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Abstract: The paper deals with the problem of expansion of the ratios of the confluent hypergeometric

(N

function of N variables ®, >(a, b;c;z) into the branched continued fractions (BCF) of the general

form with N branches of branching and investigates the convergence of these BCF. The algorithms of
construction for BCF expansions of confluent hypergeometric function <I>§DN) ratios are based on some
given recurrence relations for this function. The case of nonnegative parameters a,by,...,by_1 and
positive c is considered. Some convergence criteria for obtained BCF with elements in RN and CN are
established. It is proven that these BCF converge to the functions which are an analytic continuation of

(N)

the above-mentioned ratios of function &, (a, b;c; z) in some domain of CN.

Keywords: confluent hypergeometric function of several variables; recurrence relations; branched
continued fraction; approximant; uniform convergence
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1. Introduction

In the course of the last three centuries the necessity of solving the problems arising in
the fields of hydrodynamics, control theory, classical and quantum mechanics stimulated
the development of the theory of special functions of one and several variables [1-5].
Functions of hypergeometric type constitute an important class of special functions.

For hypergeometric functions of one variables there exists a well-developed theory
with numerous applications. All advanced computer algebra systems support calculations
involving hypergeometric functions. In the multivariate case there exist several approaches
to the notion of a hypergeometric functions. Such a function can be defined as a sum of a
power series of a certain kind (the so-called I'-series), as a solution to a system of partial
differential equations, as the Euler-type integral or as the Mellin—Barnes integral [1,3].

It is known that continued fractions have numerous applications in the theory of
approximation of hypergeometric functions of one variable [6-9]. Multidimensional gener-
alizations of continued fractions can be considered as a tool of rational approximation of
functions of several variables [10-20]. In particular, branched continued fractions (BCF) of
the form

kg Z

do(z) + D % C'(k)(; =do(2) + % _ Ci(l)(z) ' T

o =1, (s N ociz)(2)
@@+ ‘21 di(3)(2)+
13= 1
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where N € N, i(k) = (i1,13,...,i) be a multi-index,
T={i(k): 1<i, <N, 1<r<k k>1}

be a set of multi-indices, the do(2) and the elements c;(;)(Z) and d;(2), i(k) € T are
certain polynomials, Z = (z1,2,,...,zx) € CN are used to approximate the ratios of some
hypergeometric functions of one or several variables [21-29]. Note that the symbol D,
proposed by I. Sleshynsky in 1888 [30], is used here to denote BCF.

In this paper, we construct the branched continued fraction expansions for confluent

(N)

hypergeometric functions of N variables ®,

confluent hypergeometric function CID%N)

@;DN) (a,b;¢;2)
1 k2 kn

_ i (@), thy by (00 (B2)ky - (ON- iy, 251 25 2R @

k1,ko,....kn=0 (C)k1+k2+...+kN kl' k2 kN

ratios and investigate their convergence. The

is defined by the multiply power series [3]

where a, by, ...,by_1, c are complex constants (parameters of function), ¢ #0,—1,-2,...,
b= (by,...,by_1), (@) is the Pochhammer symbol: (a)g = 1, (a); = a(a +1);_1, k > 1.
Series (2) converges for |z;| < 1,1 <i < N —1, zy € C. Function CDEN) was originated
by H. Exton and H. Srivastava. This function is a generalization of the Humbert function
<I>1(32) = ®4. At zyy = 0 value of the function, <D§3N) coincides with the value of the Lauricella
function F, (N-1),
The algorlthms of construction for branched continued fraction expansions of conflu-
ent hypergeometric function CI>§JN) ratios are based on some recurrence relations for this
function (Section 2). We stated and proved some convergence properties for the obtained
BCF (Section 3).

