix.



Axioms 2022, 11, 269 11 of 21

Table 3. Clustering performance of the compared methods on SalinasA, Indian Pines, Pavia Univer-
sity, and Pavia Center data sets.

Data Metric LRSC [19] SSC [18] S4C [14] EDSC [24] EGCSC [31] EKGCSC [31] SSAKGCSC

OA 0.5009 0.7590 0.8070 0.8899 0.9993 1.0000 0.9989
SaA. NMI 0.4657 0.7210 0.7563 0.8532 0.9971 1.0000 0.9960

Kappa 0.4861 0.6953 0.7694 0.8327 0.9991 1.0000 0.9986
OA 0.5752 0.5609 0.6497 0.7026 0.8827 0.9731 0.9743

InP. NMI 0.5128 0.5081 0.6028 0.6544 0.6976 0.9128 0.9139
Kappa 0.4566 0.4997 0.6325 0.6234 0.8308 0.9615 0.9632

OA 0.4616 0.6427 0.6672 0.6594 0.8442 0.9732 0.9708
PaU. NMI 0.4327 0.5994 0.6135 0.6252 0.8401 0.9482 0.9453

Kappa 0.4425 0.5846 0.6047 0.6019 0.7968 0.9646 0.9538
OA 0.5306 0.6026 0.7280 0.7539 0.8030 0.9448 0.9443

PaC. NMI 0.4461 0.6801 0.7567 0.7873 0.8114 0.9252 0.9206
Kappa 0.3773 0.4732 0.6401 0.6766 0.7447 0.9296 0.9289

The best results are highlighted in bold.

4.2.2. Images with Salt and Pepper Noise

Figures 6–9 show the capability comparison of different clustering methods on the
SalinasA, Indian Pines, Pavia Center, and Pavia University data sets with the addition of
0.1 probability of salt and pepper noise. As can be seen from Figure 5, the SSAKGCSC
algorithm used in this work had a better performance compared to the EKGCSC algorithm
in resisting salt and pepper noise. Since the EKGCSC algorithm cannot run on the noise-
added PaviaU data set, the SSAKGCSC algorithm has better segmentation results compared
to the rest of the comparison algorithms on the other two data sets.
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pepper noise. (a) Ground truth. (b) LRSC 43.49%. (c) SSC 48.60%. (d) S4C 51.08%. (e) EDSC 61.03%.
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Table 4 shows the performance comparison of different methods evaluated on SalinasA,
Indian Pines, Pavia Center, and Pavia University data sets with the addition of a 0.1
probability of salt and pepper noise. From the results, it can be seen that the SSAKGCSC
method used in this work achieves the best results in terms of both OA, NMI, and Kappa
coefficients. In particular, the evaluation metrics on the SalinasA data set are almost double
those of the EKGCSC model; on the other two data sets, our algorithm also shows a
considerable improvement in three evaluation metrics. When the author runs the EKGCSC
model for the PaviaU data set with noise, no matter whether it is pepper and salt noise or
Gaussian noise, the program will be input the code segment of spectral clustering, so that
its clustering result cannot be obtained no matter how long it runs.
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Figure 8. Clustering results obtained using different methods on the Pavia University data set with
salt and pepper noise. (a) Ground truth. (b) LRSC 37.69%. (c) SSC 51.22%. (d) S4C 53.31%. (e) EDSC
53.56%. (f) EGCSC 60.12%. (g) EKGCSC. (h) SSAKGCSC 79.83%.
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Figure 9. Clustering results obtained using different methods on the Pavia Center data set with salt
and pepper noise. (a) Ground truth. (b) LRSC 38.21%. (c) SSC 50.39%. (d) S4C 52.38%. (e) EDSC
60.33%. (f) EGCSC 64.22%. (g) EKGCSC 33.68%. (h) MEKGCSC 85.01%.



Axioms 2022, 11, 269 13 of 21

Table 4. Clustering performance of the compared methods on SalinasA, Indian Pines, Pavia Univer-
sity, and Pavia Center data sets with salt and pepper noise (the probability is 0.1).

