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Abstract: The Hilbert transform is a commonly used linear operator that separates the real and
imaginary parts of an analytic signal and is employed in various fields, such as filter design, signal
processing, and communication theory. However, it falls short in representing signals in generalized
domains. To address this limitation, we propose a novel integral transform, coined the quadratic-
phase Hilbert transform. The preliminary study encompasses the formulation of all the fundamental
properties of the generalized Hilbert transform. Additionally, we examine the relationship between
the quadratic-phase Fourier transform and the proposed transform, and delve into the convolution
theorem for the quadratic-phase Hilbert transform. The Bedrosian theorem associated with the
quadratic-phase Hilbert transform is explored in detail. The validity and accuracy of the obtained
results were verified through simulations.
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1. Introduction

Quadratic-phase Fourier transform (QPFT) is a remarkable innovation in the realm
of mathematical signal processing that has gained significant attention in recent years.
Towards the culmination of the twentieth century, Saitoh et al. [1] presented a pioneering
approach to generalize the classical Fourier transform by incorporating the theory of
reproducing kernels in the form of a quadratic function in the exponent of the integral
transform. This novel idea paved the way for further studies and applications of the
QPFT in various fields, ranging from image processing and quantum mechanics to signal
processing and engineering. Inspired by the work of Saitoh and his colleagues, researchers
have delved deeper into the potential of the QPFT, exploring its versatility as a tool for
solving complex problems. Castro et al. [2] took the QPFT to new heights by introducing a
more general quadratic function in the exponent, allowing for even greater control over
the transform and its results. The resulting integral transformation generalizes several
well-known signal processing tools, such as Fourier, fractional Fourier, and the much more
recent special affine Fourier transforms [3]. The use of a more general quadratic function in
the exponent of the transform allows for greater control over the transform and makes it
useful in diverse fields, like image processing, signal processing, quantum mechanics, and
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so on [4–6]. Its ability to handle complex signals with ease and its flexible nature makes it a
powerful tool for signal and image processing.

On the flip side, the Hilbert transform is a seminal concept in the field of signal
processing that has inspired and revolutionized countless areas of research. This integral
transform, named after the renowned mathematician David Hilbert, transforms a real-
valued function into a new function of time closely related to the original signal. In other
words, the power of the Hilbert transform lies in its ability to extract the analytic signal,
which is a complex signal that captures the envelope and instantaneous frequency of a
real signal. The analytic signal is particularly useful for analyzing signals that vary in both
amplitude and frequency over time, such as audio and biomedical signals [7,8]. In addition
to its use in signal analysis, the Hilbert transform has also been applied in other areas, such
as filtering and demodulation of signals, solving partial differential equations, and even in
the analysis of biological signals [9,10]. However, a major disadvantage is that its ability to
analyze signals is limited to the classical domain and, thus, it cannot represent generalized
analytic signals.

The sole aim of this paper was to intertwine the quadratic-phase Fourier transform and
the classical Hilbert transform into a new integral transform, coined the quadratic-phase
Hilbert transform, making it more robust and able to handle a wider range of signals and
functions. This novel integral transform is able to extract more information from signals
and provide a more comprehensive representation of the signal in the complex plane.
The classical Hilbert transform has limitations when it comes to analyzing non-stationary
signals. The quadratic-phase Hilbert transform overcomes this limitation by providing
a more general formulation that allows for the analysis of a wider class of signals. The
proposed transform can be used to analyze signals with a non-constant frequency, which is
not possible with the classical Hilbert transform. The quadratic-phase Hilbert transform
can be used in a wider range of applications than traditional transforms, making it a more
versatile tool for signal processing. The key points of the article are outlined below:

• The introduction of a new integral transform called the quadratic-phase Hilbert
transform;

• An examination of the fundamental properties of the proposed transform;
• The determination of a direct relationship between generalized analytic signals and

the quadratic-phase Fourier transform;
• An investigation of the Bedrosian theorem related to the quadratic-phase Hilbert

transform;
• The validation of the results through a representative example.

The rest of the article is organized as follows. In Section 2, the basic concept of the
quadratic-phase Fourier transform and its fundamental properties are reviewed. Section 3
is completely devoted to formulating the novel Hilbert transform in the context of the
quadratic-phase Fourier domain and examining its key features. In Section 4, we explicitly
study the generalized Bedrosian theorem related to the quadratic-phase Hilbert transform.
To demonstrate the accuracy of the theoretical findings, simulations are carried out in
Section 5. The article concludes with an epilogue in Section 6.

2. Quadratic-Phase Fourier Transform

The objective of this section was to familiarize readers with the concept of quadratic-
phase Fourier transform. As such, we first present the formal definition of the transform,
followed by the Parseval and inversion formulae.