Let us recall some basic concepts and notations (we refer the reader to the books [31,32]
to learn more). The finite BCF

is called the nth approximant of the BCF (1). Note that for each n € N the approximant
fn(2) can also be written as

N cir)(2)
(2) = do(2) + 1
P& =D Lo Q@)

where the tails, Qg(nk)) (2),i(k) € Z,1 < k < n, are defined as follows
Qi (2) = diy(2), n>1, ®

an)(Z - +D Z L(), ikyeZ, 1<k<n—-1,n>2.
21 i it (2)

It is clear that the following recurrence relations hold

N , 5
Q" (2) = digy (2) + 2 M, ikyeZ, 1<k<n—1,n>2 )
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Definition 1. The BCF (1), whose elements are functions of N variables, is said to converge
uniformly in a certain domain D, D C CN, if for each Z € D at most its approximants f,(Z) have
sense and are finite and for a given € > 0 there exists n such that for all m,n > ne and for each
z € D the following inequality | f(2) — fu(2)| < € is valid.

Definition 2. The BCF (1), whose elements are functions of N variables in a domain D, D C CN,
is said to converge uniformly on a compact subset K of D if there exists n(K) such that f,(z) is
holomorphic in some domain containing K for all n > n(K) and for a given € > 0 there exists
ne > n(K) such that sup, g | fm(2) — fu(2)| < € for m,n > ne.

If Qg?k)) (z) #0foralli(k) € Z,1 < k < n,n > 1, the following formula of difference
for two approximants of BCF of the form (1) is valid (see [31], p. 28)

(2) i i [l oy @
fm Z _fn Z = m n
o I Qe m;:l Qi (@)

, m>n,n>1 (5

Note that this formula is used to study the properties of a sequence { f,(Z)}.

2. Recurrence Relations for Function <I)I(J ), : Expansions for the Ratios of Function <I>,(JN)

into the Branched Continued Fractions

To construct the expansion of the ratio of hypergeometric series of one or several
variables, the recurrence relations between these series are used. Here we give some
recurrence relations for multiply power series (2).

We denote ¢; = (51-1, (51-2, ., Sl-N_l), where (5{ is the Kronecker delta: 5{ =1,ifi = j,and
i e g
0; =0,ifi #j.
The recurrence relations for function @gN) are valid

N-1g )
<I>§3N) (a,b;c;2) = cI>](3N) (a+1,b;cz) — Y %@%N)(a +1,b+e;c+1;2)
i=1

N (a+1,b;c+1;2), ©)
N-1
@éN)(a,E;c;Z) :(D(DN)(Q,E}C+1;Z)+ Z (ibfll) oM )(a+1 b+ej;c+2;2)
i=1
azN (N) . .
(C+1)¢ ({1+1,b,c+2,z), (7)
CDE)N)(CI, b;c;z) = ®§)N) (a,b+e;c;2)
az; = .
fT’q>(DN)(a+1,b+e,-;c+1;z), 1<i<N-1. )

These formal identities can be derived from (2) by comparing the coefficients of
zlilzk2 zlzc\’,\’ on both sides of the identities.
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From (6)—(8) it follows that

B B N-1 bz _
oM (a,5;62) =N (a+1,5;62) — Y ]?Z]@,(:,N)(a—f—l,b—i—ej;cﬂ—l;z)
=1

_ZTNcDgN)(a+1,E;C+1}Z)
- qJ(N)(a +1,b;¢;2) — ZTN¢§JN) (a+1,b;c+1;2)
B Zle]
j=1
=@ @+ 1 het12) ~ op (a1, bie +1:2)
'a+ Dbz (n)
Ly U YE g0
; et 1)

(a+1)zn
c(c+1)

a+1
1ZJCID(N)(a—i—Z b+ej;c+2; z))

- (cp( Na+1, bie+12) + 2

(a+2,b+ej;c+2;2)

N (a+2,5;c+2;2)

+

a+1

(N)
_Zz]< a+1bc+1z)+c+1z]® (a+2b+e/,c+22)>

So,

—

QDE:)N) (a,b;c;2) = @)

~ N-1p.
N)(a—l—l,b;c—i—l;i) (1— ZTN - Y C’z,»)
j=1

N-1 (a—l—l)bj (N) _ _
],21 mzj(l_zj)¢l) (ﬂ+2/b+6'/C+2/Z)
a+1 (N) 7. s
+c(c+1) aN®p (a4 2,b;c +2;2). 9)

Using the recurrence relations (8), (9) the expansions of the ratios

()(b)