Data Metric LRSC [19] SSC [18] S4C [14] EDSC [24] EGCSC [31] EKGCSC [31] SSAKGCSC

OA 0.4349 0.4860 0.5108 0.6103 0.6803 0.4574 0.8347
SaA. NMI 0.4411 0.4413 0.5363 0.5827 0.7520 0.4331 0.8527

Kappa 0.4157 0.4253 0.4634 0.5329 0.5781 0.2641 0.7905
OA 0.4029 0.4475 0.5063 0.5288 0.5707 0.5609 0.6634

InP. NMI 0.3564 0.3869 0.4016 0.4320 0.4330 0.4651 0.4665
Kappa 0.2658 0.3186 0.3356 0.3534 0.3729 0.4151 0.5149

OA 0.3769 0.5122 0.5331 0.5356 0.6012 - 0.7983
PaU. NMI 0.4327 0.5994 0.6135 0.6252 0.8401 - 0.9453

Kappa 0.4425 0.5846 0.6047 0.6019 0.7968 - 0.9538
OA 0.3821 0.5039 0.5238 0.6033 0.6422 0.3368 0.8501

PaC. NMI 0.4250 0.5281 0.5031 0.5833 0.6103 0.0382 0.8145
Kappa 0.2318 0.3572 0.3817 0.5007 0.5537 0.0302 0.8103

The EKGCSC model will input the code segment of spectral clustering for the PaviaU data set with salt and
pepper noise. The best results are highlighted in bold.

4.2.3. Images with Gaussian Noise

Figures 10–13 show the clustering results of different clustering methods on the
SalinasA, Indian Pines, Pavia Center, and Pavia University data sets under Gaussian noise
with a mean of 0 and variance of 0.2. It can be seen from the results that the SSAKGCSC
algorithm has an excellent performance in resisting Gaussian noise. This is especially
evident in Figure 12, where the segmentation results of all the compared algorithms have a
large area with noisy disturb, except for the result of the SSAKGCSC algorithm.
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Figure 10. Clustering results obtained using different methods on the SalinasA data set with Gaussian
noise. (a) Ground truth. (b) LRSC 35.96%. (c) SSC 47.61%. (d) S4C 54.77%. (e) EDSC 61.97%.
(f) EGCSC 54.92%. (g) EKGCSC 60.73%. (h) SSAKGCSC 86.78%.

Table 5 shows the performance comparison of different clustering methods on the
SalinasA, Indian Pines, Pavia Center, and Pavia University data sets under Gaussian noise
with a mean of 0 and variance of 0.2. From the results, it can be seen that the SSAKGCSC
method improves the OA, NMI, and Kappa coefficients by 26%, 24%, and 36%, respectively,
compared to the standard method in the SalinasA data set. The method also improves the
OA, NMI, and Kappa coefficients by 16%, 15%, and 16%, respectively, compared to the
standard method in the Pavia University data set.
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Table 5. Clustering performance of the compared methods on SalinasA, Indian Pines, Pavia Univer-
sity, and Pavia Center data sets with Gaussian noise (the mean is 0 and the variance is 0.2).

Data Metric LRSC [19] SSC [18] S4C [14] EDSC [24] EGCSC [31] EKGCSC [31] SSAKGCSC

OA 0.3596 0.4761 0.5477 0.6197 0.5492 0.6073 0.8678
SaA. NMI 0.3218 0.4536 0.5521 0.5747 0.6320 0.6639 0.9029

Kappa 0.2764 0.4005 0.4353 0.4835 0.4180 0.4751 0.8310
OA 0.4320 0.4220 0.5329 0.5678 0.5930 0.5470 0.6495

InP. NMI 0.3169 0.3059 0.3563 0.5146 0.4148 0.3951 0.5348
Kappa 0.2899 0.2744 0.3102 0.4837 0.4009 0.3774 0.4697

OA 0.3690 0.3679 0.4251 0.4697 0.5119 - 0.6734
PaU. NMI 0.3128 0.2843 0.3765 0.4167 0.4435 - 0.5902

Kappa 0.2568 0.2363 0.2747 0.2858 0.3268 - 0.4807
OA 0.3163 0.3781 0.4951 0.4757 0.4844 0.3315 0.8855

PaC. NMI 0.0197 0.2883 0.5382 0.3404 0.4231 0.1612 0.8606
Kappa 0.0028 0.1998 0.3629 0.2755 0.3459 0.1046 0.8537

The EKGCSC model will input the code segment of spectral clustering for the PaviaU data set with salt and
pepper noise. The best results are highlighted in bold.

