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Abstract: This article aims at providing some extension of the modal square of opposition in the light
of Ockham’s account of modal operators. Moreover, we set forth some significant remarks on the de
re–de dicto distinction and on the modal operator of contingency by means of a set-theoretic algebra
called numbering semantics. This generalization starting from Ockham’s account of modalities will
allow us to take into consideration whether Ockham’s account holds water or not, and in which case
it should be changed.
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1. Introduction

The article is structured as follows.
A first, more historical part will be entirely dedicated to the set-up of Ockham’s

account of modal propositions and their possible readings. It will be considered as the de
re–de dicto distinction, providing some informal rules regarding this distinction that can
be deduced from Ockham’s account (Section 2, pp. 1–4, written by D. Falessi).

Then, Ockham’s account of contingency and its application to the modal squares
provided in Ockham’s commentary on Aristotle’s De Interpretatione is presented. This
brings us to two modal hexagons that will be drawn as generalizations of those modal
squares by means of the application of contingency, as Ockham defines it (Section 3, pp. 4–9,
written by D. Falessi).

Finally, a formal section will be devoted to a formal semantics of Ockham’s modal
statements. More especially, it will consist of a set of two kinds of logical forms, whether
de re or de dicto, and a corresponding second-order logic where modalities are viewed
as a dyadic predicate including properties and worlds. After devising a set-theoretical
semantics, according to which the meaning of formulas corresponds to their model sets or
ordered truth-conditions, Ockham’s statements of (non-)contingency will then be redefined
by means of an external use of negation, and our algebraic translation of logical relations
will result in a complex structure, i.e., a logical icosagon (Section 4, pp. 9–16, written by F.
Schang, including both Appendices A and B dedicated to a logical reformulation of modal
statements starting from Ockham’s account).

Needless to say, the conclusion and all the sections are the result of a common work of
discussion and sharing opinions and ideas.

2. Ockham’s Account: De dicto/De re Distinction

In medieval logic, there are two possible readings of a modal proposition. A modal
proposition can be taken either in sensu compositionis (compound sense) or in sensu
divisionis (divided sense) (see also [1,2] for the medieval theories of modal logic). For a
fully-fledged explanation of Ockham’s account of modalities, see [3,4]. We shall consider
here just the de re and de dicto readings, the status of contingency as a modal operator, and
the modal squares. Ockham defines the compound sense as follows:
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In the sense of composition it is always asserted that such a mode is truly predi-
cated of the proposition corresponding to the dictum in question. For example, by
means of “That every man is an animal is necessary” it is asserted that the mode
“necessary” is truly predicated of the proposition “Every man is an animal”, the
dictum of which is “That every man is an animal” ([5] II, 9, 13–17, transl. p. 109).

Therefore, in the compound sense, what is taken under consideration is the dictum,
namely the categorical proposition to which the modal operator is linked. The modal
proposition is true if the dictum satisfies the requirements of the modal operator attached to
it. For example, assume that there is a proposition de necessario, i.e., a proposition having
necessity as a modal operator, and it is taken in the compound sense, then that proposition
is true if and only if the categorical proposition or dictum is a necessary proposition, such
as in the case of “every man is an animal”. Hence it is called “compound sense” because
the proposition is taken as a composite, as a unitary entity that can be necessary, possible,
etc., based on its dictum.

Regarding the divided sense, Ockham states:

However, the sense of division of such a proposition is always equipollent to a
proposition taken with a mode and without such a dictum. For example, “That
every man is an animal is necessary”; in the sense of division is equipollent to
“Every man is of necessity (or necessarily) an animal”. ([5] II, 9, 19–23, transl.
p. 109)

The divided sense does not have a dictum, but the modal operator “divides” the
subject from the predicate by introducing a changing of the copula, within the modal
proposition. Ockham clearly maintains that a proposition in divided sense is true or false
according to the references of the terms involved in the proposition. In order to evaluate if
the proposition is true, it is required to go through the individuals that are denoted by the
subject and to rewrite the proposition at stake in the correspondent singular propositions:

“It is necessary that every man is white” is true in the divided sense

if and only if

“This man (hoc) is white” and “That man is white”, etc., are all true and necessary

(See [5] II, 10, 11–24).

Therefore, if it is the case that all the singular propositions are true and necessary, the
proposition taken in the divided sense is true and necessary as well.

Ockham also states that the compound sense requires that the proposition is taken ma-
terially (materialiter) while it is taken significatively (significative) in the divided sense (see [5]
III-1, 20, 30–38). Regarding the former, the term “materially” can be better understood
looking at the well-known medieval supposition theory. A term has a material supposition
(suppositio materialis) when it stands for itself, e.g., “dog has three letters”. Hence, in case
of the compound sense, the modal proposition “stands for itself”, or better for its dictum: a
proposition taken in the compound sense is true or false according to its dictum, just like
“dog” is said to have three letters for that term stands for itself, i.e., for the word “dog”.
On the opposite side, a proposition in the divided sense is taken “significatively”. This
means that the truth-value of a modal proposition taken in divided sense is based on the
meanings of the terms involved in that proposition. By means of the singular propositions,
it can be verified whether the relation between the subject and the predicate is one that is
required by the modal operator inside the modal proposition.

Finally, it can be said that the compound/divided sense distinction is based on the fact
that the truth-value of a proposition changes if we consider either the subject in its relation
with the predicate or the proposition as a whole. In other words, the distinction is based on
a mereological distinction: what applies to the proposition as a whole does not apply to the
parts of the whole, i.e., subject and predicate, taken separately and vice versa. Indeed, if a
part of the proposition, say, the subject S, can be said to be, for instance, necessarily P, it
does not entail that the whole proposition can be said to be necessary as well.
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Hence it is quite important to distinguish between these two senses, for the same
modal proposition can have different truth-values according to these different readings. For
example, the proposition “it is necessary that every truth is true” is true in the compound
sense, but false in the divided sense, for not every singular proposition of that proposition
is necessary. There are some truths that become “stale”, as Hegel would say, and are
not necessary, at least in the sense of always being true. It is also possible that a modal
proposition is false in the compound sense but true in the divided sense. Ockham gives
this example:

An example: “both parts of a contradiction can be true” is false in the sense of
composition and true in the sense of division, since each singular is true ([6], II,
q. 5, 131 67–69, transl. p. 112).

A singular proposition correspondent to a part of a contradiction is possibly true;
the same for the other part of the contradiction. However, if we consider both the parts
together in the propositions “both parts of a contradiction can be true”, the proposition is
clearly false. In other words, the fact that something is possible for the singular references
of a proposition does not entail that this is also possible for the proposition in itself.