X(a,b;c;2) = ) ®p - , 1<i<N-1,
Oy (a+1,b+e;c+1;2)
N, Beos
- [0 a,b;c;z
XN(ﬂ,b,C,Z = (N) D ( _ ) 7
&y (a+1,b;c+1;2)

into the branched continued fraction (BCF) of the general form with N branches of branch-
ing can be constructed. Indeed, performing the termwise division of the identity (9) by

<1>1(3N) (a+1,b;c+1;2), we obtain

1
—_— ZN i (a—f—l)b]- Z]'(l —Z]‘)

X .. =1 — — 7. =
n(a,bic;z) LooHt ].2:1 clc+1) Xi(a+1,b;c+1;2)

a+1 ZN (10)
c(c+1) Xy(a+1,b;c+1;2)°

Moreover, from (8) it follows that

Xi(a,b;c;z):XN(a,E—i-ei;c;Z)—%, 1<i<N-1 11)
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Taking into account (11), we rewrite formula (10) as follows

_ B ZN N-1 b]'
Xn(a,b;c;z) =1~ — - Z’ =7

=1 (a+1)b zj(1—zj)
~ c(c+1 - a+1)z;
j=1 ( )XN(a—i-l,b—i-e‘;C-i-l;Z)—(chl)]
a+1 ZN
c(c+1) Xy(a+1,b;c+1;2)
or
) ~1p.
XN(a,b,c,i)zl—Z—N— ) f]Z]
c He
a+1)((1=6N)b;, +oN
G RS A
+ ) ¢ . (12)
N ’ iy ’ i c+1
Then
N-1p
— N ZN ]
Xn(a,b;c;z) =1~ ; —]; =7
N
% (a+1)((1 )b +51)zi1(1—(1—5§j)zi1)
= clc+1)
Czy Nlb +(5]Z _a _(5N)’1+1
c+l & c+1 )1 %h
. -1
A A CL RS VN
+% (c+1)(c+2) 2 2
' _ a+2
=1 Xy(a+2,b+e; +ey;c+2z)— (1 55)612

Substituting expressions for Xy with corresponding parameters into formula (12),
after n steps we obtain the expansion for the ratio Xy (a, b;c; Z) into the finite BCF of the
general form with N branches:

. 1) (2 )l cip) ()]
Xn(a,b;c; 2z :1——— —z + -
wlobiez) =1-2 Z it 1|dl<1 GRS |dl<z><z>
Cin) (2)]
+. +Z NN (13)
in=1|Xn(a+mn, b—l—EP 1€,c+mz) —(1- 5in)7c+n i

where fori(k) € Z,1 <k <n,

(a+k)(b; +Zk 15?) ' |
_ ( +k_k1)( p+1k)lk Zik(l _Zl'k), if 1 < i < N-—-1,
it 7) = ‘ a+k ‘ (14)

if i=N,

c+k—1)(c+k) W



Axioms 2022, 11, 426 6 of 16

andfori(k) €e Z,1<k<n-1,

k i
zN a+k NS+ jp 4

_ err ; < <N —
) crk  ctk =T otk zip A 1sisN-1,
diry(2) = No1 by vk 6 (15)
ZN / p=1%j e
N —F—z;, if i =N.
ctk o ct+k

It is easy to prove, by induction, that expansion (13)-(15) is true.
Passing 1 to co, we obtain the formal expansion of X, (4, b; c; Z) into infinite BCF of

the form
N-1p

Tyt i) ) 16
c”’ 1]::)11‘,;1 dix) (2) (19

Elements of BCF (16) are defined by Formulas (14) and (15) under i(k) € Z, k > 1.
Taking into account Formula (11), we obtain the formal expansion of the ratio X;, (4, b; ¢; 2),
ip € {1,...,N — 1}, into such BCF

z
1_%N
c H

zy (a+1)z, ! b; N i (2)
1IN T Ry Ty -, (17)
¢ ¢ ]; ! I]::)l 1k§1 qi(k) (Z)

where fori(k) € Z,k > 1,

(Hk)(biﬁz];;%&;f)z«(1—zl) if 1< <N-1
iy (2) = (C+k+—k1)(c+k) * e == ’ (18)
a
T
Crk—Tcrrw T w=h
k ip
ZN a+k Nflbj+2p=0(5]. . '
o Ttk crk T & ek T if 1<ik<N-1,
it (2) = T (19)
i(k) N2l +ZI;:0 5]1}1 -
1- - 721', if lkIN.
c+k = c+k

