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1. Introduction

In recent decades, researchers have found that fractional differential equations are
appropriate for describing real-life problems with memory and genetic characteristics.
Thus, the topic of fractional differential equations has received increasing attention. More
details can be found in [1-3]. Impulsive fractional differential equations (IFDEs) are used
to depict various practical dynamical systems, including the evolution of states that mutate
into features at certain times, with the wide application of IFDE theory in the modeling
of genetic phenomena and abrupt dynamical systems. The research on the existence,
uniqueness and stability of IFDEs has attracted increasing attention [4-9].

At the same time, fractional delay differential equations (FDDEs) and impulsive
fractional delay differential equations (IFDDEs) are often used to depict state changes that
occurred in the time interval of the previous period. In [10], the authors presented the idea
of a delayed matrix function and provided an explicit formula for FDDEs by the method
of constant variation. In [11,12], the idea of an impulsive delayed solution vector function
was developed. This notion aided the authors in finding the exact solutions of IFDDEs.
In [13], the author obtained the exact solutions of higher-fractional-order nonhomogeneous
delayed differential equations with Caputo-type derivatives by using the new generalized
delay Mittag matrix function, Laplace transform and inductive construction.

The finite-time stability (FTS) of fractional differential equations has attracted much
interest. After decades of research, FTS has contributed remarkable achievements in modern
science and technology, chemical engineering, and other areas. Thus, we studied the FTS of
a system, which is of great practical significance. Scholars have recently used the Lyapunov
function, and Gronwall’s integral inequality to research the FTS of integer and fractional
differential equations. In [14-17], the authors investigated finite-time stability by means of
the generalized Gronwall inequality. Other related research can be found in [18-21]. Once
we obtain the exact solution of the system, we can find a suitable method to obtain the
sufficient conditions for FTS. Motivated by [12], we seek to construct an impulsive delayed
solution vector function to express the explicit solution and study the FTS of IFDDEs.
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In [22], the authors gave a representation of the solution of linear FDDEs:

(RIDP L 0)(&) = Bo(¢ —¢) +8(8), ¢ >0, £ € (0,T],
v() =@(§), —¢<¢<0, 1)
(1" fo)(—¢*) = @(—¢), @(—¢) € R,

where RLID)ﬁ +(0 < B < 1) denotes the Riemann-Liouville derivative (see Definition 2),
]I ﬁ " (0 < B < 1) denotes the fractional integral (see Definition 1), B € R"*", T = k*g,

k* eN:={0,1,2,---},g € C([—¢, T],R"), ¢ is a fixed delay time and RL]D)'EQJJD exists. For
any ¢ € [—¢, T}, the solution v € C(Q), R") N C([—¢, T],R") of (1) is given by

B
0(@) = s ( +1/ P (RIDP L o)(s ds+:/ SE gar, @)

where either O = ((k — 1)g, kg for 0 < B < g5 or Q = [(k — 1), kg] for B > =7
In this paper, we deduce the general solution of linear IFDDEs:

(RIDE L 0)(&) = Bo(E—¢), € # & 6 >0, E€(0,T],
@ =0@E)+C,e=8,1=12---,p(T,0), .
v(¢)=w(f), —¢<¢<0,

(I fo)(—¢t) = @(—¢), @(—¢) €R",

[~

where p(T,0) denotes the number of impulsive points belong to (0, T) and the symbols
v(&h) = li%l+ v(é,+e€)and v(¢; ) = lil’él v(¢; + €) denote, respectively, the right and left
€— e—0"

limits of v(&) at & = ¢,.
After that, we will give some new sulfficient conditions to ensure that (4) is finite-time
stable.

(RIDF (&) = Bo(& —¢) +8(8), & # & £ € (0,T],

@& =vE )+C,¢=¢,1=12--,p(T,0),
(6)=w(G), —¢<¢<0,

(L o) (—¢*) = @(—¢), @(—¢) €R",

[

(4)

<

This paper mainly has the following three aspects of innovation:

(i) The mathematical model is novel, and the newly constructed impulsive delay
vector function is of great significance for extending from time-delay systems to impulsive
time-delay systems.