In terms of truth-conditions, it must be noticed that the truth-conditions of a proposi-
tion taken in the divided sense are actually based on the truth-conditions of the compound
sense. When it is required to establish whether a proposition is true in the divided sense, it
is also required to reduce that proposition to its singular propositions. Nevertheless, all the
singular propositions can be only taken in the compound sense: in a singular proposition,
there is nothing else that can be “divide”; that is, it is not possible to go further in the
analysis of the reference, but the singular proposition is what makes the reference of a term
clear. In other words, a singular proposition can be taken only in a compound sense, for it
is basically an atomic proposition.

There is a also a syntactic distinction that requires some attention, especially in its
relation with these two possible readings, as well as with the semantic level.

Let us take one modal operator, such as possibility. This is a cum dicto form:

♦(for S to be P)

In this form, the modal operator is attached to the dictum. The modal operator is always
external, and it is always in the form “it is possible that”. The dictum has this form: S is in
the accusative case, and P is a verb in the infinitive form.

There is also a sine dicto form:

S is ♦P

In this case, the modal operator is either a verb (S can be P) or an adverb (S is possibly P).
In this form, there is not any dictum at all, but the modal operator is internal.

Now, a proposition sine dicto is always taken in the divided sense because an internal
modal operator always “divides” the subject from the predicate so that the relationship be-
tween them must be always verified by looking at the singular propositions. A proposition
cum dicto can exist in either the divided or compound sense. In the case of a cum dicto
form, it is necessary to clarify which reading of the modal proposition is considered. As a
result of that, a cum dicto proposition that is taken in the divided sense is equivalent to the
same proposition sine dicto ([5], II, 10, 2–4). All in all, when there is a cum dicto form, there
is an ambiguity between the divided and the compound sense. Ockham usually avoids
that ambiguity by unifing the semantical level (compound and divided sense) and the syn-
tactical level (cum dicto–sine dicto). The cum dicto form is usually taken in the compund
sense, whereas the sine dicto form is taken in the divided sense. We can summarize this by
using the distinction de dicto/de re as follows:

compound sense + cum dicto︸ ︷︷ ︸
de dicto

divided sense + sine dicto︸ ︷︷ ︸
de re
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Therefore, when one considers a modal proposition de dicto, this means that the
modal proposition is cum dicto and taken in the compound sense. When one considers
a modal proposition de re, that proposition is sine dicto and taken in the divided sense.
Hereafter, we shall refer just to the modern distinction de dicto/de re to denote both the
semantical aspect and the syntactical aspect included in Ockham’s account.

Before considering the modal squares and their extensions, it is necessary to set up
some rules aimed at describing in which case a proposition is either de re or de dicto.
These rules could be called a posteriori rules because they are deduced from Ockham’s
account. (It is required to justify those rules from a formal point of view: this will be done in
Section 4.2.3). We shall take only the case of necessity and possibility into account because
Ockham’s squares, which will be considered here, involve just necessity and possibility.
(Note that, hereby, “possibility” is taken in its one-sided reading, i.e., possibility that is
contradictory to impossibility but subaltern to necessity; see [7]). Finally, it is important to
note that the set-up of these rules is based on the truth-values of the dictum, so they are
basically content-based rules: according to the content of the dictum, Ockham expresses the
correspondent modal proposition either de re or de dicto.

There are three possible truth-values of a dictum:

(a) A dictum is true and cannot be false: (D>), e.g., “every man is an animal”.
(b) A dictum is false and cannot be true: (D⊥), e.g., “every white thing is a black thing”.
(c) A dictum can be either true or false: (D>/⊥), e.g., “every man is white”.

Given that, it can be said that:

�/♦∀/∃(D>) is always de dicto

In Ockham’s account, propositions such as “it is necessary/possible that every/some man
is an animal” are always de dicto, even if they can also be true de re. Indeed, a proposition
de dicto is necessary/possible if and only if the dictum is necessary/possible. Therefore, if
the dictum is true and cannot be false, it can be said to be necessary and therefore possible
(ab necesse ad posse). As a result of that, when there are dicta such as “Socrates is Socrates”
or “Socrates is a man”, if a modal proposition is formed starting from those dicta, that will
always be de dicto.

By contrast, when a dictum is false and cannot be true, we have that:

�/♦∀/∃(D⊥) is always de re

A proposition like “every living being is a corpse” is true de re both in case of possibility
and necessity, but it is not true de dicto. It is false that “it is necessary/possible that every
living being is a corpse”, for it is false that “it is necessary/possible that every living being
is not a living being”. However, it is true that “every living being can be a corpse”. It is also
true that “every living being is necessarily a corpse” in the sense that every living being
must sooner or later die. Therefore, a modal proposition formed from an “opposition”,
such as “every white thing is black”, is always de re.

Finally, if the dictum is true but can be false and vice versa, we have:

�/♦∀/∃(D>/⊥) is either de dicto or de re

For example, “every animal is a man” is false but can be true both de dicto and de re: “it is
possible that every animal is a man” and “every animal can be a man”.

3. Extension of Ockham’s Modal Squares

Whereas the standard version of the modal square involves all four alethic modal op-
erators at the same time, although it includes neither universals nor particulars, the modal
logic of the 14th century tried to include quantified propositions within the modal square.
The necessity to introduce quantified propositions and to involve all the alethic modalities
produce a splitting of the standard modal square into different squares having, for example,
just two modal operators in the top and bottom sides, as universals and particulars.
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From his perspective, Ockham provides three squares in his commentary on De
Interpretatione. We shall focus on two of them involving necessity and possibility.

In the first square, there is necessity on the up side (universals) and possibility on the
bottom side (particulars). Assuming that the relations embodied by the traditional square
do not disappear with the modern formalization, if we have that

A is ∀ x (Sx→ � Px);
E is ∀ x (Sx→ �¬ Px);
I is ∃ x (Sx ∧♦ Px);
O is ∃ x (Sx ∧♦¬ Px);

the first modal square provided by Ockham is Figure 1:

Figure 1. The first modal square provided by Ockham ([8], II, c. 7, §9, 489, 133–134).

They are all de re, but Ockham clearly says that this square can be also re-written with
all the propositions in a de dicto form (“It must be known that this square is valid either if
all the propositions involved are taken in a compound sense or something equivalent to a
compound sense or in a divided sense or something equivalent to a divided sense.” ([8], II,
c. 7, §9, 489, 135–137)). Indeed, as we have said, the dictum “every/some man is white”
can be both true and false (D>/⊥).

