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Abstract: Spatial capture models are broadly used for population analysis in ecological statistics.
Spatial capture models for unidentified individuals rely on data augmentation to create a zero-inflated
population. The unknown true population size can be considered as the number of successes of a
binomial distribution with an unknown number of independent trials and an unknown probability
of success. Augmented population size is a realization of the unknown number of trials and is
recommended to be much larger than the unknown population size. As a result, the probability of
success of binomial distribution, i.e., the unknown probability that a hypothetical individual in the
augmented population belongs to the true population, can be obtained by dividing the unknown
true population size by the augmented population size. This is an inverse problem as neither the
true population size nor the probability of success is known, and the accuracy of their estimates
strongly relies on the augmented population size. Therefore, the estimated population size in spatial
capture models is very sensitive to the size of a zero-inflated population and in turn to the estimated
probability of success. This is an important issue in spatial capture models as a typical count model
with censored data (unidentified and/or undetected). Hence, in this research, we investigated the
sensitivity and accuracy of the spatial capture model to address this problem with the objective of
improving the robustness of the model. We demonstrated that the estimated population size using
the proposed enhanced capture model was more accurate in comparison with the previous spatial
capture model.

Keywords: spatial Bayesian models; virtual trap; probability of success; distance sampling; count
models; unidentified individuals; data augmentation; Markov chain Monte Carlo

MSC: 62P10; 62C10; 62N01; 60J05; 60J22; 60K40

1. Introduction

Population analysis based on spatial sampling is an emerging field of research due
to its broad range of applications. Some important applications of spatial population
analysis are to preserve endangered species and to control invasive species. One of the first
steps required to manage a population is estimating the population size. Several methods
have been developed to estimate the abundance of animals [1–3]. A standard approach is
counting the members of the population in a random sample to estimate the population
size. Population density can be then estimated by dividing the population size by the area
of the animals’ habitat. The spatial capture methods can be split into two major groups,
capture–removal methods and capture–recapture methods, as demonstrated in Figure 1. In
capture–removal methods, the individuals that are captured will be counted, recorded, and
then removed from the habitat.
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Figure 1. Lineage of spatial capture methods.

In contrast, in capture–recapture methods, the individuals that are captured will be
counted, recorded, and then released back into the habitat. Capture–recapture methods
are commonly used in ecological statistics for estimating population size [1,3–7]. Capture–
recapture methods can be split into two sub-groups, capture–mark–recapture and capture-
unidentified individuals. The distinction between the two sub-groups is whether the
captured individuals are marked, identified, and released, or whether individuals are virtu-
ally captured without being identified. The intuition behind the capture–mark–recapture
method is that the proportion of the individuals that were captured, marked, and released in
the first sample and were then recaptured in the second sample can be used to estimate the
population size [1]. In the capture-unidentified-individuals method, animals are virtually
captured without being identified, obtaining only the number of encountered individuals.

Capture–mark–recapture methods rely on the physical capture of individuals to collect
the individual encounter history. Due to technological advances, the ability to capture
individuals has been improved through more efficient methods, such as camera traps [8],
acoustic recordings, and DNA samples [9,10]. Individuals can be virtually captured using
their signs without being identified. Camera traps can be effectively used for the virtual
capture of individuals. The inherent characteristics of sampling using camera traps include
the following: (1) the same individual can be captured multiple times by the same camera,
(2) the same individual can be captured by different cameras, (3) often, only a subset of
individuals will be captured, and (4) captured individuals are not identified.

Conventionally, capture methods do not use spatial information about the captured indi-
viduals. Advanced spatial capture models have been implemented in the past decade [11–16].
A spatial capture model that has been broadly used was introduced by Chandler and
Royle [17]. This model yields promising outcomes using unmarked or partially marked
individuals to estimate the population size and density. However, due to the complexity of
the spatial capture-unidentified approach, the error in the estimated population size and
density could be prohibitively high. An open-ended problem is to address the shortcomings
of this method and make the model robust regarding spatial sampling and spatiotemporal
population analysis. The objective of this study is to improve the estimated population
size by reducing the estimation error to make it robust. To this end, the proposed method
performs the following tasks:

(1) Employs a prior distribution for the essential parameter of the zero-inflated population;
(2) Regularizes the Markov chain Monte Carlo (MCMC) by controlling the effective

sample size;
(3) Reduces the order of the chain by controlling the correlation of generated samples

through Gibbs sampling [18–20].