Definition 1 ([6]). The quadratic-phase Fourier transform, denoted byQΩ
[

f
]
(ω), of any function

f ∈ L2(R) with respect to a specific set of parameters Ω =
(

A, B, C, D, E
)
, B > 0, is defined by

QΩ
[

f
]
(ω) =

1√
2π

∫ ∞

−∞
f (t)KΩ(t, ω)dt, (1)
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whereKΩ(t, ω) denotes the kernel of the quadratic-phase Fourier transform and is given by

KΩ(t, ω) = e−i(At2+Btω+Cω2+Dt+Eω). (2)

Definition 1 generalizes several integral transforms ranging from the classical Fourier
to the much more recent special affine Fourier transform. Many signal processing oper-
ations, such as scaling, shifting, and time reversal, can also be performed via the trans-
formation (1). Here, we mention the following properties of the quadratic-phase Fourier
transform.

(i). Introducing the Quadratic-Phase Hilbert Transform with Classical Fourier Transform
as a Special Case: For Ω = (0, 1, 0, 0, 0), the expression (1) simplifies to the classical
Fourier transform

QΩ
[

f
]
(ω) =

1√
2π

∫ ∞

−∞
f (t) e−iωt dt.

(ii). Quadratic-Phase Hilbert Transform Allows Fractional Fourier Transform with Just
One Multiplication: If Ω =

(
− cot α/2, csc α,− cot α/2, 0, 0

)
, α 6= nπ, n ∈ Z, then

multiplying (1) by
√

1− i cot α results in the fractional Fourier transform

QΩ
[

f
]
(ω) =

√
1− i cot α

2π

∫ ∞

−∞
f (t) ei(ω2+t2) cot α/2−iωt csc α dt.

(iii). Quadratic-Phase Hilbert Transform Unveils a Link to the Linear Canonical Transform:
For the specific set of parameters Ω =

(
− A/2B, 1/B,−C/2B, 0, 0

)
, multiplying (1)

by 1/
√

iB gives the linear canonical transform

QΩ
[

f
]
(ω) =

1√
2πiB

∫ ∞

−∞
f (t) ei(At2−2tω+Dω2)/2B dt.

(iv). Quadratic-Phase Hilbert Transform Reveals the Special Affine Fourier Transform
with an Additional Phase Factor: If Ω =

(
− A/2B, 1/B,−D/2B,−p/B,

(Dp− Bq)/B
)
, then multiplying (1) by eiDp2/2B/

√
iB yields the special affine Fourier

transform

QΩ
[

f
]
(ω) =

1√
2πiB

∫ ∞

−∞
f (t) ei(At2+2t(p−ω)−2ω(Dp−Bq)+D(ω2+p2))/2B dt.

In the following theroem, we assemble some fundamental properties of the quadratic-
phase Fourier transform (1).

Theorem 1. For any pair of functions f , g ∈ L2(R) and scalars c1, c2 ∈ C t0, ω0 ∈ R, µ ∈
R \ {0}, the QPFT (1) has the following properties:

(i). Linearity: QΩ
[
c1 f + c2g

]
(ω) = c1QΩ

[
f
]
(ω) + c2QΩ

[
g
]
(ω),

(ii). Translation: QΩ
[

f (t − t0)
]
(ω) = QΩ

[
f
](

ω + 2AB−1t0
)

× exp
{

i
((

4A2B−2C− A
)
k2 +

(
4AB−1C− B

)
ωt0 +

(
2AB−1E− D

)
t0
)}

,

(iii). Modulation: QΩ
[
eiω0t f (t)

]
(ω) = QΩ

[
f
](

ω− B−1ω0
)
ei(C(B−2ω2

0−2B−1ωω0))−EB−1ω0 ,

(iv). Scaling: QΩ

[
f
(

t
µ

)]
(ω) =

∣∣µ∣∣QΩ′
[

f
]
(ω), Ω′ =

(
µ2 A, B, µ−2C, µD, µ−1E

)
,

(v). Parity: QΩ
[

f (−t)
]
(ω) = QΩ′′

[
f
]
(ω), Ω′′ = (A, B, C,−D,−E),

(vi). Conjugation: QΩ
[

f
]
(ω) = Q−Ω

[
f
]
(ω), −Ω = (−A,−B,−C,−D,−E).

The inversion formula for the quadratic-phase Fourier transform (1) is presented in
the following theorem.
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Theorem 2. If QΩ
[

f
]
(ω) is the quadratic-phase Fourier transform of any function f ∈ L2(R),

then, the following inversion formula holds:

f (t) = Q−1
Ω

(
QΩ
[

f
]
(ω)

)
(t) =

B√
2π

∫ ∞

−∞
QΩ
[

f
]
(ω)KΩ(t, ω)dω. (3)

Towards the culmination of this section, we recall the orthogonality relation corre-
sponding to the quadratic-phase Fourier transform (1).