The same holds for the second square in which the same dictum is involved (e.g., “ev-
ery/some man is white”). However, this square has possibility on the up side (universals)
and necessity on the bottom side (particulars); therefore, assuming that

A is ∀ x (Sx→ ♦ Px);
E is ∀ x (Sx→ ♦¬ Px);
I is ∃ x (Sx ∧� Px);
O is ∃ x (Sx ∧�¬ Px);

the second square is Figure 2:

Figure 2. The second square ([8], II, c. 7, §9, 489, 133–134).
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This square is a “degenerate square” which is opposed to the “classical square”
(Figure 1). Indeed, Figure 2 is incomplete because the universals (“every man can be
white”—“every man can not be white”) are not contrary, for they can both be true the same
time. In the same way, the two particulars (“some man is necessarily white”—“some man
is necessarily not white”) are not subcontraries because they can both be false at the same
time (see [8], II, c. 7, §9, 491, 172–177).

These two squares can be extended by introducing the modal operator of contingency.
First of all, it is necessary to briefly define what is contingent as a modal operator ac-
cording to Ockham. (For a more abstract approach to the concepts of contingency and
non-contingency, see e.g., [9].) Note that we shall consider only propositions de contingenti
taken de dicto, e.g., “it is contingent that every S is P”, because Ockham’s account of
propositions de contingenti is mainly based on just this reading of that modal proposition.

Given that ∇ means “it is contingent that” and that ∆ means “it is not contingent
that” or “it is determinate that”, Ockham defines propositions de contingenti, or having
contingency as the modal operator, as follows ([5], III-3, 15, 647, 9–11; [8], II, c. 7, §9, 491,
178–492, 196):
Universal de contingenti (it is contingent that every S is P):

∇∀x(Sx→ Px) = ♦∀x(Sx→ Px) ∧♦∀x(Sx→ ¬Px)
∇∀x(Sx→ Px) = ∀x(Sx→ ♦Px) ∧ ∀x(Sx→ ♦¬Px)

Particular de contingenti (it is contingent that some S is P):

∇∃x(Sx∧ Px) = ♦∃x(Sx∧ Px) ∧♦∃x(Sx∧ ¬Px)
∇∃x(Sx∧ Px) = ∃x(Sx∧♦Px) ∧ ∃x(Sx∧♦¬Px).

First of all, note that Ockham seems to consider that, for example, the universal de
contingenti de dicto is equivalent to both ♦∀x(Sx→ Px) ∧♦∀x(Sx→ ¬Px) and ∀x(Sx→
♦Px) ∧ ∀x(Sx → ♦¬Px). This is not valid, as we shall see in Section 4.2.3. By contrast,
�∃x(Sx ∧ Px) ∨�∃x(Sx ∧ ¬Px) = ∃x(Sx ∧�Px) ∨ ∃x(Sx ∧�¬Px) and �∀x(Sx → Px) ∨
�∀x(Sx → ¬Px) = ∀x(Sx → �Px) ∨ ∀x(Sx → �¬Px), in the cases ∆∀x(Sx → Px) and
∆∃x(Sx∧ Px), are valid (see again Section 4.2.3). This is because of the above-mentioned
content-based “rules” regarding the relationship between dicta and the modal propositions
taken de dicto or de re).

Moreover, these definitions are based on one side of De Morgan’s rules that Ockham
knows and clearly defines in [5] (“It should also be noted that the contradictory opposite
of a conjunctive proposition is a disjunctive proposition composed of the contradictories
of the parts of the conjunctive (opposita contradictorie copulativae est una disiunctiva
composita ex contradictoriis partium copulativae).” [5], II, 32, 348, 22–23, transl. p. 187):

¬(A ∧ B)↔ (¬A ∨ ¬B)

Therefore, these are the negation of the propositions de contingenti:

∆∀x(Sx→ Px) = �∃x(Sx∧ Px) ∨�∃x(Sx∧ ¬Px)
∆∀x(Sx→ Px) = ∃x(Sx∧�Px) ∨ ∃x(Sx∧�¬Px)
∆∃x(Sx∧ Px) = �∀x(Sx→ Px) ∨�∀x(Sx→ ¬Px)
∆∃x(Sx∧ Px) = ∀x(Sx→ �Px) ∨ ∀x(Sx→ �¬Px)

Ockham gives the following examples of propositions de contingenti ([5], III-3, 15, 647,
24–33; [8], II, c. 7, §9, 491, 184–492, 196):

• It is contingent that every man is an animal = it is possible that every man is an animal,
and it is possible that every man is not an animal.

• It is not contingent that every man is an animal = it is necessary that some man is an
animal or it is necessary that some man is not an animal. (Note that the dicta “every
man is an animal” and “some man is an animal” are of the form (D>) and hence they
are de dicto).

• It is contingent that some man is white = some man can be white and some man can
not be white.
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• It is not contingent that some man is white = every man is necessarily white or every
man is necessarily not white.

Contingency is the conjunction of opposite simultaneous possibilities. Which kind of
opposition is at stake here? That one between the propositions de possibili “some man can
be white” and “some man can not be white”, that is to say, subcontrariety. Note indeed
that two subcontraries can be conjoined, for they can be both true at the same: when it is
possible to conjoin two subcontraries de possibili, there is a proposition de contingenti, “it
is contingent that some man is white”. Similarly, the negation of a proposition such as “it
is contingent that some man is white” is equivalent to the disjunction of the negations of
“some man can be white” and “some man can not be white”. Therefore, we have: “every
man is necessarily white” or “every man is necessarily not white”. These propositions are
contraries, so either one or the other can be true. This is a disjunction. In addition, Ockham
states that a proposition de contingenti implies not only one proposition de possibili, but
two propositions, the subcontraries de possibili ([5], III-3, 12, 640, 38–44), just as a logical
conjunction A ∧ B implies both conjuncts A,B. This can be summarized as follows:
De dicto

• ∇∀x(Sx→ Px)→ ♦∀x(Sx→ Px)
• ∇∀x(Sx→ Px)→ ♦∀x(Sx→ ¬Px)
• ∇∃x(Sx∧ Px)→ ♦∃x(Sx∧ Px)
• ∇∃x(Sx∧ Px)→ ♦∃x(Sx∧ ¬Px)

De re

• ∇∀x(Sx→ Px)→ ∀x(Sx→ ♦Px)
• ∇∀x(Sx→ Px)→ ∀x(Sx→ ♦¬Px)
• ∇∃x(Sx∧ Px)→ ∃x(Sx∧♦Px)
• ∇∃x(Sx∧ Px)→ ∃x(Sx∧♦¬Px)

