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Abstract: Overseas students constitute the paramount talent resource for China, and, hence, overseas
talent mobility prediction is crucial for the formulation of China’s talent strategy. This study proposes
a new model for predicting the number of students studying abroad and returning students, based
on the grey system theory, owing to the limited data and uncertainty of the influencing factors.
The proposed model introduces change-point detection to determine the number of modeling time
points, based on the fractional-order grey prediction model. We employed a change-point detection
method to find the change points for determining the model length, based on the principle of new
information priority, and used a fractional order accumulated generating operation to construct a
grey prediction model. The two real data sets, the annual number of students studying abroad and
returning students, were employed to verify the superiority of the proposed model. The results
showed that the proposed model outperformed other benchmark models. Furthermore, the proposed
model has been employed to predict the tendencies of overseas talent mobility in China by 2025.
Further, certain policy recommendations for China’s talent strategy development have been proposed,
based on the prediction results.

Keywords: students studying abroad; returned students; change-point detection; fractional grey
prediction model

1. Introduction
1.1. Background

Due to rapid economic development and the deepening internationalization of China,
increasing numbers of Chinese students prefer studying abroad and, likewise, increasing
numbers of overseas talent are seeking a return to China [1,2]. The return of overseas talent
has significantly contributed to China’s rapid development, and, hence, these overseas
students are an important resource of high-level talents [3]. Moreover, with intensified
global competition for international talent, attracting more overseas students to serve
their home country has become an urgent issue for all developing countries, particularly
China [4]. Therefore, the return of overseas talent has become a prime focus of research.

Talent return is essentially talent mobility. The current research on talent mobility
primarily focuses on the influence factors [5], innovation and entrepreneurship [3,4], knowl-
edge management [6–8], and performance management [3,9], whereas few researchers have
concentrated on the challenges of prediction. Accurate predictions of the talent manage-
ment are crucial for China in helping the policy makers to comprehend the flow of overseas
talent in future, and, henceforth, to design appropriate policies. Therefore, research on the
prediction of Chinese overseas talent mobility is highly significant.

This study focuses on the prediction of Chinese overseas talent mobility, which in-
cludes the prediction of the number of Chinese students who study abroad and who return
to China. Since the predicted data set is a complex system, its tendencies of development
and external influences are uncertain. Hence, this study employs the grey prediction model
to explore the issue of prediction of Chinese overseas talent mobility.
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1.2. Literature Review

Grey theory is a theoretical approach to deal with uncertain information proposed
by Professor Deng in 1982 [10]. The grey prediction technique is one of the main parts
of grey theory and is an important branch of the modern prediction theory system. Grey
prediction models can be divided into univariate models, such as GM(1,1), and multivariate
models, such as GM(1,N), and most of the other models are developed based on the two
models [11]. During the past 40 years, grey prediction techniques have been widely used
in various fields, such as energy [12,13], traffic [14,15], economy [16,17], agriculture [18],
tourism [19,20], medicine [21,22], and the environment [23,24].

The core of the grey prediction model lies in its modeling based on dynamic system
equations, using accumulation generation and differential equations to characterize the
system evolution patterns [25]. It has certain advantages in solving practical problems [11].
Compared with traditional statistical analysis models and machine learning models, grey
models not only do not require statistical assumptions, but also do not need large amounts
of data [26]. In addition, the grey model is easy to implement and only requires at least
four points for modeling to obtain satisfactory results [27].

However, there are still some limitations of the grey prediction model to be improved,
and we focus on the implementation of the principle of new information priority and the
determination of the model length in this study. The traditional grey prediction models
employ the whole data set for modeling. However, the trends in the whole data set may
have certain changes in the process of time series generation, owing to the perturbation of
the external information. Thus, it is difficult to obtain a satisfactory performance for new
data prediction by using old data, when there are dissimilar trends between the old and
new data. The principle of the new information priority for the grey prediction models
proposed by Professor Deng can be employed to solve this challenging problem [28].

The three current approaches that can accomplish the principle of new information pri-
ority for the grey prediction models are the grey models with a rolling mechanism, such as
rolling-GM(1,1) [29], segment grey models, such as SGM(1,1) [30], and fractional order grey
prediction models, such as fractional GM(1,1) [31] and fractional Hausdorff GM(1,1) [32].
The grey prediction model with a rolling mechanism primarily implements the principle of
prioritizing new information by continuously discarding old data and adding new data.
However, the modeling length of this method is not conclusive. Since the grey model
requires at least four points for modeling [27], Akay and Atak [29] have employed four-
point modeling, whereas Wang et al. [33] utilized recent data with exponential growth
for rolling modeling. The studies of Yuan et al. [34] and Liu et al. [35] adopted different
modeling lengths. The problem of uncertainty of the modeling length i.e., the old data that
affects the modeling accuracy, cannot be solved. The segment grey model intercepts the
most recent continuous segment s of the whole data set for modeling, with the length l of
segment s, and l ≥ 4. Then, the length l that minimizes the mean absolute percentage
error (MAPE) is selected as the optimal length for the best input subset. However, the
method is only based on the principle of minimizing MAPE, and when the l is long, the
selected modeled data segment may still have varying tendencies. Further, the method is
similar to the brute-force parametric method in machine learning, which is time-consuming
and laborious. The fractional grey prediction model assigns different weights to the time
points by introducing the fractional order accumulated generating operation. Although
the fractional order enables the principle of new information priority [31], the old data still
need to be taken into account in the model fitting process, which affects the model fitting
and prediction.

The above analysis shows that these methods do not consider the varying trends
between the old and new data for the modeling based on the new information priority
principle. The fractional-order grey model considers the old data for modeling, and
the rolling and segment grey models require multiple modeling, which enhances the
modeling complexity.



Axioms 2022, 11, 432 3 of 14

1.3. Contributions

This study proposes a method that utilizes change-point detection for determining the
model length for the grey prediction model construction, based on the principle of new
information priority. Since change-point detection can detect abrupt changes in time series
data [36], we apply change-point detection to identify different trends in time series data
sets, and, then, the new data with the same trend are retained, whereas the old data with
different trends are discarded. The retained data are utilized to construct the grey prediction
model, and the length of the retained data is the modeling length. Since the retained data
are all new data, the method also satisfies the principle of new information priority.

In brief, this study proposes a fractional grey prediction model based on change-point
detection for overseas talent mobility prediction. This model uses change-point detection
to select the modeling data for determining the modeling length, and applies fractional
order accumulated generating operation to construct the grey prediction model. The
contributions from this study are given as follows.

(1) We studied overseas talent mobility prediction by employing the grey prediction
model for the prediction of overseas talent mobility.

(2) We propose a method for determining the modeling length of the FGM(1,1) model
using change-point detection based on new information priority.

(3) We propose a high-precision model for Chinese overseas talent mobility prediction.
We also provide certain feasible suggestions for the relevant management decision-making
departments, based on the prediction results.

The remaining part of this paper is organized as follows. Section 2 introduces the
GM(1,1) and FGM(1,1), and Section 3 describes the proposed grey prediction model.
Section 4 examines the proposed model for the prediction of Chinese students study-
ing abroad and returning students to China. Conclusion and future work are briefed
in Section 5.

2. GM(1,1) and FGM(1,1)
2.1. GM(1,1)

GM(1,1) is a basic for the grey prediction model, and the first “1” and the last “1”
implies the first-order differential equation and one dependent variable, respectively [37].
The modeling steps for GM(1,1) are given below.