2. Methods

The capture–recapture method is one of the most common methods to estimate the
population size. The capture–recapture method has its strengths and limitations based on
the species, habitat, and available resources.
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2.1. Hierarchical Spatial Capture–Recapture Model

Hierarchical spatial capture–recapture (HSCR) is a statistical model widely used in
wildlife ecology to estimate population size [11]. It combines information from multiple
trapping sites and accounts for spatial dependences among the captured encounters to
estimate the population size [21].

In this model, each individual is associated with an unknown spatial activity center
and home range radius. Considering population size N, there are N unknown activ-
ity centers. It is assumed that individuals in the same habitat have the same unknown
home range radius. Individual encounters in the study area are recorded using camera
traps. The schematic of the capture–recapture model [22] is depicted in Figure 2 and is
discussed below.
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Using distance sampling, the distance between the camera locations and the unknown
center of activities is reflected in the model. It is assumed that an individual i has a fixed
center of activity defined with the coordinates si =

(
sx, sy

)
where i = 1, 2, . . . , N, and N

centers of activities are randomly distributed over the area of study S. A bivariate uniform
prior is used to model the unknown activity center si:

si ∼ Uni f orm(S), (1)

There are J camera locations; each is defined by the coordinate xj, j = 1, 2, . . . , J.
Notice that an individual can be detected at multiple cameras and/or at multiple times by
the same camera during a sampling occasion. A Poisson distribution is used to model a
camera encounter history zijk for individual i, at camera j, on occasion k:

zijk ∼ Poisson
(
λij
)
, (2)
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where λij is the encounter rate for individual i at camera j. The expected number of the
captures or detections of an individual i at camera j, which is a function of the Euclidean
distance between activity center si and the camera location dij = ‖si − xj‖, is

λij = λ0gij, (3)

where λ0 is the baseline encounter rate, and gij is a function of the distance which mono-
tonically decreases and is modeled using a half Gaussian function:

gij = exp

(
−d2

ij

σ2

)
, (4)

where σ is a scale parameter and will be estimated using the collected data. If an individual
can be captured once during a sampling occasion, the encounter history takes binary values;
that is, zijk takes a value of one if the individual i is captured, or zero otherwise. However,
an individual can be captured more than once during a sampling occasion. In this case,
zijk will be the number of times that the individual i has been encountered at camera j on
occasion k. Therefore, a (J × K) encounter history matrix is considered for each individual.
Obviously, the capture histories zijk cannot be directly observed for unmarked individuals.
A data augmentation method has been implemented to estimate the unknown population
size. The number of camera encounters at camera j on occasion k is modeled by

njk =
N

∑
i=1

zijk. (5)

The full conditional latent encounter data are defined by a multinomial distribution:{
z1jk, z2jk, . . . , zNjk

}
∼ Multinomial

(
njk
{

π1j, π2j, . . . , πNj
})

, (6)

where πij =
λij

∑N
i=1 λij

. The camera encounter counts are modeled using a Poisson distribution:

njk ∼ Poisson
(
Λj
)
, (7)

where

Λj = λ0

N

∑
i=1

gij. (8)

The number of camera encounters at camera j can be obtained by

nj. =
K

∑
k=1

njk. (9)

Because Λj and K are independent,

nj. ∼ Poisson
(
KΛj

)
. (10)

In the data augmentation method used in Chandler and Royle [22], Royle et al. [17],
and Royle and Dorazio [23], the camera encounter histories were augmented with a set of
all-zero camera encounter histories to create a hypothetical augmented population of size
M in the study area. The augmented parameter M is an integer and is recommended to
be much greater than unknown N, i.e., M >> N, to avoid the truncation of the posterior
distribution of N. Notice that, a very large value of M will increase the computational
time. Uninformative prior distributions are assumed for the unknown parameters. Prior
distributions of λ0, σ, and ψ are considered Uniform (0, 1), where ψ, probability of success,
is the probability that an individual in the occupancy model of size M is a member of
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the true population of size N. A binomial prior distribution, N ∼ Binomial(M, ψ), is
assumed for N where ψ ∼ Uniform(0, 1). Assuming a discrete uniform distribution
for the detection of individuals in the hypothetical population of size M, L = M − n
individuals are associated with all-zero encounter histories. In turn, indicator variables
ω1, ω2, . . . , ωM are introduced such that

ωi =

{
0, i f the individual i is not a member o f the population
1, i f the individual i is a member o f the population

, (11)

where ωi ∼ Bernoulli (ψ), i = 1, 2, . . . , M, with expected value E(ωi) = ψ and variance
Var(ωi) = ψ(1− ψ). Hence, the encounter data for each individual in the augmented
population can be modeled by

zijk

∣∣∣ωi = 1 ∼ Poisson
(
λijωi

)
, zijk

∣∣∣ωi = 0 ∼ I
(

zijk = 0
)

, (12)

and in turn, the population size can be obtained by

N̂ =
M

∑
i=1

ωi. (13)

Assuming mutual independence of the prior distributions, the joint prior distribution
is

P(ψ, λ0, σ) ∝ P(ψ)P(λ0)P(σ) (14)

and in turn, the joint posterior distribution of the parameters is

[z, ω, s, ψ, λ0, σ|n, X] ∝

{
M

∏
i=1
{

J

∏
j=1

K

∏
k=1

[
njk

∣∣∣zijk

][
zijk

∣∣∣ωi, si, σ, λ0

]
} [ωi|ψ][si]

}
[ψ][λ0][σ]. (15)

where X is a coordinate matrix of camera locations. Notice that in the original model, the
assumed prior distributions for λ0 and σ are uninformative. A spatial Metropolis–Gibbs
Markov chain Monte Carlo (MCMC) algorithm for estimating the model parameters is
used in Chandler and Royle [22].

2.2. Proposed Method

For a random sample Y from a given population with unknown probability distri-
bution f (Y, θ), the unknown parameter θ can be estimated using a point estimator to
construct a confidence interval for the unknown parameter. In Bayesian statistics, the
samples are often generated from an uninformative prior. However, an informative prior
to sample parameter θ can be inferred empirically or could be available from previous
studies [21–23]. In the next section, an informative prior to sample ψ is introduced.

2.3. Sensitivity of the Model to ψ

The probability of success ψ that an individual is a member of the population is

ψ =
N
M

, (16)

where N is the unknown true population size, and M is the size of the zero-inflated
population. In the data augmentation model, an arbitrary large zero-inflated population
is generated. As a result, the upper bound of augmented population size M can increase
indefinitely. It has been demonstrated using simulations that by increasing the zero-inflated
populationsize, the true estimation error will be increased. In turn, the spatial models
can substantially overestimate the unknown population size. To address the inflated
estimation error due to the inflated size of the population, we suggest bounding the size of
the augmented data. A practical lower bound of the augmented data is twice as high as the
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unknown population size. By increasing the size of the inflated population above twice the
true population size, the error of the estimated population size will increase, and in turn,
the width of the credible interval will be increased.

To investigate the sensitivity of the model to ψ, simulations were designed, and the
impact of ψ on the estimated population size was studied. In the first set of simulations,
an uninformative prior with no constraints was considered to sample the probability of
success ψ. It means all values in the range of [0, 1] will be accepted for ψ by the Gibbs
sampling. In the next set of simulations, different constraints for sampling ψ were enforced.
An estimate of ψ can be obtained by ψ̂ = N̂

M , where ψ̂ is sampled from a Beta distribution
with parameters:

α = 1 +
M

∑
i=1

ωi, (17)

and

β = 1 + M−
M

∑
i=1

ωi, (18)

The estimated number of individuals, in Equation (13), is given by N̂ = ∑M
i=1 ω̂i. The

expected population size at camera j is given by

E
(

N̂
)
= E

[
M

∑
i=1

ω̂i

]
=

M

∑
i=1

E[ω̂i] =
M

∑
i=1

Iiψ̂, (19)

where Ii is the indicator function for individual i, and ψ̂ is the estimated probability of
success, that is, the probability that an individual belongs to the true population. The
variance of the estimated N̂ can be derived from

Var
(

N̂
)
= Var

[
M

∑
i=1

ω̂i

]
=

M

∑
i=1

Var[ω̂i] =
M

∑
i=1

Iiψ̂(1− ψ̂), (20)

and the standard deviation of the estimated N̂ is

SdN̂ =

√√√√ M

∑
i=1

Iiψ̂(1− ψ̂) =
√

Mψ̂
(
1− ψ̂

)
, (21)

Sdψ̂ =

√
ψ̂
(
1− ψ̂

)
M

. (22)

2.4. Autocorrelation Plot

The autocorrelation plot is an effective tool to assess the correlation of the samples
produced by a Markov chain and inspect whether the samples are well mixed [24]. The
correlation coefficient range is [−1, 1], with −1 indicating perfect negative correlation, zero
representing no correlation, and one indicating perfect positive correlation. It will also
quantify the correlation between the current value of the chain and its past values (lags).
Generated samples by MCMC from one iteration to the next will be somewhat correlated.
In a well-mixed chain, the correlation is small, and the autocorrelation drops relatively
quickly. However, if the chain does not mix well, samples will be highly correlated, and the
correlation will decay slowly. In turn, a large number of iterations is required to reach the
stationary distribution of the Markov chain [25,26]. Lag k autocorrelation represents the
autocorrelation between the current sample and kth preceding sample [19].

2.5. Effective Sample Size

Effective sample size (ESS) is another way to study the convergence of the chain. ESS
provides an estimated number of independent observations equivalent to the samples
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generated by a Markov chain [27] that iterates T times (Figure 2). In other words, it
represents the number of independent samples in the simulation and gives an estimate
of how well the simulation represents the target distribution. As we have mentioned,
the samples generated by MCMC are somewhat correlated. It means, less information is
provided by highly correlated or poor mixing chains. A high ESS indicates a well-mixed
chain, while a low ESS indicates poor convergence. A chain with a low ESS must run for a
larger number of iterations to improve the convergence of the chain toward its stationary
distribution [26].

3. Results

The simulations were implemented using R v4.2.2 (a statistical analysis programming
language) within the RStudio and a range of specialized packages for Markov chain Monte
Carlo (MCMC), the Metropolis–Hasting algorithm, and the Gibbs sampler (see [19,28–31]).
Statistical simulations were implemented to study the sensitivity of the spatial capture
model to the data augmentation parameter L (added number of zeros) by estimating
unknown population size N, home range σ, and λ0. In this model, a hypothetical popu-
lation size (M) for the upper bound of the true population size (N) is selected such that
M = N + L. In turn, the estimated N can assume values between zero and M. Several
simulations were performed to test the sensitivity of the model to the selected value of
M for the true value of N = 25, and the results are shown in Table 1 and Figure 3. The
estimated values of σ, λ0, ψ, and N were calculated along with the ESS and Lag10 autocor-
relation. The estimated population size N is obtained by running simulations with and
without constraint on the sampling range of ψ (Table 1). For M = 100, the true probability
of success (ψ = N

M ) is 0.25, and it is 0.125 for M = 200.

Table 1. Summary of the estimated mean of σ, λ0, ψ, and population size N for different ranges of ψ

and M ∈ {100, 200}.

M ψ
^
σ

^
λ0 ψ̂ Sdψ̂

∣∣∣%eψ̂

∣∣∣ ^
N Sd ^

N
ESSN ESSψ Lag10N Lag10ψ

100

0.00–1.00 0.437 0.589 0.313 0.046 25.200 30.887 2.577 1113.2 1297.6 0.668 0.625

0.00–0.50 0.451 0.606 0.274 0.045 9.600 27.107 2.322 1850.8 2180.9 0.482 0.412

0.10–0.40 0.465 0.585 0.253 0.043 1.200 25.255 2.185 2679.4 3232.7 0.403 0.324

0.05–0.35 0.479 0.584 0.231 0.042 7.600 23.326 2.036 2505.5 3145.0 0.395 0.309

0.10–0.35 0.471 0.589 0.237 0.043 5.200 23.862 2.077 2738.4 3681.9 0.352 0.260

200

0.00–1.00 0.416 0.596 0.199 0.028 59.200 39.231 2.501 250.6 263.3 0.909 0.894

0.00–0.50 0.443 0.579 0.158 0.026 26.400 30.979 2.030 1066.8 1140.4 0.674 0.623

0.10–0.40 0.415 0.579 0.174 0.027 39.200 33.433 2.192 2340.8 2727.2 0.496 0.431

0.05–0.35 0.443 0.579 0.153 0.025 22.400 29.922 1.969 2082.8 2203.2 0.547 0.486

0.10–0.35 0.411 0.592 0.173 0.027 38.400 33.340 2.184 3017.5 3701.7 0.446 0.375
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It can be observed (in Table 1 and Figure 3) that the estimated N has assumed a broad
range of values. The sensitivity of the model to the added number of zeros L is more
noticeable when sampling the probability of success ψ from [0, 1], i.e., without constraint.
In all cases, the estimated values of N are more accurate with the constraints on ψ. It was
observed that by decreasing the sampling range of the ψ, the effective sample size will
increase, while the rejection rate and in turn computational cost increase.

It is recommended to choose large values for the data augmentation parameter M.
However, it must be pointed out that M may not be increased indefinitely, as it may produce
very small ψ = N

M close to zero and in turn significant overestimation of N. Hence, two
different constraints, [0.0, 0.5] and [0.1, 0.4], were set for the range of parameter ψ, and the
simulation results were compared with the uninformed prior of ψ and sampling it from
[0, 1]. We ran 50 simulations for each scenario and computed the average to be able to
generalize the results.

As depicted in Figure 3, regardless of the number of added zeros L, the sensitivity
decreases by constraining the probability of success, and true ψ is contained in the estimated
confidence interval highlighted in gray. Furthermore, the estimated N is consistent for
ψ = 0.25, as depicted in Figure 2. A fair estimate of N is obtained when sampling ψ from
[0.0, 0.5] regardless of L. The results show that a reasonable estimate of N between 23 and
33 can be obtained by constraining ψ, and with a higher probability of success of 0.25, the
estimated N is more accurate (between 23 and 27).

Table 2 shows the estimated values of σ, λ0, ψ, and N, along with ESS and Lag10
autocorrelation for ψ and N. For M = 100, the estimated value of the population size N in
the case of no constraint on the parameter ψ is about 32, with an ESS equal to 1862. After
enforcing the constraint [0, 0.5] on the range of ψ to reject all samples with ψ > 0.50, the
estimated value of N is about 27 with an ESS of 4368. Moreover, by limiting the range
of ψ to [0.10, 0.40], the estimated population size is 26 with the ESS of 7678. Pointwise
nonparametric confidence intervals for population size given the range of ψ are compared
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for different values of M (Figure 4). As we can see in this figure, more robust estimates of
the population size and ψ are obtained for M = 100, while the estimation error and bias
are increased for M = 200. Figure 5 shows the estimated ψ and its confidence interval
regarding the ESS of N̂ and ESS of ψ̂ for different values of M. It is clear that the estimated
ψ is more robust and converges to its true value within an ESS of 3000 for M = 100, while
it is overestimated and does not converge to the true value of ψ for M = 200.

Table 2. Summary of 50 runs of the estimated mean of σ, λ0, ψ, and population size N for different
ranges of ψ and M ∈ {100, 200}.

M ψ
^
σ λ̂0 ψ̂

∣∣∣%eψ̂

∣∣∣ ^
N ESSN ESSψ Lag10N Lag10ψ

100

0.00–1.00 0.560 0.497 0.323 29.200 31.943 1674.3 1862.4 0.635 0.593

0.00–0.50 0.563 0.546 0.273 9.200 27.173 3661.7 4368.0 0.393 0.334

0.10–0.40 0.516 0.557 0.261 4.400 26.251 5987.0 7677.7 0.270 0.205

200

0.00–1.00 0.546 0.527 0.170 36.000 33.321 1490.3 1778.8 0.670 0.620

0.00–0.50 0.527 0.564 0.158 26.400 31.026 2647.5 3152.3 0.528 0.473

0.10–0.40 0.496 0.545 0.165 32.00 31.168 3880.0 4606.6 0.412 0.355
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Figures 6 and 7 show the estimated parameters σ and λ0 in comparison with their true
values. In all cases, the densities of the estimated parameters converged to the stationary
distribution. With the constraint on parameter ψ, the mixing of samples in the chains were
improved, providing more accurate estimates of N. With no constraint on the parameter
ψ and M = 200, the Monte Carlo average of the estimated population size N was about
33 with an ESS of 1779. By enforcing the constraints on the parameter ψ, the estimated
population size N was 31 which demonstrated a smaller absolute error as well as improved
accuracy with a narrower confidence interval in comparison with the scenario with an
uninformative prior distribution (Table 2). We should point out that with M = 200, the
augmented population size is eight times larger than the true population size of N = 25,
as a result of which, N is substantially overestimated, and N = 25 is well outside of the
confidence interval of [LB = 34.0,UB = 44.0] (Table 3).
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Table 3. Estimated 95% confidence interval for population size N and probability of success ψ.

95% CI 95% CI

^
N

^
N−2∗Sd ^

N

^
N+2∗Sd ^

N
ψ̂ ψ̂−2∗Sdψ̂ ψ̂+2∗Sdψ̂

M = 100

30.887 25.733 36.041 0.313 0.220 0.406

27.107 22.463 31.751 0.274 0.185 0.363

25.255 20.886 29.624 0.253 0.166 0.340

23.326 19.255 27.397 0.231 0.147 0.315

23.862 19.707 28.017 0.237 0.152 0.322

M = 200

39.231 34.230 44.232 0.199 0.143 0.255

30.979 26.919 35.039 0.158 0.106 0.210

33.433 29.049 37.817 0.174 0.120 0.228

29.922 25.984 33.860 0.153 0.102 0.204

33.340 28.972 37.708 0.173 0.120 0.226

The estimated N for the constrained ψ in [0.10, 0.40] and M = 100 has the minimum
absolute error (|N − N̂| =

∣∣25− 26
∣∣= 1 and provides the highest number of independent

samples with ESS = 7678 generated through 90,000 MCMC iterations. With an unin-
formative prior for ψ, the range of estimated σ is [0.30, 2.03] with an average of 0.56.
By regularizing ψ and constraining its range to [0, 0.50], the range of the estimated σ is
[0.40, 1.70]. Moreover, by constraining ψ to [0.10, 0.40], the range of the estimated σ is
[0.39, 0.8] with an average of 0.52 and the narrowest range for the estimated ψ containing
true ψ and with the lowest absolute error of the estimate. The estimated λ0 for the afore-
mentioned ranges of ψ is 0.497, 0.546, and 0.557, respectively. The estimated population
size ranges from 8 to 61 with an average of 32 for no restriction on ψ, from 6 to 37 with
an average of 27 for ψ belongs to [0, 0.50], and from 16 to 37 with an average of 26 for ψ
belongs to [0.1, 0.40]. The estimated value of the population size is more accurate, and the
range of the estimated value is narrower after regularizing ψ (Tables 1–3). Moreover, the
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standard error for the estimated population size ranges from 5.8 to 24.7, with an average of
14.37 with no restriction on ψ. The standard error is between 5.8 and 13 with an average of
8.56 for ψ ≤ 0.50. With ψ constrained between 0.10 and 0.40, the standard error ranges
from 5 to 9 with an average of 6.8.

The estimated values for σ with M = 200 are 0.546, 0.527, and 0.496 (Table 2) for all
three scenarios regarding ψ, i.e., no constraint, [0, 0.5], and [0.1, 0.4]. Also, the estimated
values of λ0 are 0.527, 0.564, and 0.545 (Table 2) for the aforementioned constraints on ψ.
As it can be observed, the range of the estimated parameter is smaller with a constraint on
ψ (Tables 1 and 2). The estimated population size ranges from 6 to 107 with an average of
33 with no constraint on ψ, from 11 to 61 with an average of 31 by constraining ψ to [0, 0.5],
and from 19 to 47 with an average of 31 by constraining ψ to [0.10, 0.40]. As depicted in
Figure 7, we can see that by constraining ψ to [0.10, 0.40], the distribution of N̂ has a shorter
tail and converges to the stationary posterior distribution. Moreover, there is better mixing
of the chains providing more accurate estimates of the parameters.

4. Discussion

By constraining the parameter ψ to the range [0, 0.50], M can assume any value greater
than 2N (M ≥ 2N). In contrast, by restricting ψ to the range [0.10, 0.40], M is double-
bounded within 2.5N ≤ M ≤ 10N. Enforcing an upper bound of 10N is a sufficient
assumption that satisfies M >> N recommended for spatial capture models, while we
prevent indefinitely large M that can result in prohibitively small estimates of ψ (close to
zero) with a highly skewed distribution. In practical applications, determining an accurate
prediction for the value of M can be challenging. In cases where no prior information about
M is known, the range [0, 0.5] can be considered for ψ. However, if prior information about
the population size is known, and the camera grid provides adequate coverage of the habitat
of interest, the range [0.1, 0.4] for ψ is preferred to avoid underestimation of ψ toward zero.

It was observed that the estimated population size using the spatial capture models
with camera encounters is subject to overestimation and bias. The estimation bias tends to
increase by increasing M. ESS and lag 10 can be used to control the convergence of MCMC
and in turn controling the estimation bias. Specifically, lower ESS values are associated
with higher bias, whereas higher ESS values are associated with lower bias. Additionally,
larger values of lag 10 tend to correspond to higher levels of bias, and vice versa.

In terms of M, by setting it within five times of N, the estimated N is relatively accurate
with low bias, while by increasing M toward 10 times of N, the estimated N converges
to higher values (overestimates) with increased bias. It should be noticed that the values
of ψ and λ0 depend on each other, and in turn, their estimated values are not mutually
exclusive. Specifically, there is a trade-off between the two estimated parameters. If the
estimate of λ0 increases, the estimates of ψ will decrease, and vice versa. Potentially, the
estimated population size could be further improved by considering a prior distribution
for λ0, which is the subject of our future work. Nonetheless, regularizing the value of ψ
by a prior distribution in conjunction with controlling the ESS and log 10 improved the
accuracy of the estimated population size.

5. Conclusions

Population management is important to preserve the populations of endangered species
and to control the populations of invasive species. Estimating the population size is an
essential task in managing the population. Collecting a random sample of individuals from
the population is a feasible practice to study the population when it is not possible to count
every individual. Capture–recapture methods based on spatial sampling and count models
have become the standard methods in the analytical framework for ecological statistics and
are widely used for population analysis to estimate population size and density.

The unknown size of a population is considered as the number of successes in a
binomial distribution. The parameters of this binomial distribution are an unknown number
of independent trials and an unknown probability of success. This is an inverse problem as
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none of the parameters including the population size, the probability of success, and the
number of independent trials is known. An initial realization of the unknown number of
trials is required to approach a solution while the accuracy of the estimated parameters
strongly relies on the initial value for the zero-inflated population size. Hence, the estimated
population size in spatial capture models is quite sensitive to the size of a zero-inflated
population and in turn to the estimated probability of success. This is a typical count model
with censored data as captured individuals are not identified, and some individuals are not
detected. To address this problem and improve the estimation accuracy, in this research, we
investigated the sensitivity and accuracy of the spatial capture-unidentified models (using
virtual encounters) with the objective of improving their robustness. Statistical simulations
were implemented to study the sensitivity of the spatial capture models to the zero-inflated
population parameter ψ.

In capture-unidentified models, augmented population size (M) is allowed to be
increased indefinitely, and so ψ will be allowed to belong to [0, 1]. As a result, the population
size N will be highly overestimated, and the accuracy of the estimate declines for large
values of M while the estimated ψ moves toward zero. Consequently, the credible interval
becomes wider, and the distribution of N̂ displays a heavy and long right tail. Moreover,
the true estimation error and estimation bias increase, while ESS tends to remain low. To
address the aforementioned issues, a lower and an upper bound for ψ were recommended
to prevent overestimation of population size that is caused by excessive underestimation of
ψ when it is not regularized. In this way, the accuracy and bias were retained providing
fairly narrow credible intervals, while ESS was improved.
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Abbreviations

MCMC Markov chain Monte Carlo
HSCR Hierarchical spatial capture–recapture
N Population size
N̂ Estimated population size
K Sampling occasion
zijk Camera encounter history for individual i, at camera j, on occasion k
λij The encounter rate for individual i at camera j
λ0 The baseline encounter rate
σ Home range radius.
dij The Euclidean distance between activity center si and the camera location xj
njk The number of camera encounters at camera j on occasion k
M The augmented parameter (the total number of hypothetical individuals)

ψ
Probability of success, i.e., the probability that an individual in the occupancy model
of size M is a member of the original model of size N

α and β Parameters of Beta probability distribution
ESS The effective sample size
L The number of zeros added to the model L = M− N (data augmentation size)
Lag k The autocorrelation between the current sample and kth preceding sample
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