By contrast, a proposition de necessario implies the negation of the proposition de con-
tingenti ([5], III-3, 12, 639, 15–18), just like both disjuncts A,B imply the logical disjunction
A ∨ B. We can therefore provide the following formalization (note that we shall provide a
straightforward formalization of all the modal statements in first-order logic in Section 4):
De dicto

• �∀x(Sx→ Px)→ ∆∀x(Sx→ Px)
• �∀x(Sx→ ¬Px)→ ∆∀x(Sx→ Px)
• �∃x(Sx∧ Px)→ ∆∃x(Sx∧ Px)
• �∃x(Sx∧ ¬Px)→ ∆∃x(Sx∧ Px)

De re

• ∃x(Sx∧�Px)→ ∆∀x(Sx→ Px)
• ∃x(Sx∧�¬Px)→ ∆∀x(Sx→ Px)
• ∀x(Sx→ �Px)→ ∆∃x(Sx∧ Px)
• ∀x(Sx→ �¬Px)→ ∆∃x(Sx∧ Px)

Finally, what is contingent is said to be incompatible with (repugnans) both necessary
and impossible. Therefore, contingent is what is usually called “two-sided possibility”: a
proposition de contingenti such as “it is contingent that some man is white” is incompatible
with both “every man is necessarily white” and “every man is necessarily not white” ([5],
III-3, 13, 643, 25–28).

To sum up, by introducing contingency to the squares presented above, assuming that

A is ∀x(Sx→ �Px);
E is ∀x(Sx→ �¬Px);
I is ∃x(Sx∧♦Px);
O is ∃x(Sx∧♦¬Px);
Y is ∇∃x(Sx∧ Px);
U is ∆∃x(Sx∧ Px);
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the first figure is the following (Figure 3):

Figure 3. The first figure (Ockham’s modal hexagon).

Moreover, assuming that:

A is ∀x(Sx→ ♦Px);
E is ∀x(Sx→ ♦¬Px);
I is ∃x(Sx∧�Px);
O is ∃x(Sx∧�¬Px);
Z is ∇∀x(Sx→ Px);
K is ∆∀x(Sx→ Px);

the second figure is the following (Figure 4):

Figure 4. The second figure ( an incomplete version of the standard modal hexagon).

These figures are the extensions of Ockham’s modal squares following Ockham’s
claims about contingency. Figure 3 is the standard modal hexagon provided by [10].
However, Ockham’s modal hexagon (Figure 3) does not have a relation of subcontrariety
among U, I, and O that should be present in a standard modal hexagon. Therefore,
Ockham’s modal hexagon is partially incomplete. Figure 4 is also an incomplete version
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of the standard modal hexagon because Figure 2 is an incomplete version of the square of
opposition. However, this latter figure shows that the modal hexagon in quantified modal
logic is split in two different version, Figures 3 and 4. In other words, the standard modal
hexagon must be redefined in order to account for all the propositions de contingenti in
quantified modal logic so that we cannot admit only one version of it, but two different
versions, i.e., Figures 3 and 4.

We have two final remarks. The first regards propositions de contingenti taken de re.
Ockham briefly outlines an account of those propositions in his Summa Logicae ([5], III-3, 16,
648, 34–36). However, see also Ockham’s account of modal consequentiae and syllogism,
where he often uses propositions de contingenti taken de re. A proposition such as “no S is
contingently P” is not equivalent to “every S is necessarily P or every S is necessarily not
P”, but it is equivalent to “every S is necessarily P or necessarily not P”, so a proposition
with a disjunction of the predicate P (propositio de disiuncto praedicato ([5], III-3, 16, 648,
35)). Note that the example provided by Ockham shows that he is aware of the fact that one
cannot distribute universal quantifiers over a disjunction, as was explained clearly by [11].
Indeed, being de re, it is taken in a divided sense; hence, S is “separated” from P by the
modal operator. In this way, it is S that is said to be contingently P (de re), not the whole
dictum (de dicto): the subject is one, and the inherence of the predicate is affected by the
modal operator because of Ockham’s content-based account of de dicto and de re readings.
However, Ockham does not dedicate further considerations to propositions de contingenti
taken de re, and his explanation of the semantics of a proposition de contingenti is always
de dicto.

Secondly, we must consider Ockham’s application of the negation within the modal
propositions that are either conjoined in a proposition de contingenti or disjuncted in its
negation. There are two possible applications:

• Internal: e.g., “every S is possibly not P”.
• External: e.g., “not every S is possibly P” = “some S is possibly not P”.

Ockham takes only internal negation into account, without considering the external
one. This is what makes possible our application of those propositions de contingenti
within the modal squares. Indeed, let us consider the case in which “it is contingent that
every S is P” would be equivalent to “it is possible that every S is P, and it is possible that
some S is not P”, therefore having an external negation as a second conjunct. Starting from
that, the proposition “it is not contingent that every S is P” is equivalent to “it is necessary
that some S is not P, or it is necessary that every S is P”. As a result, contingency will
not be related to all four angles of the square (A, E, O, I) but just to A and O de possibili
and de necessario. Therefore, external negation seems to make it impossible to draw a
standard modal hexagon in quantified modal logic, whereas internal negation helps to
construct a regular hexagon of quantified modal logic. In the next sections, we shall see
how, starting from Ockham’s account and external negation, this would lead to an even
more complicated resulting structure.

4. Logical Analysis

The point in the following is to set forth a systematic theory of modal statements
by streamlining them into a basic logical form and then devising a corresponding formal
semantics where modalities are turned into relations holding between propositions and
possible worlds.

4.1. Syntax

Let us attempt to streamline Ockham’s logical theory of quantified modal statements
into the language of first-order logic in order to obtain a comprehensive formalization
of it. For this purpose, these statements include two kinds of quantifiers (universal and
existential) and four modal operators (necessity, possibility, non-contingency or determi-
nacy, and contingency) that can be switched to each other and result in either de dicto or
de re formulas.
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A first way to account for these modal statements is ordinary language. Let Q = {A, E,
I, O} be a set of 4 quantifying expressions (“Every is (not) . . . ”, “Some is (not) . . . ”), and
letM = {�,♦, ∆,∇} be a set of 4 modal operators (necessity, possibility, non-contingency
or determinacy, and contingency). This results in a cardinal set of 4× 4× 2 = 32 modal
statements; in the first group (i)–(xvi) of statements, the quantifying expressions occur de
dicto (with a broad scope), whereas they occur de re (with a narrow scope) in the second
group (xvii)–(xxxii).