If zyy = 0, then the formal expansion of X;(a,b;c;z1, ..., zy_1,0) coincides with the

expansion of the ratio of the Lauricella function FI(JNfl)
N-1 T
Fl() )(ll,b,‘C;Z],...,ZNfl)

Fl()N_l)(a + 1,1_7 +e1,¢c+ 1,'21,. . .,ZNfl)
into the (N — 1)-dimensional analogue of Norlund’s continued fraction [23]. If z; = zp =
. = zy-1 = 0, then the formal expansion of Xy(a, b;c;0,...,0, zn) coincides with the
continued fraction expansion of the ratio of Kummer’s confluent function

@ (a;¢c;zy)
d(a+1;c+1;zn)

3. Convergence of the Branched Continued Fraction Expansions of the Confluent

Hypergeometric Function <I>1()N) Ratios

Theorem 1. Let parameters a, by, ..., bx_1,c of the confluent hypergeometric function CIDE)N) be
real numbers such that

abi,...,.by.12>20, 2c>a+b1+...+by_1>0. (20)
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Then the BCF (16) with elements Ci(k)s di(k)/ i(k) € Z, defined by (14), (15), under k > 1, converges
uniformly in the domain

. N 1 ‘ c—a—ZN 1b
Ge=4z€R :0<zi<§—e,1§z§N—1,0<zN< > ,

where 0 < € < 1/2, to the function Xn(a, b;c; z).

Proof. It is obvious that partial numerators c;()(2), i(k) € Z, k > 1, forall z € G are
positive under conditions (20).

We will find lower bound of the denominators d;()(2), i(k) € Z,k > 1, for z € Ge. If
1 <ip < N —1, then we have

) z a+k N=1 b + Yk 1‘5
diy(2) =1 - N - St
c+k c+k c+k

Zj
j=1
2c—a— EN_l

S LT
2(c+k) c+k

_I\]il b] 1_6 _Zzp 15] l_e
j:1c+k 2 = c+k \2

1

k a+k+ZN Y1 \TEL XNty
2(c +k) c+k (2_6) c+k
a+2k+ L by

>€

- c+k

If iy = N, then

N-1b; + YK o
() =1— =Ny L =l
i(k) ctk & otk
k i
R —Aﬁla+k+bj+2p:15jpz-
ctk 5 c+k J
a+2k+ LN by

c+k

> €

So,

a+2k+ LN
c+k

Qi) (2) > digy (2) > € , i(k)eT, k> 1. (21)

We will show that for an arbitrary zZ € G following inequality

n
=@ <M( L), msm, @)
where
1 a+1 2c—a—ZN 1b 1 ZC—a—ZN lb
M:<4e—€> c + Jce 7 17:(4:62_1)+2€2(61+ZN 1b)
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is valid. Formula (5) can be rewritten as follows

[(n+1)/2] Cioi) (Z) 2141 (2)
i(2)) Ci(2j+1)
H (r) (r)

Qi) @00, () =1 Qi (20,4 (2)

[n/2]

;o (23)

whereq=m,r =n,ifn =2p,andq=n,r=m,ifn=2p—-1,p > 1.
We note, that

i(k+1)
) .

N ciksn)(2) i1=1 Qz((rlzﬂ)(z)

fea1=1 Qg(r,z)(Z)Qf(rIZH)(Z) di(k)(z)+ i Citkt1)(2)

% Cik+1)(2)
i =1 Fi(k) (2)di(k41)(2)

Taking into account the inequality (21), we obtain

N Cik+1)(2)
L G B )

(c+k)(c+k+1) %

€2(a+ X" b+ 2k) (a + T by 4+ 2k + 2) €itk+1)(2)

k1 =1
N-1 (a+k+1) (b, + e 151:+1)Zik+1(1_zik+1)
"1 €2(a+ TN by 4 2K) (e + TN by + 2K+ 2)

(a+k+1)ZN
€2(a+ LN b +2k) (a + TN b+ 2k +2)

ik+1

1 NI Bt dl)  2e—a-EY Y,
< —2—1 N1 + N 1
4e (a+ X7 bj+2k) 262(a+2].:1 bj +k)

1 2c—a—ZN 1b
<|\——€|+
<4e > 262(a+ZN 1b)