4.2.4. Images with Gaussian Noise and Salt and Pepper Noise

Figures 14–17 show the performance comparison of different clustering methods
on the SalinasA, Indian Pines, Pavia Center, and Pavia University data sets under both
Gaussian noise with a mean of 0 and variance of 0.1 and salt and pepper noise with a
probability of 0.1. It can be seen that the SSAKGCSC method still has the best classification
results and remains to be the strongest among all algorithms for noise suppression. From
the above, it can be concluded that the combined application of the GCSC framework,
statistical sub-graph affinity model, and kernel function used in this research has adequate
effectiveness and superiority in noise resistance of HSI segmentation.
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noise and salt and pepper noise. (a) Ground truth. (b) LRSC 44.52%. (c) SSC 47.06%. (d) S4C 50.95%.
(e) EDSC 60.79%. (f) EGCSC 62.23%. (g) EKGCSC 59.97%. (h) SSAKGCSC 88.28%.
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with Gaussian noise and salt and pepper noise. (a) Ground truth. (b) LRSC 41.08%. (c) SSC 43.86%.
(d) S4C 51.33%. (e) EDSC 52.24%. (f) EGCSC 54.68%. (g) EKGCSC 52.49%. (h) SSAKGCSC 64.50%.
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Figure 16. Clustering results obtained using different methods on the Pavia University data set with
Gaussian noise and salt and pepper noise. (a) Ground truth. (b) LRSC 37.22%. (c) SSC 38.79%. (d) S4C
43.30%. (e) EDSC 47.91%. (f) EGCSC 50.92%. (g) EKGCSC. (h) SSAKGCSC 69.67%.
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Figure 17. Clustering results obtained using different methods on the Pavia Center data set with
Gaussian noise and salt and pepper noise. (a) Ground truth. (b) LRSC 34.17%. (c) SSC 42.89%. (d) S4C
47.94%. (e) EDSC 48.46%. (f) EGCSC 52.03%. (g) EKGCSC 31.82%. (h) MEKGCSC 88.72%.

Table 6 shows the performance comparison of different clustering methods on the
SalinasA, Indian Pines, Pavia Center, and Pavia University data sets under Gaussian noise
with a mean of 0 and variance of 0.1 and salt and pepper noise with a probability of 0.1. As
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can be seen from the table, the SSAKGCSC method improves the OA, NMI, and Kappa
coefficients by 28%, 24%, and 36%, respectively, compared to the standard method in the
SalinasA data set. The method also improves the OA, NMI, and Kappa coefficients by
19%, 16%, and 20%, respectively, compared to the standard method in the Pavia University
data set.

Table 6. Clustering performance of the compared methods on SalinasA, Indian Pines, Pavia Univer-
sity, and Pavia Center data sets with Gaussian noise (the mean is 0 and the variance is 0.2) and salt
and pepper noise (the probability is 0.1).

Data Metric LRSC [19] SSC [18] S4C [14] EDSC [24] EGCSC [31] EKGCSC [31] SSAKGCSC

OA 0.4452 0.4706 0.5095 0.6079 0.6223 0.5997 0.8828
SaA. NMI 0.3218 0.4536 0.5521 0.5747 0.6320 0.6639 0.9029

Kappa 0.2764 0.4005 0.4353 0.4835 0.4180 0.4751 0.8310
OA 0.4180 0.4386 0.5133 0.5224 0.5468 0.5249 0.6450

InP. NMI 0.3169 0.3059 0.3563 0.4446 0.4148 0.3951 0.4958
Kappa 0.2899 0.2744 0.3102 0.4837 0.4009 0.3774 0.4697

OA 0.3722 0.3879 0.4330 0.4791 0.5092 - 0.6967
PaU. NMI 0.3283 0.3247 0.3882 0.4082 0.4535 - 0.6102

Kappa 0.2643 0.2695 0.3355 0.3564 0.3359 - 0.5338
OA 0.3417 0.4289 0.4797 0.4846 0.5203 0.3182 0.8872

PaC. NMI 0.1792 0.2270 0.3704 0.3434 0.5023 0.0451 0.8697
Kappa 0.1999 0.2233 0.2668 0.3022 0.3895 0.130 0.8564

The EKGCSC model will input the code segment of spectral clustering for the PaviaU data set with salt and
pepper noise. The best results are highlighted in bold.