De dicto statements
MQ: “It is . . . that . . . S is . . . P”

�Q: “It is necessary that . . . S is . . . P”
(i) �A: “It is necessary that every S is P”
(ii) �E: “It is necessary that every S is not P”
(iii) �I: “It is necessary that some S is P”
(iv) �O: “It is necessary that some S is not P”

♦Q: “It is possible that . . . S is . . . P”
(v) ♦A: “It is possible that every S is P”
(vi) ♦E: “It is possible that every S is not P”
(vii) ♦I: “It is possible that some S is P”
(viii) ♦O: “It is possible that some S is not P”

∆Q: “It is determinate that . . . S is . . . P”
(ix) ∆A: “It is determinate that every S is P”
(x) ∆E: “It is determinate that every S is not P”
(xi) ∆I: “It is determinate that some S is P”
(xii) ∆O: “It is determinate that some S is not P”

∇Q: “It is contingent that . . . S is . . . P”
(xiii) ∇A: “It is contingent that every S is P”
(xiv) ∇E: “It is contingent that every S is not P”
(xv) ∇I: “It is contingent that some S is P”
(xvi) ∇O: “It is contingent that some S is not P”

De re statements
QM: “. . . S is . . . . . . P”

AM: “Every S is . . . P”
(xvii) A�: “Every S is necessarily P”
(xviii) A♦: “Every S is possibly P”
(xix) A∆: “Every S is determinately P”
(xx) A∇: “Every S is contingently P”

EM: “Every S is . . . not P”
(xxi) E�: “Every S is necessarily not P”
(xxii) E♦: “Every S is possibly not P”
(xxiii) E∆: “Every S is determinately not P”
(xxiv) E∇: “Every S is contingently not P”

IM: “Some S is . . . P”
(xxv) I�: “Some S is necessarily P”
(xxvi) I♦: “Some S is possibly P”
(xxvii) I∆: “Some S is determinately P”
(xxviii) I∇: “Some S is contingently P”

OM: “Some S is . . . not P”
(xxix) O�: “Some S is necessarily not P”
(xxx) O♦: “Some S is possibly not P”
(xxxi) O∆: “Some S is determinately not P”
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(xxxii) O∇: “Some S is contingently not P”

A second way to account for the meaning of modal statements is by means of first-
order logic, in order to show subsequently which are logically equivalent. Formal logic
renders the previous informal statements (i)–(xxxii) in terms of quantified expressions
and their affirmed and negated components. The basic logical form of modal statements
relies on three main components, namely: one modal operator, one quantifier, and one
predicative expression. Given that these components may be either affirmed or denied,
let ± be a general operator symbolizing either the affirmation or negation of components.
Assuming the validity of the following classical equivalences,

A→ B ≡ ¬(A ∧ ¬B)
¬¬A ≡ A

∀xAx ≡ ¬∃x¬Ax

the 32 modal statements may be rephrased as follows according to the two kinds of
scope between quantifiers and modalities. (We are very grateful to Saloua Chatti for her
valuable comments on the logical form of determinate (non-contingent) and contingent
(indeterminate) statements; for one cannot distribute universal quantifiers over disjunctions
and existential quantifiers over conjunctions, as was explained by [11]. However, note that
there is a difference between two forms of undue distribution: in a non-modal context,
where the tautological ∀x(Px ∨ ¬Px) does not entail ∀xPx ∨ ∀x¬P; in a modal statement
with internal negation (as the case is herein), where the non-tautological ∀x(�Px ∨�¬Px)
does not entail ∀x�Px ∨ ∀x�¬Px.)

De dicto modal statements:
±♦±∃x(Sx∧±Px)

(i) �A: ¬♦∃x(Sx∧ ¬Px) = �∀x(Sx→ Px)
(ii) �E: ¬♦∃x(Sx∧ Px) = �∀x(Sx→ ¬Px)
(iii) �I: ¬♦¬∃x(Sx∧ Px) = �∃x(Sx∧ Px)
(iv) �O: ¬♦¬∃x(Sx∧ ¬Px) = �∃x(Sx∧ ¬Px)
(v) ♦A: ♦¬∃x(Sx∧ ¬Px) = ♦∀x(Sx→ Px)
(vi) ♦E: ♦¬∃x(Sx∧ Px) = ♦∀x(Sx→ ¬Px)
(vii) ♦I: ♦∃x(Sx∧ Px)
(viii) ♦O: ♦∃x(Sx∧ ¬Px)
(ix) ∆A: �∀x(Sx→ Px) ∨�∃x(Sx ∧ ¬Px)
(x) ∆E: �∀x(Sx → ¬Px) ∨�∃x(Sx ∧ Px)
(xi) ∆I: �∃x(Sx ∧ Px) ∨�∀x(Sx → ¬Px)
(xii) ∆O: �∃x(Sx ∧ ¬Px) ∨�∀x(Sx → Px)
(xiii) ∇A: ♦∀x(Sx → Px) ∧♦∃x(Sx ∧ ¬Px)
(xiv) ∇E: ♦∀x(Sx → ¬Px) ∧♦∃x(Sx ∧ Px)
(xv) ∇I: ♦∃x(Sx ∧ Px) ∧♦∀x(Sx → ¬Px)
(xvi) ∇O: ♦∃x(Sx ∧ ¬Px) ∧♦∀x(Sx → Px)

De re modal statements:
±∃x(Sx ∧±♦±Px)

(xvii) A�: ∀x(Sx → �Px)
(xviii) A♦: ∀x(Sx → ♦Px)
(xix) A∆: ∀x((Sx → �Px) ∨ (Sx → �¬Px))
(xx) A∇: ∀x((Sx → ♦Px) ∧ (Sx → ♦¬Px))
(xxi) E�: ∀x(Sx → �¬Px)
(xxii) E♦: ∀x(Sx → ♦¬Px)
(xxiii) E∆: ∀x((Sx → �¬Px) ∨ (Sx → �Px))
(xxiv) E∇: ∀x((Sx → ♦¬Px) ∧ (Sx → ♦Px)
(xxv) I�: (∃x)(Sx ∧�Px)
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(xxvi) I♦: ∃x(Sx ∧♦Px)
(xxvii) I∆: ∃x((Sx ∧�Px) ∨ (Sx ∧�¬Px))
(xxviii) I∇: ∃x((Sx ∧♦Px) ∧ (Sx ∧♦¬Px))
(xxix) O�: (∃x)(Sx ∧�¬Px)
(xxx) O♦: ∃x(Sx ∧♦¬Px)
(xxxi) O∆: ∃x((Sx ∧ ¬�Px) ∨ (Sx → �Px))
(xxxii) O∇: ∃x((Sx ∧♦¬Px) ∧ (Sx ∧♦Px))