We also obtain

N ci(2) c+1 N=!(a+1)b (1
Lo = +2N +2)12 (c+1)<4_€2>

i=1 Q, 1)() ~oe(a+t —1
cr1 (arDEe—a-£¥'p)
e(a+2jhi_11bj+2) 2c(c+1)
1 a+1 2—a—-Y '
<<4€_€) c T 2ce '

Substituting the above estimates in Formula (23) we obtain inequality (22).
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We will consider the difference Xy (a,b;¢;2) — fu(Z). Let

@&a:m@+w+zwwﬂ% (-0,
=1 Tets
<(p) /- _ (z )l i(k+2) (2)]
Ql((pk)) (Z) = di(k) (Z) ‘ Cilk+1) (ICL)_
i =1 1Yi(k+1 )( ) iia=1 ‘ i(k+2) (Z)
o Ci(n) (2)|
i(n)
+...+‘Z_‘,1X - . A
h=1 [Xn(a+n, +szleip,c—|—n,z)—( - in)c—l-nzin

wheres > 1, p > 2,1 < k < p — 1. Itis clear that the following recurrence relations hold

, §21, p>2,1<k<p-1

5 = ZN j i(1)
XN(a/b;C/‘Z)_fﬂ(Z):l_i_ E *Z]_F E ?
j=1 € =1 QS(J”(Z)

Let k be an arbitrary natural number and i(k) be an arbitrary multi-index from Z;
moreover 1 <k <n—1,n > 2. Then we have

. i IR A C) N i (@)
Q) - @@@—@wcﬂngﬁﬂ_—(@mw+, e
ig41=1 Qi k+1 (Z) i1 =1 Qi(k+1)(z)

Qfiein) @~ Q@) @

TT,25 cigp) (2)

. (25)
LT O Y () T, Q) (2)

) N N
Xn(a,b;c2) — fu(2) = (=1)" Z Z

From (25) it follows that

me(z) < XN(Z) (a,b,‘c;Z) < f2m71(z)'

Since

n%i_IgOme(Z) = nli_I;%Omefl (z) = f(2),
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then Xy (2)(a,b;c;2) = f(2). O
Theorem 2. Let parameters a, by, ..., bx_1,c of the confluent hypergeometric function CI>§JN)
satisfy conditions (20). Then:

(A) the BCF (16) with elements ¢y, djx), i(k) € Z, defined by (14), (15),i(k) € Z,k > 1,
converges uniformly on every compact subset of the domain

N-1
1 2c—a—Y b
G:{ZECN:Rezi<2,i:1,N1, |ZN|< 2]1 ]}

to a function f(z) holomorphic in G;
(B) f(2) is the analytic continuation of the function Xy(a,b; c;Zz) which is holomorphic in

some neighborhood of the origin in the domain G.
We will use the following auxiliary lemmas.

Lemma 1 ([23]). Let elements of the BCF (1) be the functions defined in some domain D, D C CN,
and the following conditions for each zZ € D and for all possible values of multi-indices i(k) € T
are valid:

(A) Red;y)(z) > 0;

(B)  there exist such functions g;)(Z) given in the domain D that 0 < g (2) < Red;)(2) and

i Citk+1)(2)| — Recjryy (2)

— S 2(Re di Z) — ; Z)). (26)
i1=1 Si(k+1)(2) (Red;r) (2) — ik (2))
Then, for eachn > 1,
Re(Qg(nk)) (2)) > g (2) forall i(k)eZ, 1<k<n, and zZ€D, -

where Qf(”]j) (2),i(k) € T,1 < k < n,n > 1, defined by (3) and (4).

Lemma 2 ([23]). Let w be a complex number. Then
2
|lw(l —w)| —Re (w(l —w)) < 2( —Rew) ,

and equality is achieved only when Rew = 1/2.

In addition, we will use the convergence continuation Theorem 2.17 [31] (see also ([9],
Theorem 24.2).

Theorem 3. Let {f,(z)} be a sequence of functions, holomorphic in the domain D, D C CN,
which is uniformly bounded on every compact subset of D. Let this sequence converge at each point
of the set E, E C D, which is the N-dimensional real neighborhood of the point 2°,2° € D. Then
{fu(z)} converges uniformly on every compact subset of the domain D to a function holomorphic
in D.

Proof of Theorem 2. We will use the proof scheme from [23]. Let for k > 1

Zi:(;—Rezik) if 1<i<N-1,
8i(2) =1 41k . (28)
2cvly RN
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It is obvious that functions g;()(Z ) are positive. Next we have
(@) foriy =N
k i
RezN_N_1 bj+2p:1‘5jp a+k

Redj()(2) = &i(r) (2) =1 - crk T BT otk 5T 2t k)

k i
_2c—a+k Rezy N—lbj—|—2p:15j”

20c+k) otk AT c+k Rezj
2c—a+k_2€—a—ZN ' b; Nflb]"i‘)j,{,:ﬂ;p
2(c+k) 2(c+k) = 2(c+k)
= 5%’
(- L5
1
>7.
~ 2(c+k)’

(b) for arbitrary 1 < i, < N —1

Rezy a+k
Redig (2) = 8i00(8) =1~ ¢ — 3%

N-1p; +Y*_ 67
- Z B i Rez; — a+k( Rezik>
= ctk +k

_2c—a+k Rezy N1 bj+ Xy 1 8

Re Ziy,

J
Rez;
20c+k) etk o c+k J
1 N-1 k
— | k— 8l >
Saerm\F T n o) 20

Thus, Re di(k) (Z) > 8i(k) (Z)
On the other hand, taking into account Lemma 2, we obtain

% |Cik+1) (2)] — Recjrp1)(2)
et Si(k+1)(2)

— N Zk“ t ZF’ 1 lk+1 |Zlk+1 (1- Zik+1)| —Re Zig 11 (1- Zik+1)

el c+k (1/2—Rezik+1)
‘ZN‘ —Re ZN
pIENT = AN
* c+k
_ N—1 sip _ . N-1 slp
< i lk“ Z 5lk+1 . NZ‘,l b’k+1 + szl Ikt Rez;
> k+1
i1 =1 ctk 1 =1 (e+k)
20—a—Y5'b 2Rezy
+

c+k c+k
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and
N |c- (Z)| — Rec; (2)
- - i(k+1) i(k+1)
2(Red;1n(2) — g (2)) — E —
( 03 =8y () =1 Si(k+1)(2)

C2e—atk N by v 2e-a-EN

L
- c+k (c+k) c+k

igy1=1
(- E e

= k— 67 1>0
2(c+k) il

Therefore, the conditions (26) of Lemma 1 are satisfied and inequality (27) is valid,

where g;() (2) is defined by (28). Thus, {fx(2)}, n > 1, is a sequence of functions holomor-
phic in domain G.

Let K be an arbitrary compact subset of G. Then,

|zn] b; sl
<1+ —+ z;i| +
|fu(2)] ; Z ] 1121 8}(1)( 5
N— 1
§1+@ 1b|Z‘ 21 b]‘Z]( —Z]-)| + 2 b—g
j=1 ¢ =1 C(l/Z—Rer) C
N— l
|zn] ! b; |Z]| —! bj|Zj(1—Zj)| Zc—z bj—a
<1+ + +
ilelll<)< ¢ Xll c ]; c(1/2 —Rez;) c
= M(K),

where constant M (K) depends only on K. Moreover, Ge C G. So, sequence of approximants
{fn(2)} of the BCF (16) satisfies the conditions of Theorem 3 and it means that Statement
(A) of Theorem 2 is proven.

The series (2) converges for each z from domain {Z € CN : |z;| <1, 1<i < N -1}
and Xn(a,b;¢;Z)|5,=..—zy—0 = 1. Therefore, there is such § > 0 that function Xy (4, b; ¢; 2)
is holomorphic in domain G5 = {2z € CN . |zil < 4, 1 <i < N}, Gs C G. Since
investigated BCF converges uniformly in Ge to Xn(a,b;c;z), then by the principle of
analytic continuation ([33], p. 53), Statement (B) follows. [

Let us note that Xy (0,b;¢,2) =1/® (N) (1,b;c +1;z). We assume that a = 0 and

N-1p.o.
Qéo)(z)zl_zﬂ_szZ], Qo (): _Zﬂ_z
j=1 11—1Q )

n>1.

In the proof of the Theorem 2 it is shown that inequality (27) is valid. It can be similarly
shown that

Re Q)" (2) > g0(2) %i |ZN| >0, n>0, z€G. (29)

Indeed, for each zZ € G
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c = ]
N=1 b, |zn] — Rez
> ZJ(1 _2Rez,) 4 ENI T REAN
> ]; 2C( ezj) + - >0,
i i) (2)] —Reciy)(2) NS by, |z, (1—2;,)| — Rez;y (1-2;) +2|zN| —Rezy
=1 8i(1)(2) = e (1/2—Rez;,)
N-1 b- R
< — =2 Z 11 R zi, + ZM
i1: 11—1 ¢

and N1 N 2| ( )
Rezy N=!_ bz _ ¢i(1)(2)| — Recjy) (2
2(1-— — E Re — — z E > 0.

( c 3 ol ) = 8i(1)(2) -

From (29) it follows that {h,(z)}, where h,(2) = (fx ), n>0isa sequence of

functions holomorphic in G.
Setting a = 0, replacing ¢ by ¢ — 1 in Theorem 2 and taking into account the above

considerations we obtain the corollary.

Corollary 1. Let parameters by, by, ..., bn_1,c of function <I>(DN) satisfy inequalities
bi,...,by—1 >0, 2c>b1+...+bny1+2>2.

Then:
(A) the BCF

N-1 pz @ N-lgoo(z)) "
2N Jid] i(k)
(1 - ];C_1+D2di(k)(z)> (30)

k=1i=1

with elements c;), dj(x), i(k) € Z, defined by

(o + E5 &)
p= 1 1 . .
zi(1—z;,), 1if 1< <N-1,
cir (2) = (c+k—2)k(c+k—1) il=z), (31)
Ctk—2)(ctk—1)" y =N
ko sip
ZN + kZl‘k N-1 b] + Zp:l 5] . .
S\ e S R bl B 1<i, <N-—1
, c+k—1 & ctk-1 F yolsisN-1
o (2) = - . 32
1(k)() N-1 b‘{»zk: (szp ( )
__ ANy =t if k=N
ctk-1 = ctk-1 7 ke

converges uniformly on every compact subset of H to a function h(z) holomorphic in H, where
H = ZGCN:Rez-<1,1<i<N—1, |zN|<c—1—12b-;
P2 25 /

(B) h(Z) is an analytic continuation of function <1>](3 )( b; c;z) in domain H.

Example 1. We set a = 0, by = 0.5, bp = 1, ¢ = 4. The results of computation of the ap-
proximants hy(Z), 0 < n < 12, of BCF (30) with elements c;), d), i(k) € Z, defined
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by (31), (32), and partial sums S, (2), 0 < n < 12, of ®\3(1,05,1;4;2) for z = (0.3,0.4,1) and

z = (—0.7,—0.4,1) are given in Table 1.

For given parameters and Z = (0.3,0.4, 1) elements of BCF (30) are positive and

Hom_1(2) < ®5)(1,05,1;4:2) < hoy(2),

Ifz=(-0.7,—-04,1), then

1 (2) = hn—1(2)| < |Sm(2) = Sm-1(2)],

Table 1. Values of h,(Z), Sy(2) for different values of zZ = (z1, 23, z3)-

1<m<e6.

1<m<12.

n h,(0.3,0.4,1) $,(0.3,0.4,1) hy(—0.7, —0.4,1) Su(—0.7,—0.4,1)
0  2.0689655172413793  1.0000000000000000  1.0909090909090909  1.0000000000000000
1 1.4560459283938569  1.3875000000000000  1.0798919301578482  1.0625000000000000
2 1.6062420542029685  1.5178750000000000  1.0854460271288587  1.0858750000000000
3 1.5663393776978655  1.5581427083333333  1.0854992029539980  1.0846114583333333
4 1.5774800126642679  1.5700380133928571  1.0855766580493781  1.0858623586309523
5 1.5741237293361620  1.5734982670665922  1.0855849420453230  1.0855849420453230
6  1.5752175755666838  1.5745081593644076  1.0855871865334549  1.0856431331367290
7 1.5748338584710080  1.5748069122651405  1.0855876480094189  1.0855617160131383
8  1.5749774440398022  1.5748968805416772  1.0855877608401303  1.0856005483413065
9 1.5749206724246927  1.5749244851830382  1.0855877888742481  1.0855813521666234
10 1.5749441919671161  1.5749331078713755  1.0855877962018176  1.0855911502163538
11 1.5749340537588600  1.5749358459608639  1.0855877981816782  1.0855860154913730
12 1.5749385748468521  1.5749367284599484  1.0855877987333202  1.0855887673017868

Example 2. We set a = 0, by = 1, ¢ = 4. The results of computation of the approximants
ha(2), 0 < n < 12, of BCF (30) with elements c;), di(x), i(k) € Z, defined by (31), (32), for
z=1(-12,1)and z = (—1.2+0.2i,1+ 0, 5i) are given in Table 2. These values of Z do not belong

to a convergence domain of double power series for ®(1,1;4;z).

Table 2. Values of h,(0,1;4; 2) for different values of z = (z1, z2).

(—1.2+ 0.2i,1 4 0,51)

z (—1.2,1)
ho(z 0.9375000000000000
hi(z 0.9874608150470219
hy (2 0.9999386478760991
hy(z 1.0021612335538261
hy(z 1.0027828150938215
hs(z 1.0029538035362679

(2)
(2)
(2)
(2)
:
he(2) 1.0030069414508122
(2)
(2)
(2)
(2)
(2)
(2)

hy(z 1.0030242918372864
hg(z 1.0030302600610872
ho(z 1.0030323958017573
hyp(z 1.0030331862564592
h1(2 1.0030334872518964
hip(z 1.0030336047089570

0.8946877912395153 + 0.1957129543336439i
0.9682330302329962 + 0.1636661528464738i
0.9783495727203259 + 0.1621180086394217i
0.9810777556363008 + 0.1611130234246828i
0.9816708481472565 + 0.1608142450994196i
0.9818431129623030 + 0.1607160062318091:
0.9818931929871372 + 0.1606803796414656i
0.9819087721653132 + 0.1606673323815619i
0.9819137968090410 + 0.1606623598862077i
0.9819154619391862 + 0.1606604197525936i
0.9819160242737400 + 0.1606596462158485i
0.9819162161393741 + 0.1606593322207231:
0.9819162817068529 + 0.1606592028011838i

The following theorems can be proven in much the same way as Theorems 1 and 2.

Theorem 4. Let parameters a, by, ..., by_1,c of the confluent hypergeometric function <I>1(3N) be

real numbers such that

ﬂ,b],...,bN_l ZOI

2c>a+by+...+by_1+1>1.

(33)
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Then, the BCF (17) with elements Iy, qi), i(k) € Z, defined by (18), (19), converges
uniformly in the domain

N 1 | 2c—a— T b -1
Le=<zZeR :0<zi<§—e,1§z§N—l,0<zN< > ,

where 0 < € < 1/2, to the function X; (a, b;c;2),1<ig < N-—1

Theorem 5. Let parameters a,by,...,by_1,c of the confluent hypergeometric function <I>§)N)
satisfy conditions (33). Then:

(A) the BCF (17) with elements L), 9(x), i(k) € I, defined by (18), (19), i(k) € Z,k > 1,
converges uniformly on every compact subset of the domain

m—a—sz@—l}

1 .
L:{ZECN:RGZZ'<,1§1§N—1,|ZN|< 5

2

to a function f(z) holomorphic in L;
(B) f(2) is the analytical continuation of the function X, (a,b;c;2),1 < iyp < N — 1, which
is holomorphic in some neighborhood of the origin in the domain L.

4. Conclusions
In the paper we have constructed and investigated the branched continued fraction

expansions of the confluent hypergeometric function CD(DN) ratios.

In particular, we have proven that the branched continued fraction expansions con-
verges to the functions which are an analytic continuation of the above-mentioned ratios
in some domains. The problem of studying wider convergence domains and establishing
estimates of the rate of convergence of the above-mentioned expansions still remains open.
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