Theorem 3. For any pair of functions f , g ∈ L2(R), we have〈
f , g
〉

2 = B
〈
QΩ
[

f
]
,QΩ

[
g
]〉

2
. (4)

For f = g, the relation (4) yields the energy preserving formula given by∥∥∥ f
∥∥∥2

2
=
∥∥∥QΩ

[
f
]∥∥∥2

2
. (5)

It is well established that the convolution and product operations play a crucial role in a
variety of areas, including signal and image processing, quantum mechanics, sampling, and
filter design [3]. With this in mind, our next objective was to revisit the novel convolution
introduced by Shah et al. [6] for the quadratic-phase Fourier transform. Our goal was to
utilize this novel convolution to establish the convolution theorem for the quadratic-phase
Hilbert Fourier transform in a subsequent section.

Definition 2. For any f , g ∈ L2(R), the quadratic-phase convolution ~Ω with respect to the
parameter set Ω =

(
A, B, C, D, E

)
is defined by

(
f ~Ω g

)
(z) =

1
2π

∫
R

f (x) g(z− x) exp
{
− 2iAx(x− z)

}
dx. (6)

3. Quadratic-Phase Hilbert Transform in L2(R)
In this section, we delve into the concept of the Hilbert transform within the quadratic-

phase Fourier domain. Our main goal was to examine the fundamental properties of this
transform, including Parseval’s formula, and then establish important results related to
convolution structure in the context of the quadratic-phase Hilbert transform.

Definition 3. For a given set of real parameters Ω =
(

A, B, C, D, E
)

with B > 0, the quadratic-
phase Hilbert transform of any function f ∈ L2(R) is denoted byHΩ

[
f
]
(t) and is defined as

HΩ
[

f
]
(t) =

1
π

exp
{

i
(

At2 + Dt
)} ∫ ∞

−∞

f (x)
B(t− x)

exp
{
− i
(

Ax2 + Dx
)}

dx. (7)

Remark 1. Definition 3 provides us with additional insight into the concept of quadratic-phase
Hilbert transform. More explicitly, we have the following properties of the quadratic-phase Hilbert
transform:

(i). For Ω =
(
− A/2B, 1/B,−C/2B, 0, 0

)
, the quadratic-phase Hilbert transform (7) results

in a linear canonical Hilbert transform, expressed as follows:

HΩ
[

f
]
(t) =

B
π

e−iAt2/2B
∫ ∞

−∞

f (x)
t− x

eiAx2/2B dx. (8)

We observe that the linear canonical Hilbert transform (8) is also a generalization of the
Hilbert transform, which can handle functions with more complex behavior, such as functions with
oscillatory behavior that changes rapidly with time. Additionally, relation (8) is well-suited for
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the analysis of signals that have undergone linear transformations, such as scaling, rotation, and
shearing [11].

(ii). For the parameter set Ω = (− cot α/2, csc α,− cot α/2, 0, 0), α 6= nπ, the proposed
transform (7) reduces to the ordinary fractional Hilbert transform

HΩ
[

f
]
(t) =

1
π csc α

e−i cot αt2/2
∫ ∞

−∞

f (x)
t− x

eix2 cot α/2 dx. (9)

It is evident from (9) that the fractional Hilbert transform is a linear operator that acts on the
input function f (x) to produce its analytic Hilbert transform HΩ

[
f
]
. Like the classical Hilbert

transform, the fractional Hilbert transform is a singular integral operator, which can be used in a
variety of signal processing applications [12].

(iii). Choosing Λ = (0, 1, 0, 0, 0), Definition 3 yields the classical Hilbert transform given by

HΩ
[

f
]
(t) =

1
π

∫ ∞

−∞

f (x)
t− x

dx.

Next, we study the quadratic-phase Fourier spectrum of the quadratic-phase Hilbert
transform.

Theorem 4. IfHΩ
[

f
]
(t) is the quadratic-phase Hilbert transform of a signal f , then, the quadratic-

phase Fourier transform ofHΩ
[

f
]
(t) is given by

QΩ

[
HΩ

[
f
]
(t)
]
(ω) = −i sgn(Bω)QΩ

[
f
]
(ω). (10)

Proof. Invoking the definition of quadratic-phase Fourier transform, we have

QΩ

[
HΩ

[
f
]
(t)
]
(ω) =

1√
2π

∫ ∞

−∞
HΩ

[
f
]
(t)KΩ(t, ω)dt. (11)

Moreover, let

g(t) =
1
π

∫ ∞

−∞

f (x)
B(t− x)

exp
{
− i
(

Ax2 + Dx
)}

dx.

Then, quadratic-phase Hilbert transform can be recast as:

HΩ
[

f
]
(t) = exp

{
i
(

At2 + Dt
)}

g(t). (12)

Plugging the estimate (12) in (11), we obtain

QΩ
[
HΩ

[
f
]
(t)
]
(ω) =

1√
2π

∫ ∞

−∞
exp

{
i
(

At2 + Dt
)}

g(t)KΩ(t, ω)dt

=
1√
2π

∫ ∞

−∞
g(t) exp

{
− i
(

Btω + Cω2 + Eω
)}

dt

=
1√
2π

exp
{
− i
(
Cω2 + Eω

)} ∫ ∞

−∞
e−iBtω

×
{

1
π

∫ ∞

−∞

f (x)
B(t− x)

exp
{
− i
(

Ax2 + Dx
)}

dx
}

dt

=
1√
2π

exp
{
− i
(
Cω2 + Eω

)} ∫ ∞

−∞

f (x) exp
{
− i
(

Ax2 + Dx
)}

B

×
{

1
π

∫ ∞

−∞

e−iBtω

t− x
dt
}

dx. (13)
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By virtue of the traditional Hilbert transform, we have

1
π

∫ ∞

−∞

e−iBtω

t− x
dt = −H

[
exp

{
− iBtω

}]
(x)

= iB sgn(−Bω) e−iBxω

= iB sgn(Bω) e−iBxω. (14)

Implementing (14) in (13) yields

QΩ
[
HΩ

[
f
]
(t)
]
(ω) =

−i sgn(Bω)√
2π

∫ ∞

−∞
f (x) e−i(Ax2+Bxω+Cω2+Dx+Eω) dx

= −i sgn(Bω)
∫ ∞

−∞
f (x)KΩ(x, ω)dx

= −i sgn(Bω)QΩ
[

f
]
(ω).

This completes the proof of Theorem 4.

Next, we present a theorem that outlines key features of the quadratic-phase Hilbert
transform, as described in Equation (7).

Theorem 5. For a pair of functions f , g ∈ L2(R) and the scalars x0, ω0 ∈ R, the quadratic-phase
Hilbert transformHΩ

[
f
]

defined in (7) has the following properties:

(i).QΩ
[
HΩ

[
f (t− k)

]
(x)
]
(ω) = −i sgn(Bω) exp

{
− i
(

Ak2 + Bkω+Dk
)}
QΩ

[
e−i2Akx f (x)

]
(ω);

(ii).QΩ
[
HΩ

[
eiω0x f (x)

]]
(ω) = −i sgn(Bω) exp

{
i
(
Cω2

0 − 2Cωω0− Eω0
)}
QΩ
[

f
]
(ω−ω0);

(iii).QΩ
[
HΩ

[
eiω0x f (x− x0)

]]
(ω) = −i sgn(Bω) exp

{
− i
(

Ax2
0 + B(ω−ω0)x0 +Cω0(2ω−

ω0) + Dx0 + Eω0
)}
QΩ
[
e−2iAxx0 f (x)

]
(ω−ω0);

(iv). QΩ
[
HΩ

[
f
]
+HΩ

[
g
]]
(ω) = −i sgn(Bω)

[
QΩ
[

f
]
(ω) +QΩ

[
g
]
(ω)

]
.

Proof. (i) Invoking the definition of quadratic-phase Fourier transform, we have

QΩ
[

f (x− k)
]
(ω) =

1√
2π

∫ ∞

−∞
f (x− k) e−i(Ax2+Bxω+Cω2+Dx+Eω) dx

=
1√
2π

∫ ∞

−∞
f (z) e−i(A(z+k)2+B(z+k)ω+Cω2+D(z+k)+Eω) dz

=
1√
2π

exp
{
− i
(

Ak2 + Bkω + Dk
)}

×
∫ ∞

−∞
e−i2Akz f (z) exp

{
− i
(

Az2 + Bzω + Cω2 + Dz + Eω
)}

dz

= exp
{
− i
(

Ak2 + Bkω + Dk
)}
QΩ

[
e−i2Akx f (x)

]
(ω). (15)

By virtue of Theorem 4 and (15), we obtain

QΩ
[
HΩ

[
f (t− k)

]
(x)
]
(ω)

= −i sgn(Bω) exp
{
− i
(

Ak2 + Bkω + Dk
)}
QΩ

[
e−i2Akx f (x)

]
(ω).

(ii) Invoking Theorem 4, we observe that

QΩ

[
HΩ

[
eiω0x f (x)

]]
(t) = −i sgn(Bω)QΩ

[
eiω0x f (x)

]
(ω). (16)
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The application of Definition 1 yields

QΩ
[
eiω0x f (x)

]
(ω) =

1√
2π

∫ ∞

−∞
eiω0x f (x) ei(Ax2+Bxω+Cω2+Dx+Eω) dx

=
1√
2π

∫ ∞

−∞
f (x) ei(Ax2+Bx(ω−ω0)+C(ω−ω0)

2+Dx+E(ω−ω0))

× exp
{

i
(
Cω2

0 − 2Cωω0 − Eω0
)}

dx

= exp
{

i
(
Cω2

0 − 2Cωω0 − Eω0
)}
QΩ
[

f
]
(w−ω0). (17)

Plugging (17) in (16), we obtain

QΩ

[
HΩ

[
eiω0x f (x)

]]
(ω) = −i sgn(Bω) exp

{
i
(
Cω2

0 − 2Cωω0 − Eω0
)}
QΩ
[

f
]
(ω−ω0).

(iii) We have

QΩ

[
eiω0x f (x− x0)

]
(ω)

=
1√
2π

∫ ∞

−∞
eiω0x f (x− x0) ei(Ax2+Bxω+Cω2+Dx+Eω) dx

=
1√
2π

∫ ∞

−∞
f (x− x0) ei(Ax2+Bx(ω−ω0)+C(ω−ω0)

2+Dx+E(ω−ω0))

× exp
{

i
(
Cω2

0 − 2Cωω0 − Eω0
)}

dx

= exp
{

i
(
Cω2

0 − 2Cωω0 − Eω0
)}

exp
{
− i
(

Ax2
0 + B(ω−ω0)x0 + Dx0

)}
× 1√

2π

∫ ∞

−∞
e−2iAzx0 f (z) ei(Az2+Bz(ω−ω0)+C(ω−ω0)

2+Dz+E(ω−ω0)) dz

= e−i(Ax2
0+B(ω−ω0)x0+Cω0(2ω−ω0)+Dx0+Eω0)QΩ

[
e−2iAxx0 f (x)

]
(ω−ω0). (18)

By virtue of Theorem 4, we obtain

QΩ

[
HΩ

[
eiω0x f (x− x0)

]]
(ω)

= −i sgn(Bω) exp
{
− i
(

Ax2
0 + B(ω−ω0)x0 + Cω0(2ω−ω0) + Dx0 + Eω0

)}
×QΩ

[
e−2iAxx0 f (x)

]
(ω−ω0).

(iv) By straightforward computations, it is easy to show that

QΩ

[
HΩ

[
f
]
+HΩ

[
g
]]
(ω) = −i sgn(Bω)

[
QΩ
[

f
]
(ω) +QΩ

[
g
]
(ω)

]
.

This completes the proof of Theorem 5.

Next, we obtain the Parseval theorem for the quadratic-phase Hilbert transform.

Theorem 6. For any f , g ∈ L2(R), the following orthogonality relation holds:〈
HΩ

[
f
]
, g
〉
=
〈

f ,−HΩ
[
g
]〉

, (19)

and 〈
f ,HΩ

[
g
]〉

=
〈
−HΩ

[
f
]
, g
〉

. (20)
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Proof. For the sake of brevity, we only provide the proof of relation (19). The proof of
relation (20) follows in a similar manner.〈
HΩ

[
f
]
, g
〉

=
∫ ∞

−∞
HΩ

[
f
]
(t) g(t)dt

=
∫ ∞

−∞

{
1
π

exp
{

i
(

At2 + Dt
)} ∫ ∞

−∞

f (x)
B(t− x)

exp
{

i
(

Ax2 + Dx
)}

dx
}

g(t)dt

= −
∫ ∞

−∞
f (x)

{
1
π

exp
{
− i
(

Ax2 + Dx
)} ∫ ∞

−∞

g(t)
B(x− t)

exp
{

i
(

At2 + Dt
)}

dt

}
dx

= −
∫ ∞

−∞
f (x)

 1
π

exp
{
− i
(

Ax2 + Dx
)} ∫ ∞

−∞

g(t) exp
{
− i
(

At2 + Dt
)}

B(x− t)
dt

dx

= −
∫ ∞

−∞
f (x)

{
1
π

exp
{

i
(

Ax2 + Dx
)} ∫ ∞

−∞

g(t)
B(x− t)

exp
{
− i
(

At2 + Dt
)}

dt

}
dx

= −
∫ ∞

−∞
f (x)HΩ

[
g
]
(x)dx

=
〈

f ,−HΩ
[
g
]〉

.

This completes the proof of Theorem 6.

The analytic signal is a way of representing a real-valued function by combining the
original function and its Hilbert transform. One of the key benefits of this representation
is that it retains all the information of the real signal but eliminates negative frequency
components in the Fourier domain, making it a useful tool in various fields of science
and engineering. The analytic version of a real signal when using the generalized Hilbert
transform in the quadratic-phase Fourier domain can be defined as follows:

f̌Ω(t) = f (t) + iBHΩ
[

f
]
(t). (21)

The theorem below provides a significant expression of the generalized analytic signals
defined in Equation (21). Specifically, it presents a straightforward connection between the
generalized analytic signal and the quadratic-phase Fourier transform, which can be used
to directly derive the generalized analytic signal from the quadratic-phase Fourier domain.

Theorem 7. If QΩ
[

f
]
(ω) is the quadratic-phase Fourier transform of a signal f (t) and f̌Ω(t) the

generalized analytic signal associated with the quadratic-phase Fourier transform, then, f̌Ω(t) has
the representation:

f̌Ω(t) =
√

2
B
√

π

∫ ∞

0
QΩ
[

f
]
(ω)KΩ(t, ω)dω. (22)
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Proof. By virtue of the Fubini theorem, we have

I =
∫ ∞

0
QΩ
[

f
]
(ω)KΩ(t, ω)dω

=
1√
2π

∫ ∞

0

{∫ ∞

−∞
f (x)KΩ(x, ω)dx

}
KΩ(t, ω)dω

=
1√
2π

∫ ∞

−∞
f (x)

{∫ ∞

0
KΩ(x, ω)KΩ(t, ω)dω

}
dx

=
1√
2π

exp
{

i
(

At2 + Dt
)} ∫ ∞

−∞
f (x) exp

{
− i
(

Ax2 + Dx
)}

×
{∫ ∞

0
exp

{
iB(t− x)ω

}
dω

}
dx. (23)

Now, consider∫ ∞

0
exp

{
iB(t− x)ω

}
dω (24)

=
1
2

∫ ∞

−∞

(
1 + sgn(ω)

)
exp

{
iB(t− x)ω

}
dω

=
1
2

∫ ∞

−∞
exp

{
iB(t− x)ω

}
dω +

1
2

∫ ∞

−∞
sgn(ω) exp

{
iB(t− x)ω

}
dω

= π δ
(

B(x− t)
)
+

1
2

∫ ∞

−∞
sgn(ω) exp

{
− iB(x− t)ω

}
dω

= π δ
(

B(x− t)
)
− i

B(x− t)
. (25)

Plugging (24) in (23) yields

I =
1√
2π

exp
{

i
(

At2 + Dt
)} ∫ ∞

−∞
f (x) e−i(Ax2+Dx)

(
π δ
(

B(x− t)
)
− i

B(x− t)

)
dx

=
π

2
√

2π
exp

{
i
(

At2 + Dt
)} ∫ ∞

−∞
f (x) exp

{
− i
(

Ax2 + Dx
)}

δ
(

B(x− t)
)

dx

− i√
2π

exp
{

i
(

At2 + Dt
)} ∫ ∞

−∞

f (x)
B(x− t)

exp
{
− i
(

Ax2 + Dx
)}

dx

=

√
π

2

(
f (t)
B

+
i
π

exp
{

i
(

At2 + Dt
)} ∫ ∞

−∞

f (x)
B(t− x)

exp
{
− i
(

Ax2 + Dx
)}

dx
)

=

√
π

2

(
f (t)
B

+ iHΩ
[

f
]
(t)
)

.

This completes the proof of Theorem 7.

Theorem 8. Assume that f̌Ω(t) = f (t) + iBHΩ
[

f
]
(t) is the generalized analytic function in the

quadratic-phase Fourier domain, then we have

QΩ

[
f̌Ω(t)

]
(ω) = QΩ

[
f
]
(ω) + B sgn(Bω)QΩ

[
f
]
(ω). (26)

Proof. Invoking the linearity property of the quadratic-phase Fourier transform (1), we
obtain

QΩ

[
f̌Ω(t)

]
(ω) = QΩ[ f ](ω) + iBQΩ

[
HΩ

[
f
]
(t)
]
(ω).
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Application of Theorem 4 yields

QΩ

[
f̌Ω(t)

]
(ω) = QΩ[ f ](ω) + B sgn(Bω)QΩ

[
f
]
(ω).

This completes the proof of Theorem 8.

The convolution theorem associated with the quadratic-phase Hilbert transform is
investigated in the following theorem.

Theorem 9. Let
(

f ~Ω g
)
(z) be the quadratic-phase convolution operation operation with respect

to a parametric set Ω =
(

A, B, C, D, E
)
, B > 0 given by (6) and HΩ

[
f
]
,HΩ

[
g
]

denote the
quadratic-phase Hilbert transform of any square integrable functions f and g, respectively. Then,
we have

HΩ
[(

f ~Ω g
)
(z)
]
(t) =

[
f ~Ω HΩ

[
g
]]
(t) (27)

and

HΩ
[(

f ~Ω g
)
(z)
]
(t) =

[
HΩ

[
f
]
~Ω g

]
(t). (28)

Proof. To prove the desired result, we proceed as:

HΩ

[
f ~Ω g

]
(t) =

1
π

∫ ∞

−∞

(
f ~Ω g

)
(z)

B(t− z)
exp

{
− i
(

Az2 + Dz
)}

dz

=
1
π

exp
{

i
(

At2 + Dt
)} ∫ ∞

−∞

exp
{
− i
(

Az2 + Dz
)}

B(t− z)

×
{

1√
2π

∫ ∞

−∞
f (x) g(z− x) exp

{
− 2iAx(x− z)

}
dx
}

dz

=
1
π

exp
{

i
(

At2 + Dt
)} ∫ ∞

−∞

f (x)√
2π

×


∫ ∞

−∞

g(z− x) exp
{
− i
(

Az2 + Dz
)}

B(t− z)
exp

{
− 2iAx(x− z)

}
dz

dx

=
1√
2π

∫ ∞

−∞
f (x)

{∫ ∞

−∞

g(`)
B
(
(t− x)− `

) exp
{
− 2iA`2 + D`

}
d`

}
× exp

{
− 2iAx(x− t)

}
dx

=
1√
2π

∫ ∞

−∞
f (x)HΩ

[
g
]
(t− x) exp

{
− 2iAx(x− t)

}
dx

=
[

f ~Ω HΩ
[
g
]]
(t).

The proof of relation (28) follows in the similar manner.
This completes the proof of Theorem 9.

4. Bedrosian Theorem Associated with the Quadratic-Phase Hilbert Transform

The Bedrosian Theorem has long been considered a crucial tool for analyzing the
analytic part of signals in the realm of engineering [13]. It states that if the Fourier transform
of one function vanishes for frequencies greater than a certain value a, and the Fourier
transform of another function vanishes for frequencies lower than a, then the Hilbert
transform of the product of these two functions can be expressed as the original function
multiplied by the Hilbert transform of the other. In this section, we aimed to delve into the
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Bedrosian Theorem as it pertains to the quadratic-phase Fourier transform, first presenting
some foundational results to be used in the analysis.

Lemma 1. IfHΩ
[

f
]
(t) is the quadratic-phase Hilbert transform of any function f (t) with respect

to the parametric set Λ = (A, B, C, D, E), B > 0 and B√
2π
KΩ(x, ω) is the kernel of the inverse

quadratic-phase Fourier transform, then, the following relation holds:

HΩ

[
B√
2π
KΩ(x, ω)

]
(t) =

−i√
2π

sgn(Bω)KΩ(t, ω). (29)

Proof. By virtue of the definition of quadratic-phase Hilbert transform given by Definition 3,
we have

HΩ

[
B√
2π
KΩ(x, ω)

]
(t)

=
1
π

exp
{

i
(

At2 + Dt
)} ∫ ∞

−∞

BKΩ(x, ω)√
2πB(t− x)

exp
{
− i
(

Ax2 + Dx
)}

dx

=
1√
2π

exp
{

i
(

At2 + Cω2 + Dt + Eω
)}
· 1

π

∫ ∞

−∞

eiBωx

(t− x)
dx

=
1√
2π

exp
{

i
(

At2 + Cω2 + Dt + Eω
)}
· (−i)sgn(Bω) eiBωt

=
−i√
2π

exp
{

i
(

At2 + Btω + Cω2 + Dt + Eω
)}

sgn(Bω)

=
−i√
2π

sgn(Bω)KΩ(t, ω).

This completes the proof of Lemma 1.

Lemma 2. AssumeHΩ
[

f
]
(t) is the quadratic-phase Hilbert transform of any function f (t) with

respect to the parametric set Λ = (A, B, C, D, E), B > 0 and B√
2π
KΩ(x, ω) is the kernel of the

inverse quadratic-phase Fourier transform. Then, we have

HΩ
[
Pωξ

]
(t) = −i sgn

(
B(ω + ξ)

)
Pωξ(t), (30)

where

Pωξ(x) =
B2

2π
exp

{
− i
(

Ax2 + Dx
)}
KΩ(x, ω)KΩ(x, ξ).

Proof. Invoking the definition of quadratic-phase Hilbert transform yields

HΩ
[
Pωξ

]
(t) =

1
π

exp
{

i
(

At2 + Dt
)} ∫ ∞

−∞

Pωξ(x)
B(t− x)

exp
{
− i
(

Ax2 + Dx
)}

dx

=
B2

2π
exp

{
i
(

At2 + C
(
ω2 + ξ2)+ Dt + E(ω + ξ)

)}
× 1

π

∫ ∞

−∞

exp
{

iB(ω + ξ)x
}

B(t− x)
dx

= −i sgn
(

B(ω + ξ)
) B√

2π
KΩ(t, ω)

B√
2π
KΩ(t, ξ) exp

{
− i
(

At2 + Dt
)}

= −i sgn
(

B(ω + ξ)
)

Pωξ(t).

This completes the proof of Lemma 2.
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We are now in a position to study the Bedrosian theorem associated with the quadratic-
phase Hilbert transform.

Theorem 10. Let QΩ
[

f
]
(ω) and QΩ

[
g
]
(ω) be the quadratic-phase Fourier transform of two

complex functions f (x) and g(x), respectively. LetQΩ
[

f
]
(ω) vanish for |ω| > Ω andQΩ

[
g
]
(ω)

vanish for |ω| < Ω. Then, we have

HΩ
[

f̃ (x)g(x)
]
(t) = f̃ (t)HΩ

[
g
]
(t), (31)

where f̃ (t) = f (x) e−iAx2
.

Proof. Invoking the inverse quadratic-phase Fourier transform given by (3), we obtain

f̃ (x)g(x) =
(

B√
2π

∫ ∞

−∞
QΩ
[

f̃
]
(ω)KΩ(x, ω)dω

)(
B√
2π

∫ ∞

−∞
QΩ
[
g
]
(ξ)KΩ(t, ξ)dξ

)
=
∫ ∞

−∞

∫ ∞

−∞
QΩ
[

f̃
]
(ω)QΩ

[
g
]
(ξ) Pωξ(x)dω dξ.

Consequently,

HΩ
[

f̃ (x)g(x)
]
(t)

=
1
π

exp
{

i
(

At2 + Dt
)} ∫ ∞

−∞

exp
{
− i
(

Ax2 + Dx
)}

B(t− x)

×
{∫ ∞

−∞

∫ ∞

−∞
QΩ
[

f̃
]
(ω)QΩ

[
g
]
(ξ) Pωξ(x)dω dξ

}
dx

=
∫ ∞

−∞

∫ ∞

−∞
QΩ
[

f̃
]
(ω)QΩ

[
g
]
(ξ)

×
{

1
π

exp
{

i
(

At2 + Dt
)} ∫ ∞

−∞

Pωξ(x)
B(t− x)

exp
{
− i
(

Ax2 + Dx
)}

dx
}

dω dξ

=
∫ ∞

−∞

∫ ∞

−∞
HΩ

[
Pωξ

]
(t)QΩ

[
f̃
]
(ω)QΩ

[
g
]
(ξ)dω dξ

=
∫ ∞

−∞

∫ ∞

−∞
−i sgn

(
B(ω + ξ)

)
Pωξ(t)QΩ

[
f̃
]
(ω)QΩ

[
g
]
(ξ)dω dξ

=

(
B√
2π

∫ ∞

−∞
QΩ
[

f̃
]
(ω)KΩ(t, ω)dω

)(
B√
2π

∫ ∞

−∞
−i sgn(Bω)QΩ

[
g
]
(ξ)KΩ(t, ξ)dξ

)
= f̃ (t)

(
B√
2π

∫ ∞

−∞
QΩ

[
HΩ

[
g
]]
(ξ)KΩ(t, ξ)dξ

)
= f̃ (t)HΩ

[
g
]
(t).

This completes the proof of Theorem 10.

5. Simulations

In this section, we illustrate the importance and correctness of the obtained results via
a lucid example. To meet our endeavor, we considered the signal f (t) given by

f (t) =

{
1, −0.4 ≤ t ≤ −0.25
1, 0.25 ≤ t ≤ 0.4
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having compact support t ∈ [−0.4,−0.25]∪ [0.25, 0.4], as shown in Figure 1a. The quadratic-
phase Fourier transform of f (t) with respect to the set Ω = (1, 0.75, 1, 0.5, 1) could be
computed as:

QΩ
[

f
]
(ω) =

e−i(ω2+ω)
√

2π

(∫ −0.25

−0.4
exp

{
− i
(
t2 + 0.75tω + 0.5t

)}
dt

+
∫ 0.4

0.25
exp

{
− i
(
t2 + 0.75tω + 0.5t

)}
dt
)

=
e−i(ω2+ω)
√

2π

(
0.594− 0.032i +

5.332i
ω

(
ei(0.187ω) − e−i(0.187ω)

2i

)

−5.332i
ω

(
ei(0.3ω) − e−i(0.3ω)

2i

))

=
e−i(ω2+ω)
√

2π

(
0.594− 0.032i +

5.332i
ω

(
sin(0.3ω)− sin(0.187ω)

))
=

e−i(ω2+ω)
√

2π

(
0.594− 0.032i +

10.664i
ω

sin(0.0565ω) cos(0.2435ω)

)
. (32)

The representation of f (t) in the Quadratic-Phase Fourier Transform (QPFT) domain,
as given by Equation (32), is illustrated in Figure 1b. The utilization of this type of quadratic-
phase with specific parameters is commonly observed in various scientific and engineering
fields, such as scalar optical diffraction, digital holography, atomic interferometry, sam-
pling, and filtering, among others [4,5]. In Figure 2a, the QPFT of the Hilbert transform
of f (t) is shown, where the quadratic-phase parameters were Λ = (1, 0.75, 1, 0.5, 1). By
implementing Theorem 7, the generalized analytic signal of f (t) is depicted in Figure 2b. It
is apparent from the figure that the generalized analytic signal in the QPFT domain con-
tained no negative frequency components, which validated the accuracy of the previously
established theoretical results. Furthermore, these results held potential for a range of
applications, such as the reconstruction of a signal from its generalized analytic form.
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Figure 1. (a) The given function f (t) (b) The quadratic-phase Fourier transform of f (t).
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Figure 2. (a) The quadratic-phase Hilbert transform of f (t) (b) The generalized analytic signal of
f (t).

6. Conclusions

In the present article, we introduced the notion of novel integral transformations by
intertwining the merits of quadratic-phase Fourier and Hilbert transforms, providing a
more comprehensive and efficient tool for signal processing. Firstly, we studied all the
necessary properties of the proposed transform and, then, investigated a direct relation-
ship between the generalized analytic signals and the quadratic-phase Fourier transform.
Additionally, several results for the kernel function of the inverse quadratic-phase Fourier
transform associated with the generalized Hilbert transform were investigated. The gen-
eralized Bedrosian theorem associated with the proposed transform was also studied in
detail. Finally, to validate the obtained results, simulation results were proposed. The
results showed that the methods presented in this paper were correct and effective. The
obtained results were of substantial importance and serve as a heuristic entity for the
mathematical and signal-processing communities. Future research shall be done in this
direction, exploring the real-world applications of the theoretical results.
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