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Abstract: Many different number systems have been the topic of research. One of the recently studied
number systems is that of hybrid numbers, which are generalizations of other number systems.
In this work, we introduce and study the hybrid hyper k-Pell, hybrid hyper k-Pell–Lucas, and
hybrid hyper Modified k-Pell numbers. In order to study these new sequences, we established new
properties, generating functions, and the Binet formula of the hyper k-Pell, hyper k-Pell–Lucas, and
hyper Modified k-Pell sequences. Thus, we present some algebraic properties, recurrence relations,
generating functions, the Binet formulas, and some identities for the hybrid hyper k-Pell, hybrid
hyper k-Pell–Lucas, and hybrid hyper Modified k-Pell numbers.

Keywords: hybrid hyper k-Pell; hybrid hyper k-Pell–Lucas; hybrid hyper Modified k-Pell numbers;
generating functions; the Binet formula; identities
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1. Preliminaries and Background

For some years now, many numerical sequences have attracted the attention and
curiosity of various researchers. The best known is the famous Fibonacci sequence, {Fn}n≥0,
defined by the recurrence Fn = Fn−1 + Fn−2, with initial conditions F0 = 0 and F1 = 1.
Many generalizations of Fibonacci numbers have been considered in recent years. One of
them is the Lucas numbers, denoted by {Ln}n≥0, defined by the same recurrence relation
of Fibonacci, but with different initial conditions given by L0 = 2 and L1 = 1.

Another important sequence, closely related to the Fibonacci sequence, is the Pell
sequence. The Pell sequence, denoted by {Pn}n≥0, is a sequence of integers that was first
studied by mathematician John Pell in the 17th Century and is defined by the recurrence
relation Pn = 2Pn−1 + Pn−2, with initial conditions P0 = 0 and P1 = 1 [1,2]. These
numbers have many interesting properties and have been studied in various fields such as
number theory and combinatorics. For example, Pell numbers can be used to solve certain
combinatorial enumeration problems and to find square triangular numbers. For those
interested in learning more about number sequences, you can consult the encyclopedia [3];
for applications of these numbers and their relatives, you can consult the books [4,5].

Many variations of the Pell and Fibonacci sequences have been studied, such as
Pell–Lucas sequences, denoted by {Qn}n≥0, which are characterized by the same linear
recurrence of Pell numbers, but with different initial conditions, namely Qn = 2Qn−1 +
Qn−2, with initial conditions Q0 = 2 and Q1 = 2.

In general, research on numerical sequences advances by considering generalizations
such as arbitrary coefficients, arbitrary initial conditions, or the extension of an index to
integers. For each generalization considered, it is interesting to find closed formulas of the
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Binet type, or the generating function, in order to seek better mechanisms for computing it
without using recurrence. It is also interesting to look for identities that involve them and
study their growth and convergence.

Still on Fibonacci and Pell numbers, and their generalizations, we would like to
highlight some articles to better contextualize the sequence that we will define and work
on here. The k-Fibonacci numbers were studied in [6] and defined by

Fk,n = kFk,n−1 + Fk,n−2,

with Fk,0 = 0 and Fk,1 = 1. Similarly, a generalization for Pell numbers, k-Pell numbers, was
introduced by the second author in [7], denoted by {Pk,n}n≥0 and defined by

Pk,n = 2Pk,n−1 + kPk,n−2, (1)

with Pk,0 = 0 and Pk,1 = 1. Other important generalizations are the k-Pell–Lucas, {Qk,n}n≥0
and Modified k-Pell, {qk,n}n≥0, defined, respectively, by the recurrences relations

Qk,n = 2Qk,n−1 + kQk,n−2, (2)

qk,n = 2qk,n−1 + kqk,n−2, (3)

with Qk,0 = Qk,1 = 2 and qk,0 = qk,1 = 1 as the respective initial conditions.
These sequences were investigated, and several results, such as the Binet formula,

generating functions, Cassini’s identities, as well as the matrix approach were established
(see more about these sequences in [7–12] and the references therein).

Now, consider the results given by Dil and Mező in [13]. The authors introduced a
symmetric algorithm obtained by the recurrence relation ak

n = ak
n−1 + ak−1

n , and studied a
generalization of the Fibonacci and Lucas numbers, the hyper Fibonacci numbers and hyper
Lucas numbers, as an application of the results obtained with the symmetric algorithm.
The sequence of hyper Fibonacci numberswas defined as

F(r)
n =

n

∑
i=0

F(r−1)
i ,

for non-negative integers n and r, with initial conditions F(0)
n = Fn, F(r)

0 = 0, and F(r)
1 = 1.

Motivated by the hyper Fibonacci numbers, in [14] was introduced the “hyper” ap-
proach for the k-Pell, k-Pell–Lucas, and Modified k-Pell sequences. The authors established
some properties and discussed the concavity, convexity, log-concavity, and log-convexity
properties for these sequences.

On the other hand, there is a natural extension that we can make to numerical se-
quences, considering the numerical set in which its elements are inserted. Different number
systems have been studied, and the relationship with numerical sequences has been ex-
plored. Horadan in [15] introduced the first extension of this type by defining the Fibonacci
numbers in the complex and quaternions number systems. Horadam introduced the
concept of complex Fibonacci numbers as the Gaussian Fibonacci sequence {GFn}n ≥ 0
defined by

GFn = GFn−1 + GFn−2,

with initial conditions GF0 = i and GF1 = 1, where i is the imaginary unit (i2 = −1) and
Fn is the n-th Fibonacci number (for instance, see more in [16]). It was shown that GFn =
Fn + Fn+1i, and motivated by this equality, the Fibonacci quaternions were introduced,
defined by the recurrence relation

Qn = Fn + Fn+1i + Fn+2 j + Fn+1k,

where i, j, k are units with the properties i2 = j2 = k2 = ijk = −1 and Fn is the n-th
Fibonacci number.
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Complex, hyperbolic, and dual-numbers are two-dimensional systems that have been
studied extensively over the last century for their potential applications in various fields. In
the realm of Physics, these numbers are used to represent space–time through the concept
of a hyper complex ring. This suggests that space–time can be seen as a structure created
by the algebra of hybrid numbers. In other words, the study of hybrid numbers can help
us understand and explain all types of space–times (for instance, see [17]).