4.3. Impact of the Number of PCs

Dimension reduction usually keeps the balance between computational efficiency and
model performance. When more channels are taken into account, more specific information
is included. However, possessing more channels does not always result in better clustering
performance. To scientifically discuss the influence of the number of PCs, we implement the
proposed methods with varying PCs from one to eight, then display the obtained OA and
CPV in Figure 18. As shown in Figure 18, the clustering OA increased in the first four steps
and then decreased. This appearance is known as the Hughes phenomenon [43], which is
primarily due to increased correlation information and a lack of enough data points. As
seen in Figure 18, the first four PCs of the data set can provide more than 96% of the CPV.
This means that the remaining channels only possess restricted information and increase
the risk of causing redundancy. Additionally, to identify subspaces correctly, the model
must use more data points to model the statistical property of the data. To balance model
accuracy with operational efficiency, we chose to use the first four PCs for the model.

Axioms 2022, 11, x FOR PEER REVIEW 18 of 22 
 

InP. NMI 0.3169 0.3059 0.3563 0.4446 0.4148 0.3951 0.4958 
 Kappa 0.2899 0.2744 0.3102 0.4837 0.4009 0.3774 0.4697 
 OA 0.3722 0.3879 0.4330 0.4791 0.5092 - 0.6967 

PaU. NMI 0.3283 0.3247 0.3882 0.4082 0.4535 - 0.6102 
 Kappa 0.2643 0.2695 0.3355 0.3564 0.3359 - 0.5338 
 OA 0.3417 0.4289 0.4797 0.4846 0.5203 0.3182 0.8872 

PaC. NMI 0.1792 0.2270 0.3704 0.3434 0.5023 0.0451 0.8697 
 Kappa 0.1999 0.2233 0.2668 0.3022 0.3895 0.130 0.8564 

The EKGCSC model will input the code segment of spectral clustering for the PaviaU data set with 
salt and pepper noise. The best results are highlighted in bold. 

4.3. Impact of the Number of PCs 
Dimension reduction usually keeps the balance between computational efficiency 

and model performance. When more channels are taken into account, more specific infor-
mation is included. However, possessing more channels does not always result in better 
clustering performance. To scientifically discuss the influence of the number of PCs, we 
implement the proposed methods with varying PCs from one to eight, then display the 
obtained OA and CPV in Figure 18. As shown in Figure 18, the clustering OA increased 
in the first four steps and then decreased. This appearance is known as the Hughes phe-
nomenon [43], which is primarily due to increased correlation information and a lack of 
enough data points. As seen in Figure 18, the first four PCs of the data set can provide 
more than 96% of the CPV. This means that the remaining channels only possess restricted 
information and increase the risk of causing redundancy. Additionally, to identify sub-
spaces correctly, the model must use more data points to model the statistical property of 
the data. To balance model accuracy with operational efficiency, we chose to use the first 
four PCs for the model. 

 
Figure 18. Clustering OA and CPV under a varying number of PCs on SalinasA, Indian Pines, Pavia 
Center and Pavia University data sets. 

4.4. Comparison of Running Times 
Table 7 shows the running times of our methods compared to the other competing 

methods. Since EGCSC, EKGCSC, and SSAKGCSC will achieve a closed-form solution 
without needing iterations, they are significantly quicker than LRSC, SSC, and S4C. Our 
method requires relatively more runtime compared to EDSC, which is because the GCSC 
framework requires constructing the graph from the original data points. Furthermore, 
SSAKGCSC needs to compute the sub-graph affinity matrix, so its running time will be 
increased compared to EGCSC and EKGCSC. In summary, our proposed SSAKGCSC 

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

110

Number of PCs

P
er

ce
nt

ag
e

 

 

SaA.
InP.
PaU.
PaC.
CPV

Figure 18. Clustering OA and CPV under a varying number of PCs on SalinasA, Indian Pines, Pavia
Center and Pavia University data sets.
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4.4. Comparison of Running Times

Table 7 shows the running times of our methods compared to the other competing
methods. Since EGCSC, EKGCSC, and SSAKGCSC will achieve a closed-form solution
without needing iterations, they are significantly quicker than LRSC, SSC, and S4C. Our
method requires relatively more runtime compared to EDSC, which is because the GCSC
framework requires constructing the graph from the original data points. Furthermore,
SSAKGCSC needs to compute the sub-graph affinity matrix, so its running time will be
increased compared to EGCSC and EKGCSC. In summary, our proposed SSAKGCSC
model achieves a adequate balance between algorithm efficiency, clustering accuracy, and
algorithm noise immunity.

Table 7. Running time of different methods (in seconds).

Data LRSC [19] SSC [18] S4C [14] EDSC [24] EGCSC [31] EKGCSC [31] SSAKGCSC

SaA. 14,564 1832 19,865 85 200 340 588

InP. 8635 1341 3125 52 95 160 513

PaU. 32,764 2130 15,632 202 296 514 789

PaC. 20,354 1953 13,492 121 235 398 652

5. Discussion

In this paper, we introduced the HSI clustering framework based on graph convo-
lution into subspace clustering (GCSC). The critical point of this framework is to use a
graph convolution self-representation to integrate the intrinsic structural information of
data points, followed by an explicit dictionary to learn robust affinity matrices. We also
introduced statistical sub-graph affinity, a robust spectral clustering strategy to master the
heavy noise, which constructs the affinity weighted graph based on the spatial intensity
relationships between connected nodes. The statistical sub-graph affinity model includes
a statistical noise model when treating the sub-graphs as random processes, thus better
handling the uncertainty ingredient of noise. The statistical sub-graph affinity model con-
tains neighborhood connectivity when representing the sub-graphs as random processes,
thus making use of neighborhood information to counteract uncertainties and properties of
noise. The experimental results on three HSI data sets show that the SSAKGCSC model can
achieve the best performance compared to many existing clustering models. Moreover, the
algorithm also has excellent performance over other algorithms in terms of noise immunity;
in particular, the segmentation result on the SalinasA data set under salt and pepper noise
is double than standard model EKGCSC, reaching 83.47%, 85.27%, and 79.05% of the
clustering OA, NMI, Kappa coefficient, respectively.

6. Conclusions

The success of the SSAKGCSC model manifests that utilizing the intrinsic graph
structure among data sets is crucial for clustering. The GCSC framework used in this study
encourages us to implement traditional clustering models in non-Euclidean domains; this
means that any improved tactics used in the classical subspace clustering model are suitable
for GCSC. However, the GCSC framework suffers from quadratic complexity in the size of
data points, which makes it difficult to be used for large-scale HSI data. In addition to the
independent identically distributed noise model, other statistical models can be developed
similarly. This paper illustrates statistical sub-graph affinity in image segmentation, which
has an adequate ability to resist the additive noise.

First, future research will focus on how to effectively process the hyperspectral image
with speckle noise, which is a multiplicative noise. Second, future work will focus on
how to create the similarity matrix W to more truly reflect the approximate relationship
between data points. The Gaussian function used in this study has obvious limitations due
to the selection of the scale parameter σ. A third future research aspect will explore how to
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automatically determine the number of clusters; although the number can be determined
manually, it is a difficult problem to determine the exact number that has a direct effect on
the efficiency and the final quality of clustering. Fourth, future work will look at how to
select eigenvectors for the construction of new vector spaces, in most cases, the spectral
clustering algorithm directly selects the first k maximum eigenvalues corresponding to
the eigenvectors for the construction of new vector space. A final future research focus
will investigate how to improve the running speed of spectral clustering and solve matrix
eigenvalues and characteristic vectors. In dealing with large-scale data sets, the calculation
of matrix space is very large; a solving process not only can be very time consuming but
the required memory space is very large. Therefore, improving the running speed of the
algorithm, reducing the memory space required to run, and reducing the time and space
cost of the algorithm is another key problem in the process of expanding the application
field of the algorithm.
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