Note that the above renderings of contingency and determinacy differ from Ockham’s
versions, as we already mentioned at the end of Section 3. Although Ockham is right to
apply De Morgan’s rules by turning contingent formulas into determinate ones, we claim
that he was wrong in his initial reading of contingency (whether universal or particular).
The difference lies in the way in which negation occurs in the second conjuncts of his
universal and particular de contingenti. Indeed, contingency means that it is possible
for a given statement and its negation to be true. Now consider the statement ∇A: “It
is contingent that every man is an animal”, where contingency applies to the universal
affirmative A. We already saw that, according to Ockham, the latter means that it is possible
that every man is an animal, and it is possible that no man is an animal (universal de
contingenti). This kind of interpretation makes an internal use of negation in its second
conjunct, “No man is an animal” (i.e., “Every man is not an animal”), whereas our previous
definition of contingency means that, according to ∇A, it is possible that every man is an
animal, and it is possible that not every man is an animal, i.e., it is possible that some man
is not an animal. In other words, our definition of determinacy and contingency makes an
external use of negation in its second conjunct.

In order to reflect this discrepancy with Ockham, the following proposes a systematic
way to account for the modal statements (i)–(xxxii) and their mutual logical relations.
Our proposal is now to establish the differences in meaning in terms of truth-conditions:
assuming a truth-conditional view of meaning, the point is to show that any of the above
modal statements mean the same whenever they share the same truth-conditions. How
can we account for these conditions in modal logic, recalling that modal operators are
non-truth-functional? Let us consider in the following an alternative kind of relational
semantics for this purpose.

4.2. Semantics

Possible world semantics (or relational semantics) is the standard way to afford the
truth-conditions of modal statements, particularly because Kripke’s models help to capture
the plural meaning of necessity and possibility in modal frames and their various accessi-
bility relations between worlds. Instead of following that path, however, the next sections
intend to explicate Ockham’s view of modalities by means of a special relational semantics,
numbering semantics, in which the meaning of a statement relies upon a partition of logical
space into ordered sets of numbers. We assume in the following that necessity is treated
as an S5 modality, and the point is to determine all logical interrelations between any
modal statements. This results in an updated theory of opposition for (i)–(xxxii), with
the help of a set-theoretical algebra to redefine the variety of logical relations between
arbitrary formulas.

4.2.1. Relational Statements

First, let us rephrase the logical form of modal statements in order to make sense of the
modal operators. Following the modern view of necessity as truth in all possible worlds,
another way to say that is by claiming that, for example, every S is necessarily P if, and
only if, S is P at every given world. Let P be a dyadic relation between an individual and
a world, such that Paw reads “(the individual) a is P at w”. Then the de dicto and de re
modal statements can be rephrased into these new logical forms of second-order logic by
quantifying over possible worlds:

De dicto modal statements:
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±∃w ± ∃x ± Pxw

De re modal statements:
±∃x ± ∃w ± Pxw

The above reformulation of modal statements clearly shows that de re modal statements
merely switch the ordering of quantifiers as they occur in their de dicto counterparts,
recalling that modality is viewed now as a second kind of quantifier ranging over worlds.
Apart from ontological scruples regarding what entities may occur in a world, a purely
logical approach to the matter allows us to think of a relational statement like “a is P at w”
(about being at) as a relational expression that is on a par with “a loves b” (about loving).
Thus “being at” and “loving” are two equally dyadic predicates.

4.2.2. Relational Semantics

Once that analogy is admitted, we can construct a model for modal statements in
which a world includes three kinds of entities: properties, individuals, and worlds. This
means that a world may include another world as an element. Besides that, a minimum
number of two individual values a, b is required in order to make a difference between
worlds at which everyone is P and someone (but not everyone) is P. Given that the
modal statements (i)–(xxxii) leave the predicate expression Sx unchanged, models need
not include a second property S and may include only P to make sense of these modal
statements. (Of course, one can conceive a situation in which something is not S; however,
this requires another, more complex logical form of modal statements in which the subject
term S can be either affirmed or negated. See the conclusions regarding this prospect.)

A minimal set for modal statements includes two individuals a, b and (at least) one
property P, together with two possible worlds w1, w2. The truth-value of a modal statement
consists of knowing which individuals satisfy the property P in which possible world,
accordingly. Let us number the resulting 16 models, whose cardinal results from the
powerset of n = 4 elements (2 individual values, 2 possible worlds):

1 = {Paw1, Paw2, Pbw1, Pbw2}
2 = {Paw1, Paw2, Pbw1,¬Pbw2}
3 = {Paw1, Paw2,¬Pbw1, Pbw2}
4 = {Paw1,¬Paw2, Pbw1, Pbw2}
5 = {¬Paw1, Paw2, Pbw1, Pbw2}
6 = {Paw1, Paw2,¬Pbw1,¬Pbw2}
7 = {Paw1,¬Paw2, Pbw1,¬Pbw2}
8 = {¬Paw1, Paw2, Pbw1,¬Pbw2}
9 = {Paw1,¬Paw2,¬Pbw1, Pbw2}
10 = {¬Paw1, Paw2,¬Pbw1, Pbw2}
11 = {¬Paw1,¬Paw2, Pbw1, Pbw2}
12 = {Paw1,¬Paw2,¬Pbw1,¬Pbw2}
13 = {¬Paw1, Paw2,¬Pbw1,¬Pbw2}
14 = {¬Paw1,¬Paw2, Pbw1,¬Pbw2}
15 = {¬Paw1,¬Paw2,¬Pbw1, Pbw2}
16 = {¬Paw1,¬Paw2,¬Pbw1,¬Pbw2}

It can be shown that each of the above 16 sets of propositional sentences belongs or
does not belong to the truth-conditions of Ockham’s modal statements. To determine which
ones characterize each of the corresponding 32 formulas is the task of the following section.

4.2.3. Numbering Semantics

The truth-value of any modal statement X can be codified in terms of a model set, i.e.,
a set of the set of propositional sentences that are satisfied by it. In order to simplify the
ensuing semantic representation of formulas, a developed technique has been implemented
elsewhere (see [12–14]) to depict these sets in terms of ordered Boolean bits, 1 or 0. The
difference between this technique and the following model sets is that a Boolean bit
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corresponds to a unique kind of model, including more than one model, whereas we
are now going to depict each of the single models (for the sake of pedagogical clarity).
Therefore, the following numbering semantics corresponds to a more descriptive semantics
in which every single number refers to a single model among the 16.

Accordingly, let us symbolize byW(X) the set of numbers (from 1 to 16) that corre-
sponds to the models satisfied by the formula X.

The set-theoretical import of that semantics entails that conjunction and disjunction
between statements are rendered as the intersection and union of their corresponding
numberings, accordingly. Given that modal statements have been understood as mixed
quantified statements, it is no surprise that a number of them are equivalent to each
other, i.e., have the same characteristic numbering. Indeed, any statement including
two quantifiers of the same sort (universal or particular) is equivalent with its switched
counterpart so that, e.g., the de dicto statement (i), “It is necessary that every S is P”
means the same as its de re counterpart (xvii), “Every S is necessarily P”. This appears
in the following list of the characteristic numberings of modal statements, including only
20 characteristic sets for a total of 32 formulas (see Appendix A for a constructive proof of
these ordered numbers):

(1) W(�A) =W(A�) = {1}
(2) W(�E) =W(E�) = {16}
(3) W(�I) = {1, 2, 3, 4, 5, 6, 8, 9, 11}
(4) W(�O) = {6, 8, 9, 11, 12, 13, 14, 15, 16}
(5) W(♦A) = {1, 2, 3, 4, 5, 7, 10}
(6) W(♦E) = {7, 10, 12, 13, 14, 15, 16}
(7) W(♦I) =W(I♦) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
(8) W(♦O) =W(O♦) = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
(9) W(∆A) =W(∆O) = {1, 6, 8, 9, 11, 12, 13, 14, 15, 16}
(10) W(∆E) =W(∆I) = {1, 2, 3, 4, 5, 6, 8, 9, 11, 16}
(11) W(∇A) =W(∇O) = {2, 3, 4, 5, 7, 10}
(12) W(∇E) =W(∇I) = {7, 10, 12, 13, 14, 15}
(13) W(A♦) = {1, 2, 3, 4, 5, 7, 8, 9, 10}
(14) W(A∆) =W(E∆) = {1, 6, 11, 16}
(15) W(A∇) =W(E∇) = {7, 8, 9, 10}
(16) W(E♦) = {7, 8, 9, 10, 12, 13, 14, 15, 16}
(17) W(I�) = {1, 2, 3, 4, 5, 6, 11}
(18) W(I∆) =W(O∆) = {1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16}
(19) W(I∇) =W(O∇) = {2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15}
(20) W(O�) = {6, 11, 12, 13, 14, 15, 16}

It is worthwhile to note two things in the above numberings.
First, all these do not include Ockham’s four de dicto contingent and determinate

statements: U, Y, K, and Z. This is, again, because we take his de contingenti formulas
to rely on a wrong occurrence of internal negation (see the end of Sections 3 and 4.1).
Thus, there is a logical difference between ∆I and Ockham’s U = (1) ∨ (2) and between
∆A and Ockham’s K = (3) ∨ (4); the same consequently holds for their contradictories,
i.e., respectively, Ockham’s Y = (7) ∧ (8) and Z = (5)/(13) ∧ (6)/(16). In the case of Z,
Ockham considers (5) equivalent to (13) and (6) equivalent to (16), which is a mistake due
to his content-based account of de dicto and de re. See Appendix A for a proof of their
differences in terms of truth-conditions.

Second, the above equivalences match with the famous Barcan formulas by accepting
the following equivalences:

∀x�Fx ↔ �∀xFx
∃x♦Fx ↔ ♦∃xFx

An expected objection to the above equivalences is that an individual may exist in a possible
world without existing in the actual world, thus invalidating the entailment relation from
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♦∃xFx to ∃x♦Fx. Although the main reason for this equivalence in our semantics is that
no clear-cut distinction is made between possible worlds and the actual world, a theoretical
reason may be advanced to defend it as well (see [15]): if there is a world at which an object,
say a, is F, so a may be F is the actual world without being so after all. Our model set
assumes a set of constant individuals, such that whatever exists in a world also exists in
all the other ones. However, even in the contrary case, it seems that the Barcan formulas
would still hold because a given property F may be satisfied by one individual whichever:
if there is a world at which something is F, so something is F in the actual world without
requiring that it is one and the same individual in both cases, for how can we individuate
an object without specifying its properties? This philosophical issue is left open in the
present paper, and our point is just to claim that the above logical equivalences cannot be
taken to be counterintuitive without some special philosophical assumptions.

4.2.4. Logical Relations

Finally, the characteristic numbering of modal statements can be used to identify the
logical relations between any pair of them. For this purpose, we use the basic notions
of model and counter-model. For any integer x ∈ {1–16}, we say that x is a model of the
formula X i f f x ∈ W(X), and x is a counter-model of the formula X i f f x 6∈ W(X). Then
the logical relations between formulas deal with models that any two formulas can share or
not. For any two formulas X, Y, the fact that they are compatible means that they can share
the same model; if, on the contrary, they are incompatible, this means that they cannot share
any model or, in other words, that any model (or counter-model) of the first formula X is
a counter-model (or model) of the second formula Y. This results in the well-known set
of four Aristotelian relations of opposition, including two cases of compatibility and one
pattern of the entailment relation (viz. subalternation). Thus, for any related statements
X, Y:

X and Y are contraries (symbol: ct) i f f every model of X is a counter-model of Y, but not
every counter-model of X is a model of Y.
X and Y are contradictories (symbol: cd) i f f every model of X is a counter-model of Y, and
every counter-model of X is a model of Y.
X and Y are subcontraries (symbol: sct) i f f every counter-model of X is a model of Y, but
not every model of X is a counter-model of Y.
Y is subaltern to X (symbol: sb) i f f every model of X is a model of Y, and every counter-
model of Y is a counter-model of X.
Finally, X and Y are independent from each other (symbols: ind) whenever they do not
satisfy any of the above conditions.

Following the specialized literature on logical oppositions, a way to depict these
numerous relations is by representing these in a logical diagram inspired by the traditional
theory of oppositions. Let us see what happens with Ockham’s modalities, and how a
complete combination of their de dicto and de re modalities can be represented accordingly.

4.2.5. Increasing Diagrams

It has already been mentioned in a previous section that the Aristotelian square
included a modal version of categorical propositions, and the extension of necessity and
possibility to contingency naturally led to Blanché’s hexagon. In addition, two other
diagrammatic versions of modal logic were implemented under the impetus of works
around other logicians: on the one hand, ref. [16] noticed that the history of logic contained
a logical octagon of quantified modal logic behind the work of Buridan, and ref. [17]
provided a formal semantics for it; on the other hand, ref. [18] devised a further dodecagon
in showing that Avicenna proposed a set of logical relations between 12 statements.

In light of the preceding, one can surmise a closure of this increasing extension
from the square onward: there can be many more than 12 modal statements in their de
re–de dicto versions. A first representation (Figure 5) of modal statements is a logical
dodecagon of strictly de dicto modal statements, where modal operators occur externally
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and augment the four Aristotelian relations (contrariety, contradictoriness, subcontrariety,
and subalternation) with one additional relation of independence. For sake of simplicity, the
nature of the numerous logical relations between vertices is not displayed in the following
three figures, and the reader is invited to check these in Appendix B.

Figure 5. A first representation of modal statements.

A second representation (Figure 6) is a logical dodecagon of strictly de re modal
statements, where modal operators occur internally only.

Figure 6. A second representation of modal statements.

Finally, a combination of all logical relations between de dicto and de re statements
results in a set of a set of 20 formulas (Figure 7), that is, a new logical icosagon of
modal statements.
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Figure 7. A new logical icosagon of modal statements.

The above diagram extends the previous 2 figures into an embedding icosagon that
includes 27 logical squares (i.e., embedded structures with 1 relation of contrariety, 1
relation of subcontrariety, 2 relations of contradictoriness, and 2 relations of subalternation;
see Appendix B for a complete list of these embedded logical squares), assuming that
each vertex of that structure corresponds to single modal statements (10)–(20) and that the
structure thereby excludes Ockham’s disjunctive and conjunctive forms U, Y, K, Z.

Note finally that each of the implication relations between both de dicto and de re
modal statements (see Section 3) is established in a set-theoretical way: each antecedent is a
superaltern of its consequent so that, e.g., the first implication

�∀x(Sx → Px)→ ♦∀x(Sx → Px)

is a more customary way to claim that (1) entails (5) because the latter is subaltern to the
former. See the above exhaustive table of logical relations between (1)–(16).

5. Conclusions

We have provided a survey of Ockham’s theory of modal statements based on a de
re–de dicto distinction in the use of modalities, and we analyzed in detail the cases of contin-
gency and determinacy (or non-contingency) in order to extend Ockham’s modal squares.
Then we proposed a reformulation of modal statements in a systematic way by means of
both a second-order translation and a corresponding relational semantics where statements
were codified by numbering. Finally, we showed that Ockham’s modal statements should
be reformulated considering an external application of negation and hence reduced to an
exhaustive set of 16 formulas, thereby leading to a comprehensive icosagon that encom-
passes the previous extensions from the Aristotelian square to Ockham’s hexagon and
Buridan’s octagon of logical relations between these modal statements.

Let us recall that such a semantics relies on a special interpretation of necessity as truth
in all possible worlds, i.e., models where the accessibility relation is an equivalence relation
in terms of Kripke semantics. We favored an alternative semantics of ordered model sets,
however, in order to construct an algebraic theory of logical relations between matching
formulas (i.e., sharing the same logical form; see [19]). An interesting development in
the proposed numbering semantics consists of constructing model sets for non-equivalent
accessibility relations, thus applying to temporal, epistemic, or deontic interpretations of
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the modal operators. This project, however, goes beyond our present purpose to make
sense of Ockham’s proper theory of modalities with modern formal tools. At any rate, such
a special semantics has already been developed in other separate works and Boolean ways
(see e.g., [12,14]) and could turn out to be a nice trade-off between Kripke semantics and
the prior algebraic tradition of modal logic.

Another prospect is to extend the logical form of Ockham’s modal statements by also
negating the subject term S of the categorical statements A, E, I, O. Such an extension was
devised by previous logicians (see especially [20]), and this amounts to proposing a modal
version of Keynesian categorical propositions (wherein S is always negated), whereas
Ockham adhered to a modal version of Aristotelian categorical propositions (wherein S is
always affirmed). A bitstring semantics for both Aristotelian and Keynesian categorical
propositions has been recently set forth (see [21]). Its modal de re and de dicto versions
remain to be generated by applying modal operators to logical forms like

±♦±∃x(±Sx∧±Px),
or

±∃x±♦(±Sx∧±Px).
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Appendix A. Numbering Semantics for De dicto and De re Modal Statements

For any binary connective ◦ = {∧,∨}, Ockham’s modal operators can be read in terms
of conjunct or disjunct truths in possible worlds. Recalling the aforementioned model that
includes two individuals a, b and two possible worlds w1, w2, a formula like ‘Every S is
necessarily P’ means that every S is P in both w1 and w2, whereas ‘Every S is possibly
P’ means that every S is P in w1 or in w2 (or both). Let us recall that S is assumed to be
non-empty in Ockam’s modal theory, so that the difference between de dicto and de re
modal statements lies in the contents of any main conjunct or disjunct: when de dicto, these
include both individuals a, b and only one possible world and when de re, these include
both possible worlds and only one individual.

De dicto modal statements: (±Paw1 ◦ ±Pbw1) ◦ (±Paw2 ◦ ±Pbw2)
Every de dicto statement amounts to a combination of 8 subformulas 1©– 8©, viz.,

conjunctions (necessary statements) or disjunctions (possible statements) about what a and
b are in a single world w1 or w2. That is:

1© = (Paw1 ∧ Pbw1) = {1, 2, 4, 7}
2© = (Paw2 ∧ Pbw2) = {1, 3, 5, 10}
3© = (Paw1 ∨ Pbw1) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14}
4© = (Paw2 ∨ Pbw2) = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 15}
5© = (¬Paw1 ∧ ¬Pbw1) = {10, 13, 15, 16}
6© = (¬Paw2 ∧ ¬Pbw2) = {7, 12, 14, 16}
7© = (¬Paw1 ∨ ¬Pbw1) = {3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16}
8© = (¬Paw2 ∨ ¬Pbw2) = {2, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16}

Every de dicto statement consists of combining either of these subformulas with either
conjunction or disjunction, depending on which modal operator occurs in a broad scope:
conjunction, with necessity; disjunction, with possibility; disjunction of conjuncts, with
determinacy (non-contingency); conjunction of disjuncts, with contingency (indeterminacy).

�Q =© ∧©
W(�A) =W( 1©) ∧ 2©) = {1, 2, 4, 7} ∩ {1, 3, 5, 10} = {1}



Axioms 2023, 12, 445 19 of 22

W(�E) =W( 5©∧ 6©) = {10, 13, 15, 16} ