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Abstract: Our paper explores Hermite-Hadamard inequalities through the application of Abel-
Gontscharoff Green’s function methodology, which involves interpolating polynomials and Riemann-
type generalized fractional integrals. While establishing our main results, we explore new identities.
These identities are used to estimate novel findings for functions, such that the second derivative of the
functions is monotone, absolutely convex, and concave. A section relating the results of exploration
to generalized means and trapezoid formulas is included in the applications. We anticipate that the
method presented in this study will inspire further research in this field.
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1. Introduction

The theory of inequality has evolved quickly in recent years. It is important to consider
how closely related the convexity and inequality theories are to one another. Numerous
new definitions, generalizations, and expansions of novel convexity have been provided in
recent years, and related advancements in the theory of convexity inequality—particularly
integral inequalities theory—have also been acknowledged. The Hermite-Hadamard
inequality is one of the most significant causes of this development, among other significant
inequalities. This inequality is a well known for convex functions that have been established
in various ways and has a number of expansions and generalizations in the literature [1-5].
It defines upper and lower bounds for the integral mean of any convex function defined
over a closed and bounded interval encompassing the function’s endpoints and midpoint.
For a convex function 7, the Hermite-Hadamard inequality is stated as follows:

Gitg 17 (1) + T(c2)
1 2) - / d <T 1 T 2)
T( 2 ) G1-62 ) T(e)de < 2

The above inequality will hold in reverse directions if T is a concave function. This inequal-
ity has many fractional extensions like [6-8]. We further refer the reader to [9,10].
Compared to other function classes, convex functions possess a geometric interpreta-
tion and find numerous applications in various fields, including mathematics, statistics,
optimization theory, finance, decision making, and numerical analysis. They constitute
not only fundamental components of inequality theory but also serve as key elements
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motivating several inequalities. These functions are associated with not just continuity
and differentiability, but also inequalities. The exploration of integral inequalities is a
captivating pursuit within mathematical analysis. Foundational integral inequalities can
significantly contribute to the elucidation of subjective aspects of convexity. Convex func-
tions find utility across multiple domains within mathematical analysis and statistics;
however, their role within inequality theory is of paramount significance. In this context,
a plethora of classical and analytical inequalities have been established, most notably
the Hermite-Hadamard, Ostrowski, Simpson, Fejer, and Hardy-type inequalities [11,12].
The extensive body of literature concerning integral inequalities for convex functions un-
derscores the immense importance of this subject [13-17]. The convex function is defined
as follows:

Definition 1 ([17]). A real valued function T : [g1,62] — R is said to be convex (concave) if
the inequality
T(9s1+ (1= 9)62) < (Z) @1 (1) + (1 - 9) 7 (52)

holds forall 0 < @ < 1.

Fractional calculus has seen rapid progress in applied and pure mathematics because
of its widespread usage in image processing, physics, and other fields. Experts from various
fields have been quick to notice the fractional derivative. Classical derivations cannot be
used to model the majority of practical problems. Fractional differential equations deal
with the complexities of real-world problems [18-22]. For fractional integral operators,
several definitions have been used, including the Hadamard integral, the k-Riemann—
Liouville (RL) fractional integral, the Caputo-Fabrizio fractional integral, the RL fractional
integral, and the conformable fractional integral [23—-25]. One can extend such fractional
integral operators by including additional parameters, leading to the fractional inequalities
i.e., Minkowski, Hermite-Hadamard, Jensen, Ostrowski, and Grtiss [23,26-28]. Future
study is encouraged by these generalizations to provide additional innovative concepts
using unified fractional operators, and to discover inequalities employing such generalised
fractional operators.

We must keep in mind the preliminary equations and notations of a few well-known
RL and k-RL fractional integral operators in order to derive certain results and corollaries.
The RL fractional integrals, which are defined as follows, are the most traditional form of
fractional integrals that have been described in the literature.

Definition 2 ([29]). Let ¢1,62 € Rwith g1 < gp and T € L[g1,Go|. Then, the left-sided RL and
right-sided RL fractional integrals %‘g‘l T and 21 of order @ > 0 on a finite interval [g1, Go) are
1

62
defined by

X
1
@ _ _ @—1
JQTW%WWM/W P) T(@)de, x>
61
and .
@ _ _ @01
S T =gy [ (0= 07 1(9)de x<ex
X

respectively. The conventional Euler’s gamma function, denoted by T' (@), is defined in the following
manner:

@)= /Q‘U_le_gdg, Re(w) > 0. (1)
0
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Definition 3 ([30]). The definition of x-fractional integrals with order @ and parameters x > 0
and ¢ > 0 is as follows:

X
1 0
@,k _ o ?—1
S T = @ /(X ¢)= T(9)dy, Xx>6i
61
and
1 62
@K _ )21
ST = gy 00 T (0)dg, x<e

The x-gamma function denoted as T, as defined by Diaz et al. [31], can be expressed as follows:

I'v(@) :/<p‘ofle de.
0

Corresponding to the choice of x = 1, the classical RL fractional integral is obtained as given in (1).

Definition 4 ([28]). A real valued function T : I — R, where 1 is the range of continuous function
< :[61,62] = R. Then, the Jensen’s integral inequality,

fg(e)om(e) ;fT(g(e))dA(e)

T

7

62 - 62
JdA(e) JdA(e)
61 61

holds if T is continuous, provided that A is nondecreasing, bounded, and A(¢1) # A(62)).

The Abel-Gontscharoff polynomial and theorem for the two-point right focal" prob-
lem are referenced in [32]. The Abel-Gontscharoff polynomial for two-point right focal
interpolating polynomial can be stated as a special choice for n = 2.

G2
T(0) = (60 + (x—61) T (62) + [ GLe¥) T (W), @

61

where G(x, ) is the Green’s function.
The following four functions were introduced by Mehmood et al. [33] based on the
Abel-Gontscharoff Green’s function.

Gl(X l/J): 51*1/% forglglpgx; (3)
c1—x forxy <y <cy

GZ(X ll)) = X =62, for G1 S lp S X (4)
, lp—QZr forxglpSQZI

Gs(x, ) = xX—¢1, forg1 <y <x; .
#)7(;1/ fOI'XSlPSQZ;

G4(X lp) = G2 — l/J/ fOr G1 S l/] S X (6)
2= X» fOI'XSlPSQZ

Sarikaya et al. [34] derived the subsequent inequality of Hermite-Hadamard type for
fractional integrals.
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Theorem 1. Let T : [g1,62] — R be a positive function satisfying 0 < g1 < ¢z and T € L[g1, 6]
If T is a convex function over [g1, G|, then the following inequalities hold for fractional integrals.

61+¢ I'(@+1) 39, q@ T(51) + 1(52)
T( = 2) < 2(ngg1)‘”( T(62)+ 92 7(er) < B TEE, ()

where @ > 0.

Inspired by the research conducted by Khan et al. as reported in [29], we intend to
develop Hadamard-type fractional integral inequalities by utilizing appropriate Green’s
functions. The findings we present in the following section extend the current body of
knowledge and serve as a source of inspiration for researchers engaged in the study of
mathematical inequalities. Finally, we refer the reader to learn about fractional calculus and
its applications from the articles [35-41] and from the books [42,43]. The convex functions
and related inequalities can also be studied in [44-53].

2. Generalized Fractional Integral Inequalities via Special Green’s Functions

In this section, we derive generalized fractional integral inequalities via Abel-
Gontscharoff Green’s function given in (3).

Theorem 2. Let T be a function that is twice differentiable and convex on the interval [¢1,G2).
Then, the following double inequality holds for any positive values of @ and x:

<Kg1—|—(ﬂg2) < rK(w+K) C\\S(D'K (gl) < KT(gl)_l—wT(gZ) (8)

@tx ) (@-a)f @ @+

Proof. By substituting x = % into the Abel-Gontscharoff polynomial for the two-
point right focal interpolating polynomial given by Equation (2), we derive

e R R €2+/ (BLE22 ) 17 ()

o+ K @+ K @+ K
_ ®(g2 —61) 7 ( KG1 + @62 1"
= 1le1) + T2y (o) +/ ELEEER ) 1 (y)dy. ©9)

After multiplying both sides of Equation (2) by % and integrating with respect to
62—61)
X, we obtain

G2
[ @ _
= [ (x—c1)* 1T ()dx
1
k(g2 —g)x
@ G2
=% /(X 61)* ' 1 (61)dx
k(62 —¢G1)* o

62 62

G2
+ /(X-gl)%*l(x—gl)T’ (gz)der//G(x,lP)(x—m)

61 61

@
3

1y (w)dwdx)
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7' (g2) (g2 — ¢1) ¥ !

_ o <KT<g1><gz—g1>f+x
(92—91)% @ @+x
G2 G2
+// )x —c)¥ 1" (w)dlpdx)
61 61

By using the relation I'y (@ + x) = @I'x(x), this can also be written as

Mowx @(1'(¢2)(62 — 61))

ST (6r) =71(6) +

(62—¢1)% ¢ (@ +x)
62 62 (10
- //G X 9)(x — 1) 1" ()dydy.
c2—¢1) 61 61
From (9) and (10), we can write
KC1+ @ I'e(w+x
T < C1 g2> o ( g(D_K (Gl)
@ +K (GZ — gl) x 2

62
_ KG1 + @0Go B -1
_!<G( g /l/J> (gz_gl /G X9 (x —c)¥ dx) 7" (p)dy.  (11)

By employing the formula (3) and implementing certain simplifications, we arrive at

the following:
2
NSy = T (i — S (@ e (-
/G(X,IP)(X ¢1) dx—w(w+x) ((1/; ¢1) <K+1)(G2 c1) < (¢ 91)) (12)
61
and o
19, for g < < 552,
e ) Ik R AT A (13)
Ifg; <y < %, then by utilizing (12) and (13) in (11), we have
KG1 + @62 B -1
G( . ,IP) (€2_€1 /Gx, (x —61)* ldx
B (Uit 7<ngg1>%<w c)(§+1))
- @+0)(c—c1)F
(<g1—¢><w+x><gz—g1>%—x(tp—gl)@“+K<¢—gl><%+1><gz—g1>%)
(62— 61) (@ +x) (14)

K(p—c1)* !

- | <0.
(62 —61)* (@ +x)
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Again, for the choice % < ¢ < gz, and making use of (12) and (13) in (11), we get

G2
KG1 + 0Go ) @_q
G<,¢> - /G(Xr¢)(X_€l)” dx

@+x (g2 —61)* ¢/

@(61—62) K((l/}_gl)%ﬂ - -a)(F+ (e —91)%)

@ + K (w+K)(gz—g1)% (15)
aler—e)(ez—en)F —r((@—en)¥ —<¢—g1><%+1><g2—g1>%)
- (@+x)(c2—61)%
_ (62— 1) ¥ (@ —62) +x(p — 1)) —x(p — 61) %
(62— ¢1)% (@ + )

Let )
) = 2= 0@ =) +x(y — 1)) —x(p = )
(62— ¢1)* (@ +x)

It is notable that

h(cy) =0 and H(yp)=1-— M > 0. (16)
(62 —61)%
Therefore, followed by (15) to (16), we can write
KG1 + 0g @ 7
G(lz,lp) - / G(x¥)(x — 1) tdx <0, (17)
@ +x k(g2 —¢1)x

Since T is convex and implies T”(¢) > 0, and by making use of (14), (17) in (11), we
can write

(Kg1+(0g2> < I (@ +x) 39K 1 (1) (18)

@+ K T (g2—c1)* e

This establishes the left half of the inequality in Equation (8).
Now, we proceed to prove the right half inequality of Equation (8). To accomplish this,
we select x = ¢, in Equation (2), yielding

T(62) = Tle1) + (2= 1) 7' (2) + [ Glea,¥) 1" ()dy. (19)
61

Multiplying both sides by < and then dividing by (£ + 1), Equation (19) is equivalent to

62

T(Gl()o‘:—CZT(GZ) = 1(cy) + 262 :ogi)KT (62) | (DC—DFK/G(gZIlP) Y @)y (0)
61

by subtracting (10) from (20), we get the inequality

KT(Q])"‘CDT(GZ) o FK((D—’_K) %LDKT(Q )
@+ K (G2—¢1)x *2

G2
- C Gleay) - —2 G, -1 dy.
!(QHK (62, 9) — (gz_gl / () (x—6)* x| T (p)dy

(21)
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By including the Green formula (g1 — ¢) for g1 < ¢ < ¢ and Equation (12), we can express
it as follows:

©G(ca, ) o

Ao = [ G )(x—c1)*d

o x K(QZ_gl)K! () (x —g1)xdx

Cala-y) (- @)@ -a)(§ ) )
@+ K (62— 61)% (@ +x)

- K(lP-gl)((gz —c1)¥ — (lp—gl)%) .

(62 —¢1)* (@ +x)

By using the convexity of T and Equations (21) and (22), we obtain

kT (g1) +@7(62) >
@+x -~ (62—0¢1)

By combining the inequalities (18) and (23), we obtained the required result. O

7 1(61)- (23)

Remark 1. By substituting x = 1 into inequality (8), we obtain the following results as presented
in ([29], Theorem 2.2)

(91 +6”0€2> < r<w+129%wa((; ) < T(€1)+@T(€2).
w+1 (QZ_gl) 62 @+1

Theorem 3. Let T be a function that is twice differentiable on the interval [g1, 62|, and let @ and «
be positive. Then, the following inequalities hold.

(i) If| 1" | is an increasing function, then

k1(61)+@7(62) Tk(@+5K) nox 7" (c2) oK (g2 — 61)°.
@+K  (g-g)F gz‘””|§ 2cr@)@ran) Y

(i) If| 1" is decreasing function, then

k1(c1)+@71(g2) Tk(@+x) I 1 (61)

< 17" (g1)|cox (g2 — ';1)2; (25)
@+ K (62—¢1)

- 2x+w)(@+ 2xK)

(iii) If | 1" | is a convex function, then

KT(€1)+(DT((;2) o rK((O+K) %w,KT(gl)
@+ K (c2—¢1)x

(26)
_ max(|7"(61), [7"(62) D@x(s2 — 61)°
- 2(k+ @) (@ +«) '

Proof. (i) From (21) and (22), the increasing monotonicity of | T | and

i)

(—c1)(c2—c1)¥ —(p—¢1)*t >0,
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for g1 < ¢ < gp. Consider

KT(€1)+(DT(€2)_F(@+K) @K (gl)
@ +x (G2-c1)f

k7" (c2)| 7 _ N 24
_(gz—g1)f(@+7<)g[((¢ 61)(62 —¢1) (¥ —o¢1) )dll’

K1"(62)] <(€2—€1)L’?(€2—€1)2 _K(€2_Gl)f+2>
(62 =c)¥ (@-+1) 2 o2

_ x1"(e2)l(@(s2 — 61)?)
2(@ + x)(@ + 2x)

IN

This corresponds to inequality (24).
(ii) By employing (21) and (22) and following the same procedure as in case (i),
we derive

kT(e)+@T(62)  Te(@+5) can
W+ K (gz_gl)% ng T(gl)
62
K _ _ 2 _ 2+ "
< <@+K>/((‘” 62— 61)f = (p—c1)¥1) | 1" () ldy

61

K|T”( 1)| ((92 - Ql)%(QZ —61)? k(g2 — Ql)"?+2>

IA

(62— ¢1) % (@ +x) 2 @ + 2«

_ K|T '(g 1)\( ((;2—(;1)2)
20@+x)(@+2x)

(iii) From (21) and (22),

kT (e) +@T(62)  In(@+K) cax (Ql)‘
@ tx (c2—61)% €
G2 (27)
- — DN E —(p— )R
< ()2 (@+ 1) /((¢ 61)(g2—61)* — (¥ —¢1) )|T () |dy.

61

By using (27) and the fact that | 7"/ | is a convex function on the interval [¢1, ¢2], we get

KT(51)+(DT(§2) (C’U+K) (DK (gl)
@+ K (92—91)% o

< kmax|1"(¢)], |7” €2|
(@+x)((c2—¢1)*

@
3

J(G2—¢1)* — (P — Glﬁ“)dlp

_ max(| 1" (¢l 1" (GZ)DK‘D(QZ*Gl)
2(@ + ) (@ + 2x) ‘

This corresponds to inequality (26). O
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Remark 2. By setting x = 1 in inequalities (24)—(26), we derive the following results as presented
in ([29], Theorem 2.6)

’T(Ql)‘H@T(Gz) [(@+1) qo ()] < 7" (¢2)|@(g2 — 61)
@©+1 (c2—c)@ s TV = 2@+ )@ +2)
'T(€1)+@T(€2)_ @+ go (ol < 1" (c)l@(c2 — ¢1)?
@+1 (c2—c)? sz TV = (@ + 1) (@ +2)

and

‘T(Ql)‘i‘@T(Qz) l@+1) o e )‘ < maX(IT”(gl)I,IT”(gz)I)CD(gz—gl)z_

@+1 (2 —61)? s 2(@+1)(@ +2)

Theorem 4. Let T be a function that is twice differentiable on the interval [¢1, ¢2], and let @ and x
be positive. The following statements hold.

(i) If| 1" | is an increasing function, then

@+ K (62—¢1)
@K? (g2 — 61)* <
(@4 x) %3 (@ + 2K)

(0205 2R,

‘ (Kgl +(Dg2> _ I (@ +x)

(i) If| 1" is a decreasing function, then

T (61)

(Kgl +w€2) . I'(@ +x) Q@K
57
o+ K (gz_gl)? G2

@KZ(QZ_Ql)Z " 241
B (ci)+1<)‘g+‘°’(ci>+21<)(|T Col@=

n [ K61+ @62 (@+x)5H —2(@) %+
T @ +x 2 !

(iii) If | 1" | is a convex function, then

+

S -
@+ K (2—c1)¥ @ !

2 _ 2
< o le—a) (maX<|T”(51)
(@ +x) %3 (@ + 2K) @ +K

x ) e+l 241
T//( Q(lo‘:—czg2> T//(€2)|)<(w+ ) 5 2(w) ))

Proof. (i) By using (11), (14) and (15), we get

’ (K€1+@€2>_ T (@ 4 K) ox <g1>’

7

T//(K‘;l +w€2>‘><w)‘f+l (28)

7

—i—max(
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kg1 + G2 [ (@ + %) qox
( @+ >_<gz—g1>‘5“€2“91)
xg1+wg2
_ F KG1 + @62 B -1
= g[ (G( o /1/1) (gz—gl /Gx, )(x —c1)% dX)T (p)dy
G2
KG1 + @G 1
+ / (G<c’o+x'¢) (gz_gl/Gx, P)(x —c1)* dx) "(p)dy (29)
Kg1+wg2
e 62
_ K . @41 dv + B 2+1
T — g/ (9 — 1) F1 1 (9)dy / (-en)

@
[3

(9= 61) 7" ($)dp).

The triangle inequality, and the increasing monotonicity of | 7/ (¢)|, enabled us to obtain
the following from Equation (29):

+2 (-9 -~ (e —¢1)

| (K€1+@€2> r (w+;<) S 1 (c1)

@+ K (62— ¢1)¥ e
K KG1 + @G2 @41
: B[RO iy A
(@+x)(62—¢1)* @+ K &

62

e [ (- + e -9 ~ (- F (9 —c)dy
- (62 —¢1) n K61+ @62 @41 1" ((D"’"K)%-H _2(@)%+1
a (w+K)‘f+3((D+2K)<T ( @+ K @) T (gz)|< 2 ))

This completes part (i) of the result.

(ii) The proof of this part can be carried out using the same procedure as described above.

(iii) Given that every convex function T defined on an interval [¢1, 2] is bounded
above by max 7(¢1), T(g2), we have the following inequality:

KG1 + @ T'e(@w+x
‘T( G Qz) L@+ 8) qax (o
@+ K (62—¢1)*

=8
I
_|
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7

n K61+ @62
T w+K

K 1"
= @0t (ma"(“ (&)

KG1+@6p

<[ -en®ap e max( |1 (B9 | )
62
- ((w—g1>‘?+l+‘f(gz—w><gz—g1>f—(w—g1><gz—g1>f)d¢>.

By calculation, we get inequality (28). O
Remark 3. By choosing « = 1, we get the results presented in ([29], Theorem 2.4).

Theorem 5. Suppose that T is a function that is twice differentiable and | 7" | is convex on the
interval [g1,G2). Then, for @, x > 0, the following inequality holds:

KG1 + @Go (@ +x«
T< o176 )— d g%?—'KT(Ql)
@+ K (gz—gl)x 2

(g2 —61)* w707 + 170k +12¢%) (30)
_6(co+K)3(w+3K)<|T (c0)] @ + 2k

902
+[1"(c2)]| (K +23 + 121() )

Proof. By substituting i = 061 + (1 — 0)g2 with ¢ € [0, 1], Equation (29) can be written as

<Kg1 +c@g2> B rK((D—FKQ %?—'KT (c1)
@+ K (GZ_QI)K 2
= z ( - / (061 + 62— 062 —¢1)* " 1" (061 + (1 — 0)c2)
(@+x)(c2—61)* /

@
K

@
X (62— ¢1)do — ((le te—0g—¢1)* T+ - (gz — 061

x\o

@+K

oIS}

-G+ QGz)(Gz —61)* —(061+62—062 —61)(62 — Gl)")

x 7"(061+ (1 —0)62) (62 — Ql)dQ>

1
_ —K S N2l 24
R — (/(1 Q¥ (2 —61)

=D

K
@+K

R
><T"(Q€1+(1—Q)€2)(€2—€1)d9+/ ((1—(’)“+1(92—€1)"Jrl
0
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) @ @
+ ;Q(Qz —c) T = (1-0)(c2—¢c1) "+1>

(061 + (1= Q)e2) (62— 91)d9>

— 1) 2+2 1
:_(;(fi)(gg:)_;)g /(1—Q) 1" (01 + (1 - 0)ga)do

@0+K

(D+K

+ / L (0g1 + (1 - 0)g2)do (31)

w+x
@ S+l
+ / (e+=0=1)" 1" (0c1+ (1 - 0)ca)de
0

1
_ xle—q)? (/(1 — )" 1" (0c1 + (1 - 0)2)de

@+ K
0

/ 1 —0— *Q 7" (0614 (1 —@)g2)do
0

Taking absolute value on both sides, using the fact1 — ¢ — € < 1 — ¢ and applying
triangular inequality, we get

KG1 + @ T+«
‘T( G1 g2>_ ( i @,K (gl)
W+ K ((;2—91)" Gy

1
S1y_m _
w+K (O/ 17" (061 + (1 = @)g2)|de

_K_
@+K

+ / (1—Q—%Q)’T”(QQ1+(1—Q)92)’@
0

_K_
0+K

(e — )2
<Ml [ (1-0- Do) (ol1" (el + (1= 0l 7" () de
0

1

+ /(1 —0)* (o]t (¢1)| + (1 - @)\T”(gz)\)de)

0
K3(€2 - '51)2 7 (7("‘72) + 170k + 12K2)
~ 6(@+x)3(@ + 3k) (‘T | (@ 4+ 2x)

H1"(c2)] (9(‘2;2) +23@ + 12K)),

This proved the desired result. [

Remark 4. By setting k = 1, we obtain Theorem 2.8 presented in [29].
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Theorem 6. Suppose T is a function that is twice differentiable and | 7" | is convex on the interval
[G1,G2). Then, we formulate the following inequality:

k7(61) +@T7(62) _ Tel@+%) o

@+x (2 —on® e TV
KCO(Q -G )2 " (‘D+5K> "
= 3(co+1c2)(c041-3;<)<|.r (€5 120 T <€z)|>-

Proof. Let ¢ € [0,1] and ¢ = 0¢1 + (1 — 0)62. Then, from (21) and (22), we obtain

k1(c1) +@71(g2) Tk(@+x) gox ¢

@+x (2 —enf 5 TV
0
- —* PN 1— B
(QZQI)?(‘D+K)1/<(QZ e1)* (eer+ (1= elez — 1)

(32)
— (061 + (1 —0)g2 — Ql)f+1> 7" (061 + (1 - 0)62) (62 — 61)dg

1

2

€2_€1 @41\ i _

o x / — )% 1) 1 (061 + (1 - 0)c2)de.
0

By considering the relation of absolute value in an inequality and using the convexity
of | 77|, we get

k7(61) +@7(62) _ Te(@+K) o

@ (gl)
@+x (G2—¢1)* Ve
k(g2 —¢1)? f
2 — 61 Q
S T otk / —0)¥*1)|1" (g1 + (1 - 0)s2)|do
0

| /\

see —auf /( —0—(1-9) 1) (el 7" (61)| + (1= 0)|1"(c2)|)do
0

o+ K

Remark 5. Corresponding to the choice x = 1 in Theorem 6, we obtain the result explored by
Muhammad Adil Khan et al. in ([29], Theorem 2.10).

(@ + 5x)
2(@ + 2x)

T”(Gl) T’ (62)

(g2 —61)? (
"~ 3(@ +x)(@ + 3x)

This completes the proof. [

Theorem 7. Suppose that T is a function that is twice differentiable and that | 7" | is concave on
the interval (g1, G2|. Then, the following inequality,

‘ <K€1+@€2>_ r (C’Z7+K (DK (Gl)

@+ K (62— ¢c1)% e

K(ca—c)?( x|y x(c1+262+ Pca)
- @+ K (D+2KT @ + 3k

K
2(@ +x)

+

" (K(gl + 26> + 3%€2) )

3(@ +x)

)

holds.
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Proof. It follows from (31) and using Jensen’s integral inequality that

KG1 + G2 . FK<(D + K) @, K
’T( o x > (Q_gl)%dg; T (61)
1
Y . J(1=0)x " oe1 + (1 - e)2)de
e Fal I (COR ;
0 6f(1 —0)* do
1
o J(1—0—20)(e61+ (1 —@)g2)do
@ n| 0
e 2|
0 J(1—e=e)de
< k(g2 — ¢1)? K o[ (61 + 267+ L6o) (@ + 2k)
- @+x @+2rc| (@ + 2x) (@ + 3x)

K
WICEDIN

1" 2K2(§1 + 267 + 3%€2)(a7 =+ K)
6K (@ + 1)?

)

_ K(e2—61) K » (K61 + 3@g + 2K,
©+x \2@+r)|" 3(@ +x)

n (K61 + @62 + 2K6
T @ + 3% ’

Hence, the required result is proved. O

L K
@ + 2K

Remark 6. By setting x = 1in Theorem 7, we arrive at the result presented in ([29], Theorem 2.12).

Theorem 8. Suppose that T is a function that is twice differentiable and that | 7" | is a concave func-
tion on the interval [1, G2]. Then, for any positive values of @ and x, the following inequality holds:

T(e) +@7(62)  Ix(@+K) qor
ox o e T (61) )
k(g2 — 61)* (91(@+5K)+2€2(@+2K))‘
~ 2(@+x)(@+ 2x) 3(@ + 3x)

Proof. By using Jensen’s inequality on (32), we get

T(e) +@T(e2)  T(@+K) qax
@
@+ K (G2—¢61)*

1
)2
‘52_(51 (1 )2+l
= o tx) / —0+1—-(1-0) )dQ
0

1

Of(l —0—(1-9)%*!) (g1 + (1 - 0)g2)de

X |T :
—(1—p\%+1
J( o+1—(1-o) )d@

7 ( (@ +5x)61 + 262 (@ + 2K) >
3(@ + 3x) '

Kk@(g2 —61)°
- 2(@+x) (@ + 2K)
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Remark 7. The choice of x = 1 in Theorem 8 gives the result presented in ([29], Theorem 2.14)

Remark 8. If an alternative approach is taken using Green’s function Gy, as defined in Equation (4),
analogous results to those expounded in this article can be obtained. Nevertheless, the utilization
of the method proposed in this article in conjunction with Green’s functions Gs (described by
Equation (5)) or Gy (described by Equation (6)) exclusively reproduces previously established
findings. This strategic choice substantiates the exclusive focus on Green’s function Gy within the
discourse of this article. As an intellectual exercise, interested scholars are encouraged to explore the
remaining three Green functions to elicit their respective outcomes.

3. Some Relations of Means with Trapezoid Formulae

In this section, we will present some propositions that highlight both the practical use
and immense significance of our outcomes. At the same time, we will verify the validity of
the conclusions by using special means of real numbers ¢1 and ¢,, where g1 # ¢,. These
propositions present the estimates of differences of generalized means that are concluded
from our main results. First, we need to recall the following relations. For 1,62 > 0, one of
the important average values is

(i) The Arithmetic mean:

_l’_
A=Alg,g) =2 5 02, (34)
(ii) The Harmonic mean:
2
H=H(c1,62) = +— (35)
gt
(iii) The logarithmic mean:
6261
L = ;
(61,62) ey Ing, © # 62 (36)
(iv) The generalized logarithmic mean presented in [54] is defined as follows:
gm+1 _ gerl
. 1 m € Z\{-1,0},¢1 # 2. (37)

Lin(61,62) = (m+1)(g2—c¢1)’

Proposition 1. Lef g1,62 € R, ¢1 < g2, then we can derive the following inequalities:

2
| A1, e52) — L(eS1,¢52)| < (g2 —61)°

12 !
G1 —c1)2
|A(51,e52) — L(eS1,¢52)| < %,
max(e!,e%?) (2 — 61)°
A5 e52) — L(e51 e52)| < !
|A(e1,e52) — L(e,e2)| < W

and

(62— 61)%(e51 + %2)
24 )

|A(e51,652) — L(e1,652)| <

Proof. By utilizing Theorem 3 and performing some simplifications, we can express them:

KT(6) +@T (c2) @ 7<x—g1>‘5-%<x>dx L o1 (e2)l(e2 — 1)

@+ K _K(gz—gl)% 2(@+K)(@+2K>

¢1
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By substituting ¥ = @, T(¢) = ¢° and using simple calculation, we obtain

2
egl —+ gQZ g€2 — egl < 692 (g2 — gl)

2 (c2—61)| ~ 12

Now, making use of (34) and (37), we arrive at the result

2] (c2 — 61)?

|A(€51,652) — L(e1,¢52)| < =

The remaining inequalities can be obtained by applying the same procedure as in parts (ii)
and (iii) of Theorem 3.

Theorem 6 can also be proved by using same function as in Theorem 3, after making
some simplifications to Theorem 6

KT(61) +@7(62) @ 7 e
g K(gz_gl)fg{(x ¢ T (N)dx
k@ (g2 —61)* 7 (@ + 5x) /)

< sp s (e (gt 7))

By substituting ¥ = @, T(¢) = €° and using simple calculation, we obtain

egl + 692 eQZ — egl

< (62— 61)?(e51 + e%2)
2 (62—¢1)

- 24

By employing (34) and (37), we obtain the following result

(62— 61)*(e51 + ¢%2)

A(eS1 e52) — (€51 e52)] <
|A(ef1,e52) (e51,e%2)| < >4

O

Proposition 2. Let ¢1,¢2 € R with ¢1 < ¢y, then the inequalities hold:

_ 21 -—3
21 -—3
B - G2 —61)°I6
H ' (¢1,62) =L ' (61,62)| < %,
-1 -1 max(‘g??’ ’ €£3‘><€2—§1)2
H Y(¢1,62) — L7 Y1, 60)| < :

and
(c2— 91)2‘91‘3 +g2‘3‘
12

H™ (g1, 62) — L_1(€1,€2)‘ <

Proof. By utilizing Theorem 3 and simplifying the expressions, we derive

KT(6) +@1 (c2) @ 7@—mﬁ*Tuw L o1 (e2)l(e2 — 1)

@+x Ck(ca—c1)t 2(@ + ) (@ + 2x)

¢1
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By substituting ¥ = @ and T(g) = é, where ¢ > 0, we obtain

2|2 =61
<
6

G2+61 Ing—Ing
26162 (62 —61)

Now, by using Equations (35) and (36), we get

— 2|~-=3
‘H—1(€1/€2) - L—l(gl,gz)‘ < (QZQ;)‘QZ)

Similarly, by some simple calculations in Theorem 6,

kT(e)+@7(2) @ 21
. o2 —en)® /(X c1)* T (x)dx

_ 32
< 3((1;@_&6{2)(@9_1}_)3}() (‘T”(gﬂ‘wgm)) + ‘TH(Q)‘);

using the same polynomial function, we obtain

(¢a — gl)z‘gf +g£3‘
12 '

G2+61 Ingp—Ing
26162 (62—¢1)

which is the required result. O
Proposition 3. Let ¢1,62 € RT with g1 < ¢o, then the inequalities

(62 —61)*|m(m —1)|c5 >

|A(cT, 65') — Lin(c1,62)| < o ,
_ 2 71 m—2
|A(gH, ¢h') — Lin(g1,62)| < (62— ¢1) |ml(2m Jlex ,
max ( [m(m —1)|g7 2, [m(m —1)|¢5%) (¢2 — ¢1)?
|A(cT,63) — Lin(61,62)| < ( B )

and

2
m om\ _m < (gZ_gl) _ m—2 m—2
AT, 68) = Lin(er, e2)| < <22 (Jm(m — 1) (72 + ¢4 %))
are true for m € Z with |m(m —1)| > 2.

Proof. Using Theorem 3 and making some simplification, we get

KT (c1) +@T(c2) @ 7 o @x|1"(c2) (g2 — 61)°
lw+x i k(e —c1)F /(X_gl)K "1 (0dx| < 2(a)+12<)(w2+21c1) '

61

By substituting ¥ = @ and T(¢g) = ¢, where ¢ > 0 and |m(m — 1)| > 2, we obtain

gT 4 g? QEH—H . grln+1

_ |mm =162 - e1)?
2 (m+1)(g2 —¢1) '

- 12
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Now, by using Equations (34) and (37), we get

(62— c1)%|m(m — 1)|gh 2
|A(cT,65) — Lin(61,62)| < o 2

Similarly, by some simple calculations in Theorem 6,

KT +eT(e) @ fo e
ot x K(gz_gl)fgoc ¢ T (Vi
k(g2 — ¢1)* " (@ + 5x) 7

= 3(@+;<2)(a>-1w);c)(‘T ()52 Tl (92)0/

using the same polynomial function, we obtain

1 m-+1 2
¢+ eyt —¢f (62 —¢61) m—2 | m—2
_ < -1 .
T e | S (e DI )

O

4. Concluding Remarks

In mathematics, inequalities play a crucial role as they are widely employed in di-
verse fields of study. They enable us to compare and contrast the relative magnitudes of
distinct mathematical expressions, thereby facilitating a deeper comprehension of their
interrelationships. Inequalities are not only critical for theoretical purposes but also have
significant practical applications in optimization problems and statistical data analysis.
The comprehension of inequalities is a fundamental aspect of mathematical literacy as
it enables individuals to evaluate and interpret quantitative information and make well-
informed decisions in various aspects of their lives. The inequality theory makes use of
well-known results such as the Holder’s and Jensen’s inequalities to derive compelling
consequences. In the work presented, we used some special Green’s functions and utilized
the Jensen’s inequality to establish the fractional Hermite-Hadamard type inequalities. We
have adopted an innovative approach to obtain the novel findings. Specifically, we have
utilized quadrature formulae to estimate differences between particular average values.
The third section of our research deals with practical applications to real-world problems.
In this section, we estimate the errors of generalized means differences that are very impor-
tant in real life problems. Going forward, our objective is to explore additional inequalities
by integrating Green’s functions G2, G3, and G4. We hope that our research will encourage
other scholars who are working on fractional integral inequalities using different types of
convex functions.
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