(1) Set X(0) as an original non-negative sequence,

X(0) =
(

x(0)1 , x(0)2 , · · · , x(0)n

)
(1)

(2) Convert X(0) to the first-order accumulation sequence X(1) by 1-order accumulated
generating operation (1-AGO),

X(1) =
k

∑
i=1

x(0)i , k = 1, 2, · · · , n (2)

(3) Set Z(1) as an immediately adjacent mean generating sequence of X(1),

Z(1) = 0.5× x(1)k + 0.5× x(1)k−1, k = 2, 3, · · · , n (3)

(4) Construct grey differential equations as

x(0)k + a · z(1)k = b, k = 2, 3, · · · , n (4)

(5) Estimate the parameters a and b by least squares method

[a, b]T =
(

BT B
)−1

BTY (5)
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where

B =


−z(1)2 1
−z(1)3 1

...
...

−z(1)n 1

, Y =


x(0)2

x(0)3
...

x(0)n

 (6)

(6) Obtain the time response series of the grey differential equation,

x̂(1)k =

(
x(0)1 −

b
a

)
· e−a(k−1) +

b
a

, k = 2, 3, · · · , n (7)

(7) The final prediction value x(0)k is obtained by 1-order reverse AGO,

x̂(0)k = x̂(1)k − x̂(1)k−1, k = 2, 3, · · · , n (8)

2.2. FGM(1,1)

FGM(1,1) is a fractional version of GM(1,1) with a fractional order accumulation.
Therefore, the modeling process of FGM(1,1) is basically the same as that of GM(1,1). The
difference is that FGM(1,1) uses fractional order accumulation and inverse accumulation
operation to grey and whiten the model, respectively. The fractional order accumulation
sequence X(r) is obtained through the r-order accumulated generating operation (r-AGO),

X(r) = ∑k
i=1

(
k− i + r− 1

k− i

)
x(0)i , k = 1, 2, · · · , n (9)

where (
k− i + r− 1

k− i

)
=

(k− i + r− 1)(k− i + r− 2) · · · (r + 1)r
(k− i)!

(10)

The fractional grey differential equation is constructed as

x(0)k + a · z(r)k = b, k = 2, 3, · · · , n (11)

The time response series of the fractional grey differential equation is obtained as,

x̂(r)k =

(
x(0)1 −

b
a

)
· e−a(k−1) +

b
a

, k = 2, 3, · · · , n (12)

Consequently, the final prediction value x(0)k is obtained by the r-order reverse AGO,

x̂(0)k = ∑k
i=1

(
k− i− r− 1

k− i

)
x̂(r)i , k = 2, 3, · · · , n (13)

It is noteworthy that the FGM(1,1) model is equivalent to the GM(1,1) model when r = 1.

3. The Proposed Grey Prediction Model
3.1. Change-Point Detection

Change-point detection intends to find out the transition points that produce changes
in the process of time series generation, and is extensively employed in medical, financial,
meteorological, and other fields [38]. We employ the environmental time series change
point detection (EnvCpt) method proposed by Beaulieu and Killick [39] for change-point
detection, a method which has proven its effectiveness in the fields of environment [39],
meteorology [40], and tourism [41]. The EnvCpt method utilizes the maximum likelihood
estimation to estimate the change-points, besides selecting the model with the minimum
Akaike information criterion (AIC) as the best fitting model. Then, it relies on a pruned exact
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linear time (PELT) algorithm [42] for obtaining the optimal number of change-points. An-
other reason for choosing the EnvCpt method in this study is its easy implementation, and
the “EnvCpt” package in R can automatically apply the EnvCpt method for change-point
detection with 12 different models, comprising “Trend cpt + AR(2)”, “Trend cpt + AR(1)”,
“Trend cpt”, “Mean cpt + AR(2)”, “Mean cpt + AR(1)”, “Mean cpt”, “Trend + AR(2)”,
“Trend + AR(1)”, “Trend”, “Mean + AR(2)”, “Mean + AR(1)”, and “Mean” [43]. The
“Trend cpt + AR(2)” denotes the multiple change-points in the trend with the second-order
autoregression, it is calculated as:

yt =


λ1 + β1t + ϕ1yt−1 + ϕ′1yt−2 + et t ≤ c1
λ2 + β2t + ϕ2yt−1 + ϕ′2yt−2 + et c1 < t ≤ c2

...
...

λm + βmt + ϕmyt−1 + ϕ′myt−2 + et cm−1 < t ≤ n

(14)

where
yt is the time series,
λ and β are the intercept and trend parameters, respectively,
ϕ is the autocorrelation coefficients,
et is the normal-distributed white noise errors,
c is the timing of the changepoints between segments,
n is the length of the time series.
Due to the technical limitations, only the above model is presented in this section,

and details of the remaining 11 models can be found in the description of the “EnvCpt”
package [43] and in [39].

3.2. Combining Change-Point Detection and FGM(1,1)

This study combines change-point detection with FGM(1,1) to propose a new grey
prediction model suitable for prediction of Chinese overseas study talent, abbreviated as
CPD-FGM(1,1). The proposed model uses change-point detection to determine the mod-
eling length and FGM(1,1) to construct the CPD-FGM(1,1) model. The specific modeling
steps are given as follows.

(1) Determine the modeling length by employing the change-point detection. First, we
employ the EnvCpt method to find the n change points of the original time series. Then, the
original time series is divided into n + 1 sub-sequences. If the length of the last subsequence
ln+1 is greater than, or equal to, s, then the length of the CPD-FGM(1,1) model l is equal
to ln+1. Further, if the length of the last subsequence ln+1 is less than s, then the length of
the CPD-FGM(1,1) model l is equal to the sum of ln+1 and ln, while ensuring that l is also
greater than s, and so forth. Since FGM(1,1) requires at least four points for modeling [16],
we set s equal to 4. Furthermore, if n is equal to 0, the length of the CPD-FGM(1,1) model is
equal to the length of the original time series.

(2) Construct the proposed model by using FGM(1,1). The modeling process of CPD-
FGM(1,1) is identical to the FGM(1,1) in Section 2.2. Furthermore, the optimal fractional
order is estimated by particle swarm optimization (PSO). The PSO algorithm is one of the
most common tools for parameter optimization of grey prediction models [44,45], and has
some advantages over other meta-heuristics in terms of optimization capability, stability,
and robustness [46]. We used the EvoloPy framework in Python proposed by Faris et al. [47]
to implement the PSO algorithm. The following were the specific parameters of PSO: the
maximum number of iterations was 100, the particle number was 50, the search dimension
was 1, and the others were the default.

Figure 1 illustrates the construction process of the proposed CPD-FGM(1,1) model.
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3.3. Validation of the CPD-FGM(1,1)

We used the mean absolute percentage error (MAPE) to evaluate the accuracy of
prediction models, since it is a benchmark for model evaluating [26]. MAPE is calculated as

MAPE =
1
n ∑n

k=1
|xk − x̂k|

xk
× 100% (15)

The criterion for MAPE is shown in Table 1.

Table 1. The criterion for MAPE.

MAPE (100%) Accuracy

0–10 High
10–20 Good
20–50 Reasonable
>50 Inaccurate

4. Experimental Research

The primary data employed in this study included the number of both annual Chinese
students studying abroad and the returned students. The time period covered the years
2000 to 2019 owing to the availability of data. We exploited the data from 2000 to 2016 for
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the model fitting and from 2017 to 2019 for the ex-post testing. The dataset was procured
from the National Bureau of Statistics of China (http://www.stats.gov.cn/, accessed on
19 May 2022). Figure 2 shows the dataset used in this study. The number of students studying
abroad and the returned students have both grown significantly over the past decade.
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(unit: person).

To prove the superior performance of the proposed CPD-FGM(1,1) model, it was com-
pared with other prediction models, including ARIMA [48], GM(1,1) [49], FGM(1,1) [49],
segment FGM(1,1)(SFGM(1,1)) [50] and CPD-GM(1,1).

4.1. Results for the Students Studying Abroad

We used the “EnvCpt” package in R to auto detect the change-point for the number
of students studying abroad. The AIC was utilized to select the best fit model, as shown
in Figure 3. Thus, “Trend cpt + AR(2)” model was the best fit model, and it located the
change-point at the sixth point, as shown in Figure 2. Thus, the first six points (2000–2005)
and the last eleven points (2006–2016) of the dataset had different trends, and, as described
in Section 3.2, we dropped the data from 2000 to 2005 and selected the data from 2006
to 2016 for CPD-FGM(1,1) modeling. The optimal r = 0.326232 was estimated by PSO
algorithm to construct the best fit model given below.

x̂(0.326232)
k = (134000 + 1395239.467) · e0.0479(k−1) − 1395239.467

Table 2 shows the fitting and forecasting results of the CPD-FGM(1,1) and the other
modes for comparison. All of the models achieved high accuracy in terms of MAPE (<10%)
for the model fitting. SFGM(1,1) had the best accuracy in terms of MAPE (1.78%), followed
by CPD-FGM(1,1) in terms of MAPE (4.76%). For the ex-post testing, CPD-FGM(1,1)
and SFGM(1,1) achieved a high accuracy in terms of MAPE, and the former (0.93%) was
better than the latter (7.39%). Although the proposed CPD-FGM(1,1) model in this study
is not as well fitting as the SFGM(1,1) model, its ex-post testing ability exceeded other
models, including the SFGM(1,1) model. In this study, the ex-post testing capability was
the primary basis for testing the predictive power of the model. Thus, we concluded that
the proposed CPD-FGM(1,1) model was more suitable for forecasting the number of the
students studying abroad.

http://www.stats.gov.cn/
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2008 179,800 154,000 209,471 209,563 215,680 204,846
2009 229,300 215,600 238,538 238,628 244,584 245,289
2010 284,700 278,800 271,640 271,714 284,700 277,362 286,242
2011 339,700 340,100 309,335 309,378 339,700 314,533 327,855
2012 399,600 394,700 352,261 352,255 386,931 356,685 370,340
2013 413,900 459,500 401,143 401,067 430,227 404,486 413,900
2014 459,800 428,200 456,809 456,637 470,588 458,693 458,718
2015 523,700 505,700 520,200 519,901 508,452 520,165 504,962
2016 544,500 587,600 592,387 591,925 544,079 589,874 552,790

MAPE 7.09 9.77 9.77 1.78 8.27 4.76

2017 608,400 565,300 674,591 673,922 577,654 668,926 602,351
2018 662,100 586,100 768,203 767,273 609,323 758,572 653,791
2019 703,500 606,900 874,805 873,550 639,211 860,232 707,252

MAPE 10.76 17.09 16.94 7.39 15.60 0.93

4.2. Results for the Returned Students

The change-point detection was the same as in Section 4.2 for the number of returned
students. The best fit model “Trend cpt + AR(2)” was selected by AIC, as shown in Figure 4,
and it located the change-point at the sixth point, as shown in Figure 2. Thus, we selected
the data from 2006 to 2016 for CPD-FGM(1,1) modeling, and the optimal r = −0.0561162
was estimated by PSO algorithm to construct the best fit model given below.

x̂(−0.0561162)
k = (42000 + 922488.9462) · e0.030611153(k−1) − 922488.9462
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Figure 4. AIC values of different change-point models for the returned students.

Table 3 shows the fitting and ex-post testing results of the CPD-FGM(1,1) and the other
modes for comparison. Only the SFGM(1,1) model achieved high accuracy in terms of
MAPE (0.52%) for the model fitting. For the ex-post testing, the CPD-FGM(1,1) and ARIMA
models achieved high accuracy in terms of MAPE, and the former performed the best in
terms of MAPE (0.72%). Thus, we concluded that the proposed CPD-FGM(1,1) model was
more suitable for forecasting the number of returned students.

Table 3. Results for returned students prediction.

Year Raw Data ARIMA GM(1,1) FGM(1,1) SFGM(1,1) CPD-GM(1,1) CPD-FGM(1,1)

2000 9121 9116.921 9121 9121
2001 12,243 12,248.26 34,537.3 19,429.6
2002 17,945 15,365 42,485.7 30,473.2
2003 20,152 23,647 52,263.4 42,085.8
2004 24,726 22,359 64,291.3 54,181.2
2005 34,987 29,300 79,087.3 66,706.1
2006 42,000 45,248 97,288.4 79,624.6 42,000 42,000
2007 44,000 49,013 119,678 92,910.8 97,429.5 74,337.5
2008 69,300 46,000 147,221 106,545 117,575 108,177
2009 108,300 94,600 181,102 120,512 141,885 143,527
2010 134,800 147,300 222,781 134,800 171,222 180,356
2011 186,200 161,300 274,052 149,398 206,625 218,652
2012 272,900 237,600 337,123 164,298 249,348 258,417
2013 353,500 359,600 414,708 179,494 353,500 300,905 299,661
2014 364,800 434,100 510,149 194,978 367,331 363,122 342,406
2015 409,100 376,100 627,554 210,745 404,670 438,203 386,675
2016 432,500 453,400 771,979 226,792 433,790 528,808 432,500

MAPE 11.31 92.51 56.72 0.52 28.49 21.91

2017 480,900 455,900 949,642 243,113 577,654 638,148 479,914
2018 519,400 479,300 1,168,190 259,706 609,323 770,095 528,953
2019 580,300 502,700 1,437,040 276,566 639,211 929,325 579,659

MAPE 8.76 123.34 50.60 15.86 47.04 0.72

4.3. Robustness of the Proposed Model

To illustrate the robustness of the proposed model in this study, we verified the
prediction accuracy of the model for different test sets. We took the students studying
abroad as an example for proving the robustness of the proposed CPD-FGM(1,1) model in
comparison with other prediction models. The results are shown in Figure 4. The horizontal
coordinates are the different test sets and the vertical coordinates are MAPE. For example,
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the CPD-FGM(1,1) model obtained the minimum MAPE of the ex-post testing in the test
set from 2017 to 2019, while the ARIMA performed best in the test set from 2015 to 2019
(see Figure 5).
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Figure 5. The MAPE of the six comparison models for different test sets.

As shown in Figure 4, the proposed CPD-FGM(1,1) model achieved high prediction
accuracy in all test sets and obtained the minimum mean MAPE value. Compared with the
grey model, the proposed CPD-FGM(1,1) model obtained the minimum MAPE in all the
test sets, except 2019. Compared with the non-grey model, ARIMA, the proposed CPD-
FGM(1,1) model obtained the minimum mean MAPE and standard deviation, although it
was less than ARIMA in three of all test sets. Therefore, we concluded that the proposed
CPD-FGM(1,1) model had strong robustness and high accuracy for ex-post testing.

4.4. Prediction of the Students Studying Abroad and the Returned Students, from 2020 to 2025

We used the proposed CPD-FGM(1,1) model to predict the students studying abroad
and returned students from 2020 to 2025. The change-point for the dataset of the students
studying abroad was located at the 6th and 11th points, and the dataset for the returned
students was located at the 12th, by using the same method as given in Section 4.1. Thus,
we employed the data to construct the prediction model from 2011 to 2019 for the students
studying abroad, and the data from 2012 to 2019 for the returned students. The results are
shown in Table 4. By 2025, the number of the students studying abroad and the returned
students will reach 1,236,210 and 1,061,480 in China, respectively. Compared to 2019, the
rates of increase were 9.85% and 10.59% for the next 6 years, for the number of the students
studying abroad and the returned students, respectively, and the ratio of the latter to the
former also showed an increasing trend.

Figure 6 shows that the ratio of the talent returning to China has increased significantly
after 2000 and reached a high-point (85%) in 2013, followed by a small decrease. According
to our results, this ratio will steadily increase in the future and is expected to reach a new
high (86%) in 2025.

The interest of Chinese students in choosing to study abroad is increasing, and, at the
same time, a concurrently increasing number of overseas students prefer to return to China.
This study proposes several suggestions for the relevant departments to make reference
to the planning and management of overseas study abroad. (1) The government should
provide a high standard of public services, reduce administrative obstacles and complicated
procedures, and increase the convenience for overseas personnel to return to their home
country. (2) Provide the students with more favorable talent policies, such as start-up
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funds and housing subsidies. (3) Continue to deepen the reform and strengthen economic
development. The economic factor is still important for attracting talent back to China, and
it is possible to attract more talent back by continuing to strengthen economic development.

Table 4. Results of the prediction for students studying abroad and returned students, from 2020 to 2025.

Students Studying Abroad Returned Students

Raw Data Predict Values Raw Data Predict Values

2011 339,700 339,700
2012 399,600 399,598 272,900 272,900
2013 413,900 428,068 353,500 353,500
2014 459,800 463,280 364,800 370,529
2015 523,700 503,649 409,100 399,243
2016 544,500 548,924 432,500 434,911
2017 608,400 599,228 480,900 476,556
2018 662,100 654,858 519,400 524,079
2019 703,500 716,212 580,300 577,728
2020 783,768 637,943
2021 858,076 705,300
2022 939,751 780,485
2023 1,029,480 864,291
2024 1,128,020 957,620
2025 1,236,210 1,061,480
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Figure 6. Ratio of returned students to students studying abroad.

5. Conclusions and Future Research

Overseas students are an important high talent resource for China, and their manage-
ment is an important part of talent management. Accurate prediction of overseas talent
mobility is helpful for talent strategy formulation and promotion of the internationaliza-
tion of the workforce. We propose a fractional grey prediction model with change-point
detection to predict the number of students studying abroad and returned students, an-
nually. The fractional grey prediction model is suitable, owing to the limited and unclear
influencing factors for the dataset in this study. Change-point detection was employed
to determine the modeling length for the proposed prediction model. Considering the
final prediction results, the prediction accuracy of the proposed CPD-FGM(1,1) model
outperformed alternative models. The results demonstrated the effectiveness of using
change-point detection to determine the length of the fractional grey prediction model.
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We forecasted the number of students studying abroad and returned students, from
2000 to 2025 using the proposed CDP-FGM(1,1) model. It showed that the number of
students studying abroad and returned students will steadily increase and reach one
million by 2023 and 2025, respectively. It indicates that the interest of Chinese students
for going overseas is increasing, and, with the rapid development of China’s economy,
increasing overseas students prefer a return to China for work.

Compared with other grey prediction models, the proposed CPD-FGM(1,1) model
has the following advantages: (1) It can avoid the influence of old data on new data in
the modeling process. (2) It has strong robustness and high prediction accuracy. (3) It is
simple and easy to implement. The CPD-FGM(1,1) model still has some limitations, such
as the fact it is a univariate prediction model, which cannot fit the influence of exogenous
variables, and is not applicable to data with seasonality.

This study restricted itself to exploring the univariate forecasting problem while
excluding the influence of exogenous variables. Thus, a multivariate grey forecasting
model that can reflect the influence of exogenous variables on the number of students
studying abroad and returned students, will be a key research direction in the future. The
influence of COVID-19 on the dataset used in this study was not considered in this research.
Therefore, we could incorporate the situational prediction method to enhance the credibility
of the prediction results in a future work. Furthermore, we will explore the applicability of
the CDP-FGM(1,1) model to other areas, such as tourism demand or energy forecasting.
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