(ii) Using the relationship between the Riemann-Liouville fractional derivative and the
Caputo fractional derivative, the two are skillfully transformed to prove that the impulsive
delay vector function is the fundamental solution of (3), which provides more ideas for
future research.

(iii) The position of the pulse point in this paper is arbitrary, which renders the research
more universal.

The rest of this paper is constituted as follows. Firstly, we review the symbols and
definitions. Secondly, we construct an impulsive delayed solution vector function and give
the explicit solutions of (3) and (4). Then, we give four practical conditions to guarantee
that (4) is finite-time stable. Finally, we give three numerical examples to illustrate our
theoretical results.
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2. Preliminaries

Let C([—g, T], R") be the space of a continuous function with [|v]|c = maxgc[_¢ 1 [[0(E) I,
PC([—¢, T],R"M)= {v € C((&,&+1],R"),1 = 1,2,---,p(T,0). There exist v(&,") and
v(¢, ) with v(¢,) = v()} with [[oflpc = supge;_ 7y [0(C)]]. Forany 0 < v < 1, we
denote Cy([a,b],R") = {v € C((a,b],R")|( —a)"v(¢) € C([a,b],R")} with vllc, =
maxg<g<p [|(§ — a)70(E)- Let [[of = i |vil, [[BI] = maxi<jcn Xy [bij] and [[@]lc =
maxge[g o] [[@(5)]]

Definition 1 (see [2]). Let 0 < p < landy : [—¢g, +o0) — R". The fractional integral of y is
defined by

p _ sy
L@ =gy [, gt 8>

where T'(+) is the Gamma function.

Definition 2 (see [2]). Let 0 < B < land y : [—g,+o0) — R". The Riemann-Liouville
fractional derivative of y is defined by

B _ 1 d ¢ y(t)
R e T 3 Ay

Definition 3 (see [2]). Let 0 < B < landy: [—g, +oo) — R". The Caputo fractional derivative
of y is defined by

dt, ¢ > —q.

1 g
Cph :7/ E—0)7Py()dt, ¢ > —c.
(D)) = gy [ €0y (et £ >
Definition 4 (see [2]). If0 < B < 1, y is a function for which the Caputo fractional derivative
(CDé c +y)(§) exists together with the Riemann—Liouville fractional derivative (RL]D)E ¢ ) (8).
Then,

y(=¢)
r'(1-p)

In particular, when y(—¢) = 0, then (CD€Q+}/)(§) = (RLD€g+y)(§).

(“Df (@) = *DF _y)(©) - (E+¢)7F ®)

Definition 5. The delayed one-parameter Mittag—Leffler-type matrix function BB 5 :R — R™"
is defined by
0, —c<<f<—2g,
E, - 2(; < ér < =G,
e NN
r(g+1) (2p+1)
(k—1)¢ <f<kg k€N,

- (k=19 ©

k
LR i iy Y

B2
+1"

where © is a zero matrix and E is an identity matrix.
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Definition 6 (see [22]). The delayed two-parameter Mittag—Leffler-type matrix function eB?

R —s R is defined by -
0, —0<{<—g,
EM, _ g S é S O,
eB@“ _ I'(B) @)
—cu _ _ _
(E+¢)f 1 g2p1 p (&= (k=1)g)krDp-1
E B ...1B ,
re e T T(kB+a)
(k—1)¢<&<kg keN.

Definition 7. Forany § € ((k—1)g,k¢| and k = 1,2,- - - ,k*, the impulsive delayed Mittag—
Leffler-type vector function Q_ g(+) : R — R" is defined by

—&—2c)B
Qfg,ﬂ(g) — 2 E]i(gé &—2¢) Cz- (8)
0<8:<¢

Definition 8. System (4) is finite-time stable with regard to {0, ], ¢, d,n} if and only if ||@||c < §
implies ||v||c, <1 and 6 <n,where ] := ((k—1)g,k¢]andk =1,2,--- k.

Lemma 1 (see [12]). Forany ¢ € ((k—1)g,kgl, k=1,2,--- ,k* and &, € (0,¢), we have

g
OBt —E — (k— (k=1)p—
Jos 076 (e 1)g) <

= (€&~ (k=19 PB[(k—1)p,1- ],
where B[x,y] = fol ¥ 1(1 —5)V~ds.

Lemma 2 (see [18]). Forany ¢ € ((k—1)g,kg], k=1,2,--- ,k* and 0 < v < 1, we obtain that
(i) Forany 0 < B < ﬁ, one has

16 — (k= 1)@)”6?%” < (&~ (k=1)6)P* T Egg(IIBII(E — (k—1)c)P).

(ii) For any klﬁ < B < 3, onehas

: g E= (=g Ve
L O R e O L e

(iii) For any > %, one has
16 — (k— 1)9)7€f§g€ﬁ\| < &P Eg 4 (1IB1EP),
where Eg g(z) = ]go Wkﬂs)' zeR
Lemma 3 (see [18]). Forany ¢ € ((k—1)g, kg|andk =1,2- - - k*, we have

0
B(E—c—s)P
[ 1 s

<y e e o ngee y BB e gy

m=0 m=1
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Lemma 4 (see [18]). Forany & € ((k—1)g,k¢|, k=1,2---k*and B > 1 — %(p > 1), we have
0
B(Z—c—s)P i1 (RLyB
| EEETTNIEDE L)) s
1

£ BITE = (=19 "IN 0 ;
= 1 D~ a4 )
= <r(m/3+/3)(P(m+l),B—p+1)p) (/—g I @) )| 5)

Lemma 5. Forany ¢ € ((k—1)g, kg) and k =1,2- - - k*, we have

1B]™ ;
/ ||€ ||ds< Z m(g_(m_l)/;)( +1)B.
Proof. By (7), one has
.é’ s
./_g”gi(géﬁg " s
S/ffk’;H €€S|ds+/ H_égs|ds+/ ggs|ds
-
&—kg (é’—s)ﬁ M k(g—kg—s)(kﬂ)ﬁ—l
< /_g ( NI Vo7 I Ll s v (o sy )ds
&—(k—1)g M (g—S)Z‘B—l
+-/§—kg () + 1B NeT)
~(k—1)c — g)kB—-1 ¢ g
+ "+HBHk71(§ (k r(lk)‘g) S) >d8+ ¥ %ds
k " o
- w — (m —1)g)(mtDB
N n;::or((m-Fl),B—l—l)(é (m—1)p) .

The proof is finished. O

3. The Solution of System (4)
In this section, we will establish the general solution of (3) by using (6)—(8).

Theorem 1. Let { € ((k —1)g, kg], and let &, € (0,¢) be a fixed impulsive point. Then, we have

B —&—3c)B
(RLD,B E (g ¢i—2¢) 1)(6) — BEE(g ¢i—3¢) Cl

Proof. By Definition 4, we have

(Ripf B8 ) = (D BN ),

where we use the fact ]Eli(_g_gl_%)

(i) For &, € (¢ —¢,¢], we have

= 0. We will split down the entire proof into three steps.

B4, = EC, ©)
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By Definition 3 and Equation (9), one has

(Repf BP9l = (Cpf BRI ) (g
4
= g [ -0 Ec)
— BEPES ¢,
(ii) For &, € (0,& — (k —1)g], we have
Be-t- m (&~ éz— ¢)"P
E” Z B NCTESY C.

By Definition 3, Lemma 1 and Equation (10), one has

(R L EPEC) @)

B
= (pf LEEE )

(10)

_ B Y B a pd
~ TA-pB)I(p) ./[;Hg(? B P(t =& — )P Gt
B2 ; y N
TR Jyn 6~ B 20
o Bk-1 /C (g—t)_ﬁ(t*é‘ —(k—1) )(k_l)'g_l(fdt
T(1—=B)T((k—1)B) Je+(k—1) L S 1
-2 Gt (g

- B(EC”LBZ(l3+1)cl+”'+Bk1 T((k—2)B+1)
— m 6 gz—(m-i-l)g)mﬁ
= B Z B (mﬁ+1) C,
— BE” (5 &1—3¢)P C.

(iii) For &, € (E— (n+1)g, ¢ —ng|,n=2,--- ,k— 2, we have

E (5 Gi— 2 m C 61 ) Cl~

By Definition 3, Lemma 1 and Equation (11), one has

_&—2c)P
(RLDﬁ ]EB(; &i—26) C)(&)

= (D BN

S S P oY Ul Tt i
- F(l—ﬁ)</¢,+g (-7 (ﬁ+1) Cidt +
¢ m M — & —m )m p-1
" /§z+ng Z B mﬂ + 1) Czdt>
:
- R (Lg@ —H7P -G -G

B2 : y .
TR 08— 207 G

B B ypl
T BT o €D =8 me) Cldt>

_|_

(11)
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_ (E—¢&—2c)F L (E—E—(n—1)g—¢) 1B
= B(EC1+BMC1+...+B 1 e Q)

_ m g g Cl )mﬂ
= BZB T ES TR

— BE” (é Gi— 35) C

The proof is finished. O

Theorem 2. The impulsive delayed Mittag—Leffler-type vector function Q_ g(-) is the fundamen-
tal solution of (3).

Proof. By Definition 3 and Lemma 1, one has

(Rﬁmﬁ_g+ Y Ef62c )(C) = (CDﬁ_g+ )3 Eﬁ(g‘@‘%%)(é)

0<& <& 0<&i<g

4 & -
- g e T e

0<8i<¢
_ ( Z C]D’B E(g Gi— 25) C1)(€)
0<¢i<¢

- B Y BP0,
0<&i<¢

Let{, € (0,¢)and 1 =1,2,- -+, p(T,0); we will prove Q_¢ 4(,") = Q—5(&) +C..

Q p@) = YL EPE G2 c

k=1
1—1
= Y EME E2 04, gt e (@8,
k=1
1—1
_ — B _
Q p(&) = YL EMG G20 o e (g,
k=1

which implies that Q_ (&,") = Q_p(&;) + C;. The proof is complete. [

Theorem 3. The solution v € PC(Q,R") N PC([—g, T], R") of (3) has the form

B(&—¢&—2¢)F
0(&) = " s0(—¢) + / PR o)+ Y EPEE e,
0<g;<¢

where either QO = ((k —1)g, kg] for 0 < g < ki—l or Q = [(k— 1), kg] for B > iy

Proof. The proof of this theorem is analogous to ([22], Theorem 3.2).
The general solution of (3) that satisfies v({) = @(&), —¢ < ¢ < 0 has the following
form

- eBéjﬁCvL / B(é Ny (s)ds + Q-cp(6), 0=<C<T. (12
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where ¢ is an unknown vector and y € C([—¢, T], R") is an unknown function. We choose
a c satisfying (Hl:géz)(—(ﬁ) = @(—¢); then, one has

et [ PG s @), —g<E <o

By (6), let { = —g, and we obtain eé(g_ﬁzg_s)ﬁ = 0O with —¢ <5 < 0. For —¢ < ¢ <0,

we have

@(-g) = (I fo)(—¢")

. 1 ' _3 Bib
B,B
- ghffgh (r(1 —B) /,g(g f) etgfﬁCdt)

c ¢
_ e _ B -1
= Jdm gy L€ 0P
= lim c=g¢,

——¢t

which implies that

v(g) = Béﬁ +/ é 6=) y(s)ds + Q_c g(2).

For any —¢ < ¢ < 0, one has

0, {<s<0,
B(g—c—s)P _ _
€_cp - (¢ — S)ﬁ ! .
Eil“([—%) , —¢<s<{.
Thus, for any —¢ < ¢ < 0, we have
_ (E+o)f ! ¢ (E—s)f?
@(¢) = W@(—G) + Lg Tﬁ)y(s)ds' (13)
Using Riemann-Liouville fractional differentiation on both sides of (13), we have
RLmB _ B (t+¢)f! B
(D @© = g |60 (a0
(t—s)P1
+ ./_g TR y(s)ds) dt

= di/g y(s)ds
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Forany ¢ € [0, T] and &, € (0,¢), we have
1
_ _E—2c)B
v(érl-‘r) _ +/ gz G—s) RLD/S€+(D) S)dS—I— ZEIE(E# &k—26) Ck
k=1
1—1
_ & —2c)B
= SE +/ P (RDP L o)(s)ds + Y EPEE2
k=1
= 0(61 )+Cl'

This proof is complete. [J

Theorem 4. The solution o € C((0, T],R") of (1) with 5(¢) =0 = (0,0,---,0)T,—¢ <& <0
can be written as

4
20) = [ G s

Proof. The proof of this theorem is analogous to ([22], Theorem 3.3). [

Next, combined with Theorems 3 and 4, the solution of (4) can be obtained.

Theorem 5. The solution v € PC(Q,R") N PC([—g¢, T],R") of (4) has the form
p B 20)P
0@ = (- +/ P (RiDf L o)(s)as+ Y EPEEH c
0<&<¢
¢ BE—c-t
+/7g P g (bt

Proof. Equation (4) can be decomposed into (1) and (3) (where (1) satisfies 9(¢) = 0,
— ¢ < & < 0); thus, the solution of (4) can be manifested as v(¢) = vo(&) + (&), where
v (&) is a solution of (3) and 9(¢) is a solution of (1) satisfying the zero initial condition. [
4. FTS of (4)

Now, we will give the results of FTS.

[Hi] M = sup_ .o || (PDF @) (s)] < oo.

[Hy] 0 < N = ([°_ | (*DF (s >||ﬂds>q <o, l=1-1 p>1.

[H3] 3k € L1([—g, T],]RJ“) ;=1-5pr>1 such that ||g( )| < k(&) for & € [—¢, T

1
and (&) := (fi_x(t)%t) ' < .
Forevery ¢ € ((k—1)g kgl and k = 1,2, - - - k*, we define

@ (- 1>g>ﬁ+7-15,g,ﬁ<u8\|<¢ —(k=1)0)), 0<p<
k _ (m+1)p—1
(0 =@ (k=197 L B E e <p el
P Egp(IBIEP), B2 5,
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and

)= L i (@~ =g
(m+1)+1)

m= O

‘m 1

—Z mﬁﬂ) (= (m—1)¢)",

£ |[B]|™(& — (m — 1)g)m+DP
¥a@) = ) T(m+1)+1)

m=0

LB (@ = (m—1)g) VR
‘P4(é‘)—mzo(r(mﬁ+l3) (P(m+1)/3—p+1)% >

Theorem 6. Suppose that p+ v — 1 > 0 and [Hy] holds. If
F(E)5+ (€ - (k=)o) (M¥a(0)

+ Y Epa(lIBI(E =& —20)P)lICil + ||g||c‘1’3(€)> <1, (14)

0<gi<¢
then (4) is finite-time stable with regard to {0, ],¢,6,1n}.
Proof. By Lemmas 2, 3 and 5, we have

1(E — (k—1)g) 70 (@)
16— (k= 1)e)7e™ ll@(~¢)|

e (k=007 [ 11D o)

+E—(k=1)9)7 Y JEPFEE2 )0

0<gi<C

IN

4 e
+(E = (k=1)g)" [ g 1P E e g (1) e

Y1(6)0 + (¢ — (k—1)g)TMY2(S)
+(@E=(k=1)g)" Y Eg1(IIBII(Z - & —2)P) |G|

0<8:<¢

IN

k m C m
He= k=007l ¥ ey [ (- me =

m=

IN

0
¥,(0)5+ (¢ — (k—1)g)" (sz@

Y Es(IBIE — & —20f) |Gl + ||g||a1f3<c>)

0<g<¢
< 7.

This proof is complete. [
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Theorem 7. Suppose that p > max{1 —, 1 — %} and [Hp) and [Hs| hold. If

¥1(0)5+ (¢~ (k—1)g)” (wc)N L (@)p(D)

Y Es(IBIGE -G —zg>ﬁ>|c,||) <, 15)

0<g;<¢

then (4) is finite-time stable with regard to {0, ],¢,d,1}.

Proof. By Lemmas 2 and 4, we have

16 = (k=1)¢) v (S]]

< 1@~ (k= 1))l ()]
/ue PIEDE @) (s) s
+@- k=17 ¥ IEXE 2 e
0<g,<¢

4 e
L M e [FIOI T

< NS+ (€~ (k- o) (a@N + L En(lBlE -t =207/l
0<gi<
SO |- nip-
+mZOr m+1)ﬁ)/€ (gimgit)( o 1K(t)dt>

IN

¥1()5+ (E — (k— 1)) (W4<¢>N+O L EsallBlie =200

+mi0 T( lBﬂ )B) </i_mg(§— me — t)”“’"“)ﬁ”dt);(/ix(t)th) q)
¥1(E)o+ (6 — (k—1)g)7 <qf4(g)N

IN

ST BB -6 - 200G + ¥a(Ov(d))
0<g;<¢
< 7.
This proof is complete. [J
Theorem 8. Suppose that B > max{3, 1 — v} and [Hy] holds. If

¥1(8)8 + Mg P Eg (|| B1P)

+&7 Y Epa(IBIE =& —20)P) Gl +¢7gllc¥a(E) <7, (16)
0<g,<¢

then (4) is finite-time stable with regard to {0, ],¢,d,1}.
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Proof. By Lemmas 2 and 5, we have

16 = (k= 1)g) 70 (Q)]]

< @~ (k=1)g)7e" @ (~0)|
0
+E-k-19)" [ g [P E Y (RIDP L @) (s) s
+HE- (k=17 ¥ EXEE
0<¢,<¢
4 e
HE— (=17 [ 1 (o)t
|| B (mt1p-1 RLTyB
< Yi(¢) H@(EOWM/ |*D g+a>) s)|lds
+ Eg1(||BI|(& — & — Gl + B e=Df) g
Mz@ s1(IBII(E — & —20)P) G ||g||c/ 1P )
< ¥1(8)6+ McZ P Eg (| B P)
+&7 Y Ea(IBIE — & —20)P) Gl + &7 lIgllc¥3(2)
0<g,<¢
< 7.

This proof is complete. [

Theorem 9. Suppose that B > max{3, 1 —~, 1 — %} and [H;] and [H3] hold. If

¥1(0)6+&" Y. Egi(IBI(E—& —2)P)|IC|

0<¢,<C

) (E+¢)f 7

+ Egp(I1B12F) (Mg¢7+ﬁ—1 R e 1);) <, a7

then (4) is finite-time stable with regard to {0, ],c,6,n}.

Proof. By Lemmas 2 and 5, we have

16 = (k= 1)) (Q)]l

< 1@~ (k=) gl @ ()]
0
HE= (=197 [ 1E I @) (5) s
+E- (k=17 ¥ [EXEE e
0<g<¢
g e
HE— k= 1))7 [ e (o)
|B|mgtm e p
< o+ (3 BIEE [ 10t oo
+ X EnlIBlE -6 20)P)lIci|
<G <
k| pEeme

C ¥ ropag [ €m0 e(ar)
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This proof is complete. [

5. Example
Example 1. Let p =0.6,¢ = 0.3, k* =3, {1 = 0.2 and ¢, = 0.5. Consider

(RLDP ., 0)(&) = Bo(& — 0.3) + (&), & # & & € (0,09],

U(éz ) - v(gz ) +C, 6 = ‘:l/ 1=1,2,
@(&) = (+03,01(E+03))", —03<&<0,
(1% 5:0)(=0.37) = @(—0.3) = (0,0) T,

- (28 ) (228 em (8 s (

By Theorem 5, for any ¢ € [—0.3,0.9], one has

where

v() = 33%306‘9( 0.3) +/

+ 2 g o 0606C / e 06382 0 g(t)dt,
0<E<E
where
(§+0.3)704 50.2
EToe  tPBrag ¢ € ©03)
BE0S (G+03)04 g2 2(6-03)08
€ 0306 =\ E T(0.6) +BF(1-2) +B T(18) , £ €(03,0.6],
E+03)0%% @02 (G030 (f-06)1
EToe TPray TP rae TP e

Y. Epa(lIBII(C -8 —

= 20)P)lIG|

20)P)|1Cl

(18)

>. (19)

0.3— 0.6
e 06306 ) (RLID)O'63+‘D)(S)dS

€ (0.6,0.9],
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_F 0.6
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eenCog ey ) (1)
(B0 () £epsos)

Set p =2,q = 2and y = 0.5. We can obtain that ||B|| = 0.6, ||g||c = 1.71, M = 0.7659,
N = 0.4195, 1(0.9) = 0.9105. Next, ®1(0.9) = 1.8211, ®,(0.9) = 0.4479, $3(0.9) = 1.8181,
®4(0.9) = 1.6056. Choosing ¢ = 0.331, we present the FTS results of (18) in Table 1.

By Definition 8, we find an appropriate 7, ensuring that ||z|c, in (18) is no more than
1 on J. So, through numerical simulation, we can use the explicit solution of (18) to find
a suitable 7 = 1.770 for a fixed T = 0.9 (see Figure 1). Furthermore, by verifying the
conditions in Theorems 6, 7, 8, 9 for [—0.3,0.9], compared with the values of # in Table 1,
we can choose a better value of # = 2.03.

Table 1. FTS results of (18) with T = 0.9.

Theorem |@]|lc B T é lIzllc, 7 FTS
6 0.33 0.6 0.9 0.331 2.7398 2.75 Yes
7 0.33 0.6 0.9 0.331 2.0187 2.03 (optimal) Yes
8 0.33 0.6 0.9 0.331 4.3801 4.38 Yes
9 0.33 0.6 0.9 0.331 5.0680 5.07 Yes
1.8 :
16
14F
12F
g 1r
g
>08F
06}
04}
02}

Figure 1. || (¢ — 0.3(k —1))%%0(&)|| of (18) with T = 0.9,k = 0,1,2,3.



Axioms 2023, 12,1129

150f18

Example 2. Let f =0.7,¢ =02, k* =3, {1 = 0.2 and ¢, = 0.5. Consider

(R'DP ), 0)(8) = Bu(E —0.2) +g(8), & # &, & € (0,0.6],
o(EN) =0 )+C, E=¢,1=1,2,

@) = (£+02,(6402)%)7, —02< <0,

(1°3 . 0)(—0.2%) = @(—0.2) = (0,0) ",

w=(28) o= (i) em(§ro=(3)

By Theorem 5, for any ¢ € [—0.2,0.6], one has

(20)

where

o(e) = ¢ %207‘0( 0.2) Jr/ € 0%872 5)07(RLD%-2+60)(s)ds
(@' él 0407 g 02— t)
T G+ t)dt,
O<§<§ /02e 0207 8(t)
where
(E+02)703 04
E 07 tPrawy ¢ e (0,02,
BZ07 (40.2)793 o4 L (E—02)11
€ 0207 =\ E r07) +Br(1.4)+B T2 , &€ (02,04],
(E+02)7%% o & (E—02)"  5(6—04)"8
E o7 Bram T e TP Tas) £ € (0406
and

Y EXGE7c, =
$<E<C

=

@—0‘9()7)( I ) & € (04,05,

1
2

(=)

G*ﬂiﬁﬁw)(i)+(g)@em5%y

Setp = 2,49 =2and v = 0.5. We can get ||B|| = 0.6, ||g|lc = 0.96, M = 0.8991,
N = 0.2587, (0.6) = 0.4574. Next, ®; (0.6) = 1.3245, ,(0.6) = 0.2929, ®3(0.6) = 1.2021,
P, (0.6) = 2.1050. Choosing § = 0.241, we present the FTS results of (20) in Table 2.

Like Example 1, we can choose a suitable # = 1.037 for a fixed T = 0.6 (see Figure 2).
Furthermore, compared with the values of 7 in Table 2, we can choose a better value of
n = 1.07.

Table 2. FTS results of (20) with T = 0.6.

Theorem l@|lc B T ) llzllc, U] FTS

6 0.24 0.7 0.6 0.241 1.0661 1.07 (optimal) Yes
7 0.24 0.7 0.6 0.241 1.1064 1.17 Yes
8 0.24 0.7 0.6 0.241 1.6471 1.65 Yes
9 0.24 0.7 0.6 0.241 1.3502 1.36 Yes
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Figure 2. || (¢ — 0.2(k — 1))%%0(¢)|| of (20) with T = 0.6,k = 0,1,2,3.

Example 3. Let § = 0.6, = 0.2, k* = 3,51 = 0.2and ¢, = 0.5. Consider
(REDP ) ,.0)(2) = Bo(E — 02) +g(&), & # &, & € (0,0.6),
v(gl-‘r) = v(gl_) + Cl’ g = Cl' 1= 1/2/

@(&) = (E402,(+02)?)", —02<&<0,
(199 ,:9)(—0.27) = @(—0.2) = (0,0) T,

w=(18) o= (BB (§)ewo-(5) @

By Theorem 5, for any ¢ € [—0.2,0.6], one has

(22)

where

B 0.6 0 B(E—0.2— 0.6
v(G) = e—%.2,0.6w(70'2)+/_oze_(0g.2,0.6 IV (RLDYS 5, @) (s)ds

B(E—¢,—0.4)06 S B(E—02-1)06
+ ) ]E—(o?zé ot / e—((;:.z,o.() ) g(t)dt,
0<é;<¢ —02

Setp = 2,4 =2and v = 0.5. We can get ||B|| = 0.6, ||g|lc = 0.96, M = 0.7612,
N = 0.2663, (0.6) = 0.4574. Next, ®1(0.6) = 1.3834, ©,(0.6) = 0.2998, ®3(0.6) = 1.3167,
P, (0.6) = 2.6823. Choose § = 0.241, we give the FTS results of (22) in Table 3.

Like Example 2, we can choose a suitable 77 = 0.900 for a fixed T = 0.6 (see Figure 3).
Furthermore, compared with the values of 7 in Table 3, we can choose a better value
n =1.12.

Comparing Example 1, Example 2 and Example 3, we find the following: When the
order is the same, the time delay is different, and when the time delay is the same, the order
is different, and the system is finite-time stable.

Table 3. FTS results of (22) with T = 0.6.

Theorem ll@]lc B T é lIzllc, 1 FTS

6 0.24 0.6 0.6 0.241 1.1198 1.12 (optimal) Yes
7 0.24 0.6 0.6 0.241 1.4095 1.41 Yes
8 0.24 0.6 0.6 0.241 1.7294 1.73 Yes
9 0.24 0.6 0.6 0.241 1.8641 1.87 Yes
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Figure 3. ||(¢ — 0.2(k — 1))%5(&)|| of (22) with T = 0.6,k = 0,1,2,3.

6. Conclusions

In this study, we introduce the Mittag-Leffler-type vector function with an impulsive
delay, and give the explicit solution of the Riemann-Liouville fractional differential equation
using the constant variation method. On this basis, by scaling the base solution matrix and
the integral, we verify that the system is finite-time stable. Finally, the results are verified
by four examples under different conditions. In the future, we may continue to study the
other properties of the system, including stability or controllability. Due to the importance
of impulsive differential equations, we believe that the results obtained by us will arouse
the interest of many readers.
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