The hybrid number system was introduced by Özdemir in [18]. A hybrid number can
be viewed as a generalization of the complex, hyperbolic, and dual-number. The set of
hybrid numbers, denoted by K, is defined as

K = {a + bi + cε + dh : a, b, c, d ∈ R, i2 = −1, ε2 = 0, h2 = 1, ih = −hi = ε + i}.

The addition of hybrid numbers is performed componentwise, and this operation is
commutative and associative, while the multiplication is not commutative, but has the
property of associativity. For more details related to this number system, see the work
developed by Özdemir in [18], where the author examined this new ring of numbers, which
is non-commutative and has the unit element. The sequences of hybrid numbers are studied
from several perspectives using, for example, the analytic and matrix approach (see [19,20]
and the references therein). It is important to highlight hybrid Fibonacci numbers here. This
sequence was introduced by Szynal-Liana and Wloch in [19]. The authors derived some
properties using classical Fibonacci identities. The “hybrid” version of the Pell, Pell–Lucas,
and Jacobsthal numbers was considered by the same authors (see, for instance [21–23]).

Consider the hyper k-Pell, the hyper k-Pell–Lucas, and the hyper Modified k-Pell
numbers that were introduced by Catarino, Alves, and Campos in [14]. Some properties
and identities satisfied by these sequences are present in [14]. In this paper, it is our
intention to introduce new sequences that are the “hybrid version” of them.

In order to study these new sequences, we need to study other properties, generating
functions, and Binet’s formula of the hyper k-Pell, hyper k-Pell–Lucas, and hyper Modified
k-Pell sequences, which will be stated in the next section. The last section is dedicated to
the new sequences, which were the subject of a study motivated by the work of Yasemin
in [24] with the hybrid hyper Fibonacci and hybrid hyper Lucas numbers.

2. “Hyper” Version of the k-Pell, k-Pell–Lucas, and Modified k-Pell Numbers

As we have mentioned before, in this section, we recall the hyper k-Pell, k-Pell–Lucas,
and Modified k-Pell sequences introduced in [14] and present some properties that will be
necessary for the study of the new sequences introduced in the next section of this paper.

For non-negative integers r, n, and k, the n-th term of the hyper k-Pell, hyper k-Pell–
Lucas, and hyper Modified k-Pell sequences is defined, respectively, as follows:

P(r)
k,n =

n

∑
i=0

P(r−1)
k,i , P(0)

k,n = Pk,n, P(r)
k,0 = 0, P(r)

k,1 = 1, (4)

Q(r)
k,n =

n

∑
i=0

Q(r−1)
k,i , Q(0)

k,n = Qk,n, Q(r)
k,0 = 2, Q(r)

k,1 = 2(r + 1) (5)

and

q(r)k,n =
n

∑
i=0

q(r−1)
k,i , q(0)k,n = qk,n, q(r)k,0 = 1, q(r)k,1 = r + 1. (6)

It is clear that taking r = 0 in (4)–(6), the k-Pell given by (1), k-Pell–Lucas given by (2),
and Modified k-Pell numbers given by (3) are obtained, respectively.
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2.1. Some Properties of These Sequences

This subsection is dedicated to introducing some properties that are satisfied by the
sequences {P(r)

k,n}n≥0, {Q(r)
k,n}n≥0 and {q(r)k,n}n≥0, which will be necessary for the study of the

new numerical sequences that will be introduced in the next section.
Given the recurrence relation (1) of k-Pell numbers, we immediately derive the recur-

rence relation for {P(0)
k,n }n≥0 that coincides with the recurrence relation of the sequence of

k-Pell numbers. Also, we can obtain the recurrence relation for {P(1)
k,n }n≥0. In fact, taking

into account the recurrence (1) and the initial conditions of the k-Pell sequence, we obtain:

P(1)
k,n =

n

∑
i=0

P(0)
k,i =

n

∑
i=0

Pk,i = Pk,0 + Pk,1 +
n

∑
i=2

Pk,i = 1 +
n

∑
i=2

Pk,i

= 1 +
n

∑
i=2

(2Pk,i−1 + kPk,i−2) = 1 + 2
n

∑
i=2

Pk,i−1 + k
n

∑
i=2

Pk,i−2

= 1 + 2
n−1

∑
i=0

Pk,i + k
n−2

∑
i=0

Pk,i = 2P(1)
k,n−1 + kP(1)

k,n−2 + 1.

In a similar process, using the previous recurrence relation and the initial conditions,
the recurrence relation for {P(2)

k,n }n≥0 is given by P(2)
k,n = 2P(2)

k,n−1 + kP(2)
k,n−2 + n.

Under the previous discussion, we have the next result.

Proposition 1. For n ≥ 2 and a non-negative integer k, the following recurrence relations hold:

P(0)
k,n = 2P(0)

k,n−1 + kP(0)
k,n−2, (7)

P(1)
k,n = 2P(1)

k,n−1 + kP(1)
k,n−2 + 1, (8)

P(2)
k,n = 2P(2)

k,n−1 + kP(2)
k,n−2 + n. (9)

For the statement of the general case, consider the following lemma given in [25].

Lemma 1 (Lemma 2.1 [25]). Consider the arithmetic progression {an}n≥0 = {a(0)n }n≥0 defined
by an = 1, for all non-negative integers n. Consider the arithmetic progression of order r ≥ 1,
{a(r)n }n≥r, defined by the partial sums of the arithmetic progression of order r− 1, {a(r−1)

n }n≥r−1.
Then, the sequence {a(r)n }n≥r, is given by the polynomial of degree r :

a(r)n =
n

∑
k=1

a(r−1)
k =

(
n
r

)
=

(n)(n− 1) · · · (n− r + 1)
r!

,

for n ≥ r and r ≥ 1.

For the general case, we have:

Proposition 2. For a non-negative integer k and positive integers n ≥ 2 and r ≥ 1, the hyper
k-Pell sequence satisfies the recurrence relation:

P(r)
k,n = 2P(r)

k,n−1 + kP(r)
k,n−2 +

r

∑
j=1

(
n + r− 2− j

r− j

)
. (10)
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Proof. We used induction on r. For r = 1 and r = 2, the result derives from the previous
proposition. Now, suppose that this statement is valid for all positive integers less than or
equal to r, and we will show that this holds for r + 1. In fact,

P(r+1)
k,n =

n

∑
i=0

P(r)
k,i = P(r)

k,0 + P(r)
k,1 +

n

∑
i=2

P(r)
k,i = 1 +

n

∑
i=2

P(r)
k,i

= 1 +
n

∑
i=2

(
2P(r)

k,i−1 + kP(r)
k,i−2 +

r

∑
j=1

(
n + r− 2− j

r− j

))

= 2P(r+1)
k,n−1 + kP(r+1)

k,n−2 +

(
1 +

r

∑
j=1

n

∑
i=2

(
i + r− 2− j

r− j

))

= 2P(r+1)
k,n−1 + kP(r+1)

k,n−2 +
r+1

∑
j=1

(
n + r− 1− j

r + 1− j

)

and by Lemma 1, the result follows.

Using similar reasoning to that used for the recurrence relations in the cases of r = 0, 1
in {P(r)

k,n}n≥0, for the sequences defined in (5) and (6), we have the following result, whose
proof we omit:

Proposition 3. For n ≥ 2 and a non-negative integer k, the following recurrence relations hold:

Q(0)
k,n = 2Q(0)

k,n−1 + kQ(0)
k,n−2, Q(1)

k,n = 2Q(1)
k,n−1 + kQ(1)

k,n−2 (11)

q(0)k,n = 2q(0)k,n−1 + kq(0)k,n−2, q(1)k,n = 2q(1)k,n−1 + kq(1)k,n−2 (12)

with Qk,0 = Qk,1 = 2, Q(1)
k,0 = 2, Q(1)

k,n = 4 and qk,0 = qk,1 = 1, q(1)k,0 = 1, q(1)k,1 = 2 as the
respective initial conditions.

The third item of Proposition 3 in [14] established the following relation: q(r)k,n = P(r−1)
k,n+1 .

Then, by Proposition 2, it is verified that

q(r)k,n = 2P(r−1)
k,n + kP(r−1)

k,n−1 +
r−1

∑
j=1

(
n + r− 2− j

r− 1− j

)

= 2q(r)k,n−1 + kq(r)k,n−2 +
r−1

∑
j=1

(
n + r− 2− j

r− 1− j

)
.

Similarly, the second item of Proposition 3 in [14] established the following relation:
Q(r)

k,n = 2P(r−1)
k,n+1 . Then, by Proposition 2, it is verified that

Q(r)
k,n = 4P(r−1)

k,n + 2kP(r−1)
k,n−1 + 2

r−1

∑
j=1

(
n + r− 2− j

r− 1− j

)

= 2Q(r)
k,n−1 + kQ(r)

k,n−2 + 2
r−1

∑
j=1

(
n + r− 2− j

r− 1− j

)
.

Under the previous discussion, we can establish the following recurrence relations.

Proposition 4. For integer numbers k ≥ 0, n ≥ 2, and r ≥ 1, the hyper k-Pell–Lucas and the
hyper Modified k-Pell sequences satisfy the recurrence relations:

Q(r)
k,n = 2Q(r)

k,n−1 + kQ(r)
k,n−2 + 2

r−1

∑
j=1

(
n + r− 2− j

r− 1− j

)
. (13)
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q(r)k,n = 2q(r)k,n−1 + kq(r)k,n−2 +
r−1

∑
j=1

(
n + r− 2− j

r− 1− j

)
, (14)

with Q(r)
k,0 = 2, Q(r)

k,1 = 2(r + 1), q(r)k,0 = 1, and q(r)k,1 = r + 1.

Propositions 1–4 give us the recurrence relations for the hyper k-Pell, hyper k-Pell–
Lucas, and hyper Modified k-Pell sequences. The recurrence relations allow us to study
the generating functions and the Binet formula, by providing the explicit formulas for the
hyper k-Pell, hyper k-Pell–Lucas, and hyper Modified k-Pell sequences.

2.2. The Generating Function and Binet’s Formula

Next, we shall give the generating functions for the hyper k-Pell, hyper k-Pell–Lucas,
and hyper Modified k-Pell sequences. We shall write such a sequence as a power series
where each term of the sequence corresponds to the coefficients of the series. Considering
these sequences, the generating functions fP(t), fQ(t), and fq(t) are defined, respectively,

by fP(t) = ∑∞
n=0 P(r)

k,n tn, fQ(t) = ∑∞
n=0 Q(r)

k,ntn, and fq(t) = ∑∞
n=0 q(r)k,ntn.

Theorem 1. For non-negative integers k, n, and r, the generating functions for the hyper k-Pell,
hyper k-Pell–Lucas, and hyper Modified k-Pell sequences are, respectively,

fP(t) =
t

(1− 2t− kt2)

(
1 +

r

∑
j=1

t
(1− t)r−j+1

)
, (15)

fQ(t) =
1

(1− 2t− kt2)

(
2 +

r−1

∑
j=1

2t
(1− t)r−j

)
, (16)

fq(t) =
1

(1− 2t− kt2)

(
1 +

r−1

∑
j=1

t
(1− t)r−j

)
. (17)

Proof. We have

fP(t) =
∞

∑
n=0

P(r)
k,n tn = P(r)

k,0 + P(r)
k,1 t +

∞

∑
n=2

P(r)
k,n tn

= t +
∞

∑
n=2

(
2P(r)

k,n−1 + kP(r)
k,n−2 +

r

∑
j=1

(
n + r− 2− j

r− j

))
tn

= t + 2
∞

∑
n=2

P(r)
k,n−1tn + k

∞

∑
n=2

P(r)
k,n−2tn +

∞

∑
n=2

r

∑
j=1

(
n + r− 2− j

r− j

)
tn

= t + 2t

(
∞

∑
n=0

P(r)
k,n tn

)
+ kt2

(
∞

∑
n=0

P(r)
k,n tn

)
+ t2

r

∑
j=1

∞

∑
n=0

(
n + r− j

r− j

)
tn.

Hence, (
1− 2t− kt2

) ∞

∑
n=0

P(r)
k,n tn = t + t2

r

∑
j=1

∞

∑
n=0

(
n + r− j

r− j

)
tn.

Since t2 ∑r
j=1 ∑∞

n=0 (
n+r−j

r−j )tn = t2 ∑r
j=1

1
(1−t)r−j+1 , then, with some more calculations,

we obtain the desired result. The proof of the identity (16) can be performed in a similar
way to what we have just shown, taking into account the respective initial conditions. As
for the last generating function, all we have to do is look at Item 1 of Proposition 3 in [14],
and the result follows immediately.

In what follows, we will present the Binet formula for these numerical sequences.
Thus, we have:
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Theorem 2. For non-negative integers k, n, and r, the following identities hold

P(0)
k,n =

1
2
√

1 + k
(αn

1 − αn
2 ), (18)

P(r)
k,n = C1αn

1 + C2αn
2 +

r−1

∑
j=0

Ajnj, (19)

where α1 = 1 +
√

1 + k, α2 = 1−
√

1 + k, and Aj are constants for each 0 ≤ j ≤ r, obtained by
solving the equation:

r

∑
j=0

Ajnj =
r

∑
j=0

Aj(n− 1)j +
r

∑
j=0

Aj(n− 2)j +
r

∑
j=1

(
n + r− 2− j

r− j

)
,

for each fixed r, and C1, C2 are obtained by solving the Vandermonde system with initial conditions
P(r)

k,0 + A0 and P(r)
k,1 + ∑r

j=0 Aj.

Proof. In order to prove (19), consider Expression (10), whose characteristic equation is
nonhomogeneous. The respective solutions are the sum of the solutions of the homogeneous
part of (10) and a particular solution. Consider the homogeneous part of (10) and the
associated characteristic equation P(x) = x2 − 2x− k = 0. The roots of P(x) are simply
given by α1 = 1 +

√
1 + k and α2 = 1−

√
1 + k. Then, the solutions of the homogeneous

part of (10) is under the form C1αn
1 + C2αn

2 , where C1 = 1
2
√

1+k
and C2 = − 1

2
√

1+k
. By fixing

r and considering Cp(n) = ∑r
j=1 (

n+r−2−j
r−j ), a particular solution is given by ∑r

j=0 Ajnj,
where Aj are constants for each 0 ≤ j ≤ r, obtained by solving the equation

r

∑
j=0

Ajnj = 2
r

∑
j=0

Aj(n− 1)j + k
r

∑
j=0

Aj(n− 2)j + Cp(n).

Given the particular solution, by replacing P(r)
k,n = y(r)k,n + ∑r

j=0 Ajnj, we obtain the

associated homogeneous recurrence relation y(r)k,n = 2y(r)k,n−1 + ky(r)k,n−2, the closed formula
of which is given by C1αn

1 + C2αn
2 , where α1 = 1 +

√
1 + k, α2 = 1−

√
1 + k, and C1, C2 are

obtained by solving the Vandermonde system with the initial conditions y(r)k,0 = P(r)
k,0 + A0

and y(r)k,1 = P(r)
k,1 + ∑r

j=0 Aj.

For r = 1, we obtain the function Cp(n) = 1, then the particular solution is given by
constant A = −1

k+1 . Therefore, the next result is verified.

Corollary 1. For non-negative integers n and k, the n-th hyper k-Pell number of order one is
given as

P(1)
k,n =

1 +
√

1 + k + k
2
√

1 + k(1 + k)
αn

1 +
−1 +

√
1 + k− k

2
√

1 + k(1 + k)
αn

2 −
1

k + 1
, (20)

where α1 = 1 +
√

1 + k and α2 = 1−
√

1 + k.

Similarly, the results of Proposition 4 give us the Binet formula for the hyper k-Pell–
Lucas and hyper Modified k-Pell numbers.

Theorem 3. For non-negative integers k, n, and r, the following identities hold:

Q(0)
k,n = αn

1 + αn
2 , (21)

q(0)k,n =
1
2
(αn

1 + αn
2 ), (22)
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Q(1)
k,n =

1√
1 + k

(
αn+1

1 − αn+1
2

)
, (23)

q(1)k,n =
1

2
√

1 + k

(
αn+1

1 − αn+1
2

)
, (24)

Q(r)
k,n = C1αn

1 + C2αn
2 +

r−1

∑
j=0

Ajnj, (25)

q(r)k,n = C1αn
1 + C2αn

2 +
r−1

∑
j=0

Ajnj, (26)

where α1 = 1 +
√

1 + k, α2 = 1−
√

1 + k, ∑r−1
j=0 Ajnj is the particular solution and C1, C2 are

constants obtained by solving the Vandermonde system with initial conditions Q(r)
k,0 + A0 and

Q(r)
k,1 + ∑r

j=0 Aj and q(r)k,0 + A0 and q(r)k,1 + ∑r
j=0 Aj, respectively.

3. “Hybrid Hyper” Version of the k-Pell, k-Pell–Lucas, and Modified k-Pell Numbers

In this section, motivated by the conception of “hybrid” and “hyper” for each sequence
of k-Pell, k-Pell–Lucas, and Modified k-Pell numbers, we present the following definition:

Definition 1. For non-negative integers r, n, and k, the n-th hybrid hyper k-Pell, k-Pell–Lucas,
and Modified k-Pell numbers are defined, respectively, as follows:

HP(r)
k,n = P(r)

k,n + iP(r)
k,n+1 + εP(r)

k,n+2 + hP(r)
k,n+3, (27)

where P(r)
k,n is the n-th hyper k-Pell number given by Expression (4):

HQ(r)
k,n = Q(r)

k,n + iQ(r)
k,n+1 + εQ(r)

k,n+2 + hQ(r)
k,n+3, (28)

where Q(r)
k,n is the n-th hyper k-Pell–Lucas number given by Expression (5), and

Hq(r)k,n = q(r)k,n + iq(r)k,n+1 + εq(r)k,n+2 + hq(r)k,n+3, (29)

where q(r)k,n is the n-th hyper Modified k-Pell number given by Expression (6).

Observe that, for r = 0, we have that HP(0)
k,n = HPk,n is the n-th hybrid k-Pell number,

HQ(0)
k,n = HQk,n is the n-th hybrid k-Pell–Lucas number, and Hq(0)k,n = Hqk,n is the n-th

hybrid Modified k-Pell number.

3.1. Some Properties of These Sequences

In this subsection, we will study some properties of the hybrid hyper k-Pell, hybrid
hyper k-Pell–Lucas, and hybrid hyper Modified k-Pell numbers. Several identities of the
hyper k-Pell, hyper k-Pell–Lucas, and hyper Modified k-Pell numbers were established
in [14] and can be extended to the hybrid hyper k-Pell, hybrid hyper k-Pell–Lucas, and
hybrid hyper Modified k-Pell numbers. First, consider the result of Proposition 1 in [14]:

P(r)
k,n = P(r−1)

k,n + P(r)
k,n−1. (30)

Then, by replacing Expression (30) in Expression (27), we obtain
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HP(r)
k,n = (P(r−1)

k,n + P(r)
k,n−1) + i

(
P(r−1)

k,n+1 + P(r)
k,n

)
+ ε
(

P(r−1)
k,n+2 + P(r)

k,n+1

)
+ h
(

P(r−1)
k,n+3 + P(r)

k,n+2

)
= HP(r−1)

k,n + HP(r)
k,n−1.

Similarly, the result can be provided for the hybrid hyper k-Pell–Lucas and the hybrid
hyper Modified k-Pell sequences. The following proposition gives us these formulas.

Proposition 5. For non-negative integers k, n ≥ 1, and r ≥ 1, the hybrid hyper k-Pell, hybrid
hyper k-Pell–Lucas, and hybrid hyper Modified k-Pell sequences satisfy the recurrence relations:

HP(r)
k,n = HP(r−1)

k,n + HP(r)
k,n−1,

HQ(r)
k,n = HQ(r−1)

k,n + HQ(r)
k,n−1,

Hq(r)k,n = Hq(r−1)
k,n + Hq(r)k,n−1.

As a consequence, for r = 1, we obtain the following corollary.

Corollary 2. For n ≥ 1, the identities below hold:

HP(1)
k,n = HPk,n + HP(1)

k,n−1,

HQ(1)
k,n = HQk,n + HQ(1)

k,n−1,

Hq(1)k,n = Hqk,n + Hq(1)k,n−1,

where HPk,n is the n-th hybrid k-Pell number, HQk,n is the n-th hybrid k-Pell–Lucas number, and
Hqk,n is the n-th hybrid Modified k-Pell number.

Using Definition 1, Corollary 2, and the identities of Proposition 2 in [14], we can
describe a different expression for the hybrid hyper k-Pell, hybrid hyper k-Pell–Lucas, and
hybrid hyper Modified k-Pell sequences, for r = 1, whose proofs will be omitted.

Proposition 6. For non-negative integers k, n ≥ 1, and r = 1, the hybrid hyper k-Pell, hybrid
hyper k-Pell–Lucas, and hybrid hyper Modified k-Pell sequences satisfy the identities below:

HP(1)
k,n = HPk,n +

1
k + 1

(Hqk,n − (1 + i + ε + h)),

HQ(1)
k,n =

1
k + 1

((2k + 1)HQk,n + HQk,n+1),

Hq(1)k,n = Hqk,n +
1
2

(
HQ(1)

k,n + HQk,n

)
,

where HPk,n is the n-th hybrid k-Pell number, HQk,n is the n-th hybrid k-Pell–Lucas number, and
Hqk,n is the n-th hybrid Modified k-Pell number.

Using the results of Section 2.1, we will provide a recursive relation for the hybrid
hyper k-Pell, k-Pell–Lucas, and Modified k-Pell numbers. By replacing Expression (10) in
Expression (27), we obtain
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HP(r)
k,n = (2P(r)

k,n−1 + kP(r)
k,n−2 +

r

∑
j=1

(
n + r− 2− j

r− j

)
)

+ i

(
2P(r)

k,n + kP(r)
k,n−1 +

r

∑
j=1

(
n + r− 1− j

r− j

))

+ ε

(
2P(r)

k,n+1 + kP(r)
k,n +

r

∑
j=1

(
n + r− j

r− j

))

+ h

(
2P(r)

k,n+2 + kP(r)
k,n+1 +

r

∑
j=1

(
n + r + 1− j

r− j

))
= 2HP(r)

k,n−1 + kHP(r)
k,n−2 + Z(r)

k,n,

where Z(r)
k,n = ∑r

j=1 (
n+r−2−j

r−j ) + i(n+r−1−j
r−j ) + ε(n+r−j

r−j ) + h(n+r+1−j
r−j ). Observe that the initial

values can be determined by replacing n = 0 and n = 1 in Expression (27), given by
HP(r)

k,0 = i + εP(r)
k,2 + hP(r)

k,3 and HP(r)
k,1 = 1 + iP(r)

k,2 + εP(r)
k,3 + hP(r)

k,4 .
Similarly, by replacing Expression (13) in Expression (28) and Expression (14) in

Expression (29), we obtain the following result.

Proposition 7. For non-negative integers k, n ≥ 2, and r ≥ 1, the hybrid hyper k-Pell, the hybrid
hyper k-Pell–Lucas, and hybrid hyper Modified k-Pell sequences satisfy the recurrence relations:

HP(r)
k,n = 2HP(r)

k,n−1 + kHP(r)
k,n−2 + Z(r)

k,n, (31)

with initial conditions HP(r)
k,0 = i + εP(r)

k,2 + hP(r)
k,3 and HP(r)

k,1 = 1 + iP(r)
k,2 + εP(r)

k,3 + hP(r)
k,4 ,

HQ(r)
k,n = 2HQ(r)

k,n−1 + kHQ(r)
k,n−2 + 2T(r)

k,n , (32)

with initial conditions HQ(r)
k,0 = 2+ 2i + εQ(r)

k,2 + hQ(r)
k,3 and HQ(r)

k,1 = 2+ iQ(r)
k,2 + εQ(r)

k,3 + hQ(r)
k,4 ,

and
Hq(r)k,n = 2Hq(r)k,n−1 + kHq(r)k,n−2 + T(r)

k,n , (33)

with initial conditions Hq(r)k,0 = 1 + i + εq(r)k,2 + hq(r)k,3 and Hq(r)k,1 = 1 + iq(r)k,2 + εq(r)k,3 + hq(r)k,4 , where

Z(r)
k,n = ∑r

j=1 (
n+r−2−j

r−j ) + i(n+r−1−j
r−j ) + ε(n+r−j

r−j ) + h(n+r+1−j
r−j ) and T(r)

k,n = ∑r−1
j=1 (

n+r−2−j
r−1−j ) +

i(n+r−1−j
r−1−j ) + ε(n+r−j

r−1−j) + h(n+r+1−j
r−1−j ).

Proposition 7 shows us that the hybrid hyper k-Pell, hybrid hyper k-Pell–Lucas, and
hybrid hyper Modified k-Pell sequences can be see as a nonhomogeneous linear recurrence
relation of order 2. These results allow us to provide the generating function and the Binet
formula for these sequences.

3.2. The Generating Function and Binet’s Formula

Motivated by the results in Section 2.2, this subsection is devoted to establishing
the generating function and the Binet formula for the hybrid hyper k-Pell, hybrid hyper
k-Pell–Lucas, and hybrid hyper Modified k-Pell sequences.
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Consider that the generating functions fHP(t), fHQ(t), and fHq(t) are defined, respec-

tively, by fHP(t) = ∑∞
n=0 HP(r)

k,n tn, fHQ(t) = ∑∞
n=0 HQ(r)

k,ntn, and fHq(t) = ∑∞
n=0 Hq(r)k,ntn.

We have

fHP(t) =
∞

∑
n=0

HP(r)
k,n tn = HP(r)

k,0 + HP(r)
k,1 t +

∞

∑
n=2

HP(r)
k,n tn

= (i + εP(r)
k,2 + hP(r)

k,3 ) + (1 + iP(r)
k,2 + εP(r)

k,3 + hP(r)
k,4 )t

+
∞

∑
n=2

(
2HP(r)

k,n−1 + kHP(r)
k,n−2 + Z(r)

k,n

)
tn

= (i + εP(r)
k,2 + hP(r)

k,3 ) + (1 + iP(r)
k,2 + εP(r)

k,3 + hP(r)
k,4 )t− 2t(i + εP(r)

k,2 + hP(r)
k,3 )

+ 2t
∞

∑
n=0

HP(r)
k,n tn + kt2

∞

∑
n=0

HP(r)
k,n tn +

∞

∑
n=2

Z(r)
k,ntn.

Hence,(
1− 2t− kt2

) ∞

∑
n=0

HP(r)
k,n tn = i + εP(r)

k,2 + hP(r)
k,3

+ t
(

1 + i(P(r)
k,2 − 2) + ε(P(r)

k,3 − 2P(r)
k,2 ) + h(P(r)

k,4 )− 2P(r)
k,3

)
+

∞

∑
n=2

Z(r)
k,ntn.

Observe that, since

t2
r

∑
j=1

∞

∑
n=0

(
n + r− j

r− j

)
tn = t2

r

∑
j=1

1
(1− t)r−j+1 ,

t
r

∑
j=1

(
∞

∑
n=0

(
n + r− j

r− j

)
tn − 1

)
= t

r

∑
j=1

1
(1− t)r−j+1 − rt,

then

∞
∑

n=2
Z(r)

k,ntn =
r
∑

j=1

∞
∑

n=2
(n+r−2−j

r−j )tn + i
r
∑

j=1

∞
∑

n=2
(n+r−1−j

r−j )tn

+ε
r
∑

j=1

∞
∑

n=2
(n+r−j

r−j )tn + h
r
∑

j=1

∞
∑

n=2
(n+r+1−j

r−j )tn

= t2
r
∑

j=1

1
(1−t)r−j+1 + it

r
∑

j=1

1
(1−t)r−j+1 − irt

+ε
r
∑

j=1

1
(1−t)r−j+1 − 1− t(r− j)

+ht
r
∑

j=1

1
(1−t)r−j+1 − 1− t2(r− j)− t3 (r− j + 2)(r− j + 1)

2
.

(34)

Taking into account the respective initial conditions, we can provide the generating
function for the hybrid hyper k-Pell–Lucas and hybrid hyper Modified k-Pell sequences.
We have
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fHQ(t) =
∞

∑
n=0

HQ(r)
k,ntn = HQ(r)

k,0 + HQ(r)
k,1t +

∞

∑
n=2

HQ(r)
k,ntn

= (2 + 2i + εQ(r)
k,2 + hQ(r)

k,3) + (2 + iQ(r)
k,2 + εQ(r)

k,3 + hQ(r)
k,4)t

+
∞

∑
n=2

(
2HQ(r)

k,n−1 + kHQ(r)
k,n−2 + 2Tk, n(r)

)
tn

= (2 + 2i + εQ(r)
k,2 + hQ(r)

k,3) + (2 + iQ(r)
k,2 + εQ(r)

k,3 + hQ(r)
k,4)t− 2t(2 + 2i + εQ(r)

k,2 + hQ(r)
k,3)

+ 2t
∞

∑
n=0

HQ(r)
k,ntn + kt2

∞

∑
n=0

HQ(r)
k,ntn + 2

∞

∑
n=2

T(r)
k,n tn.

Hence,

(
1− 2t− kt2

) ∞

∑
n=0

HQ(r)
k,ntn = (2 + 2i + εQ(r)

k,2 + hQ(r)
k,3)

+ t
(
−2 + i(Q(r)

k,2 − 4) + ε(Q(r)
k,3 − 2Q(r)

k,2) + h(Q(r)
k,4)− 2Q(r)

k,3

)
+ 2

∞

∑
n=2

T(r)
k,n tn,

where

∞
∑

n=2
T(r)

k,n tn =
r−1
∑

j=1

∞
∑

n=2
(n+r−2−j

r−j−1 )tn + i
r−1
∑

j=1

∞
∑

n=2
(n+r−1−j

r−j−1 )tn

+ε
r−1
∑

j=1

∞
∑

n=2
(n+r−j

r−j−1)t
n + h

r−1
∑

j=1

∞
∑

n=2
(n+r+1−j

r−j−1 )tn

= −(r− 1)t + t
r−1
∑

j=1

1
(1−t)r−j + i

r−1
∑

j=1

1
(1−t)r−j+1 − 1− t(r− j)

+
ε

t

r−1
∑

j=1

1
(1−t)r−j − 1− t(r− j)− (r− j + 1)(r− j)

2
t2

+
h
t2

r−1
∑

j=1

1
(1−t)r−j − 1− t(r− j)− (r−j+3

r−j−1)t
2 − (r−j+4

r−j−1)t
3.

(35)

Under the previous discussion, the next result is established.

Theorem 4. For non-negative integers r, n, and k, the generating functions for the hybrid hyper
k-Pell, hybrid hyper k-Pell–Lucas, and hybrid hyper Modified k-Pell sequences are, respectively,

∞
∑

n=0
HP(r)

k,n tn =
1

(1− 2t− kt2)
(i + εP(r)

k,2 + hP(r)
k,3 )

+
t

(1− 2t− kt2)

(
1 + i(P(r)

k,2 − 2) + ε(P(r)
k,3 − 2P(r)

k,2 ) + h(P(r)
k,4 − 2P(r)

k,3 )
)

+
1

(1− 2t− kt2)

∞
∑

n=2
Z(r)

k,ntn,

(36)

∞
∑

n=0
HQ(r)

k,ntn =
1

(1− 2t− kt2)
(2 + 2i + εQ(r)

k,2 + hQ(r)
k,3)

+
t

(1− 2t− kt2)

(
2 + i(Q(r)

k,2 − 4) + ε(Q(r)
k,3 − 2Q(r)

k,2) + h(Q(r)
k,4 − 2Q(r)

k,3)
)

+
2

(1− 2t− kt2)

∞
∑

n=2
T(r)

k,n tn,

(37)
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∞
∑

n=0
Hq(r)k,ntn =

1
(1− 2t− kt2)

(1 + i + εq(r)k,2 + hq(r)k,3)

+
t

(1− 2t− kt2)

(
1 + i(q(r)k,2 − 2) + ε(q(r)k,3 − 2q(r)k,2) + h(q(r)k,4 − 2q(r)k,3)

)
+

1
(1− 2t− kt2)

∞
∑

n=2
T(r)

k,n tn,

(38)

where ∑∞
n=2 Z(r)

k,ntn is given by Expression (34) and ∑∞
n=2 T(r)

k,n tn is given by Expression (35).

Proposition 7 shows that the hybrid hyper k-Pell, hybrid hyper k-Pell–Lucas, and
hybrid hyper Modified k-Pell sequences are defined by nonhomogeneous linear recurrence
relations. Then, by fixing r and by considering a particular solution given by ∑r

j=0(Aj + iBj +

εCj + hDj)nj, we obtain the associated homogeneous recurrence

relation y(r)k,n = 2y(r)k,n−1 + ky(r)k,n−2, the closed formula of which is given by C1αn
1 + C2αn

2 ,
where α1 = 1 +

√
1 + k, α2 = 1−

√
1 + k and C1, C2 are obtained by solving the Vander-

monde system with initial conditions y(r)k,0 and y(r)k,1 .

Theorem 5. For non-negative integers k, n, and r, the following identities hold:

HP(0)
k,n = C1αn

1 + C2αn
2 , (39)

where C1 = − 1
2
√

1+k
(α2HP(0)

k,0 − HP(0)
k,1 ) and C2 = − 1

2
√

1+k
(−α1HP(0)

k,0 + HP(0)
k,1 ),

HP(r)
k,n = C1αn

1 + C2αn
2 +

r

∑
j=0

(Aj + iBj + εCj + hDj)nj, (40)

where α1 = 1 +
√

1 + k, α2 = 1−
√

1 + k, Aj are constants for each 0 ≤ j ≤ r, obtained by
solving the equation:

r

∑
j=0

(Aj + iBj + εCj + hDj)nj = 2
r

∑
j=0

(Aj + iBj + εCj + hDj)(n− 1)j

+ k
r

∑
j=0

(Aj + iBj + εCj + hDj)(n− 2)j + Z(r)
k,n,

for each fixed r, and C1, C2 are obtained by solving the Vandermonde system with initial conditions
HP(r)

k,0 + A0 and HP(r)
k,1 + ∑r

j=0(Aj + iBj + εCj + hDj).

Theorem 6. For non-negative integers k, n, and r, the following identities hold:

HQ(0)
k,n = C1αn

1 + C2αn
2 , (41)

where C1 = − 1
2
√

1+k
(α2HQ(0)

k,0 − HQ(0)
k,1 ) and C2 = − 1

2
√

1+k
(−α1HQ(0)

k,0 + HQ(0)
k,1 ),

HQ(1)
k,n = C1αn

1 + C2αn
2 , (42)

where C1 = − 1
2
√

1+k
(α2HQ(1)

k,0 − HQ(1)
k,1 ) and C2 = − 1

2
√

1+k
(−α1HQ(1)

k,0 + HQ(1)
k,1 ),

HQ(r)
k,n = C1αn

1 + C2αn
2 +

r

∑
j=0

(Aj + iBj + εCj + hDj)nj, (43)
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where α1 = 1 +
√

1 + k, α2 = 1−
√

1 + k, Aj are constants for each 0 ≤ j ≤ r, obtained by
solving the equation:

r

∑
j=0

(Aj + iBj + εCj + hDj)nj = 2
r

∑
j=0

(Aj + iBj + εCj + hDj)(n− 1)j

+ k
r

∑
j=0

(Aj + iBj + εCj + hDj)(n− 2)j + 2T(r)
k,n ,

for each fixed r, and C1, C2 are obtained by solving the Vandermonde system with initial conditions
HQ(r)

k,0 + A0 and HQ(r)
k,1 + ∑r

j=0(Aj + iBj + εCj + hDj).

Theorem 7. For non-negative integers k, n, and r, the following identities hold:

Hq(0)k,n = C1αn
1 + C2αn

2 , (44)

where C1 = − 1
2
√

1+k
(α2Hq(0)k,0 − Hq(0)k,1 ) and C2 = − 1

2
√

1+k
(−α1Hq(0)k,0 + Hq(0)k,1 ),

Hq(1)k,n = C1αn
1 + C2αn

2 , (45)

where C1 = − 1
2
√

1+k
(α2Hq(1)k,0 − Hq(1)k,1 ) and C2 = − 1

2
√

1+k
(−α1Hq(1)k,0 + Hq(1)k,1 ),

Hq(r)k,n = C1αn
1 + C2αn

2 +
r

∑
j=0

(Aj + iBj + εCj + hDj)nj, (46)

where α1 = 1 +
√

1 + k, α2 = 1−
√

1 + k, Aj are constants for each 0 ≤ j ≤ r, obtained by
solving the equation

r

∑
j=0

(Aj + iBj + εCj + hDj)nj = 2
r

∑
j=0

(Aj + iBj + εCj + hDj)(n− 1)j

+ k
r

∑
j=0

(Aj + iBj + εCj + hDj)(n− 2)j + T(r)
k,n ,

for each fixed r, and C1, C2 are obtained by solving the Vandermonde system with initial conditions
Hq(r)k,0 + A0 and Hq(r)k,1 + ∑r

j=0(Aj + iBj + εCj + hDj).

4. Conclusions

In this paper, we established some properties and identities involving the hyper k-Pell,
hyper k-Pell–Lucas, and hyper Modified k-Pell numbers, as recurrence relations, generating
functions, and the Binet formula. In addition, we presented the hybrid hyper k-Pell, hybrid
hyper k-Pell–Lucas, and hybrid hyper Modified k-Pell numbers, which consist of a new
generalization of the hyper k-Pell, hyper k-Pell–Lucas, and hyper Modified k-Pell numbers.
Moreover, the algebraic properties of these sequences were studied, and also, the generating
function, Binet formula, and several identities were provided.

It seems to us that all the results given here are new in the literature, and these new
sequences of numbers are a subject that can still be studied in several aspects.
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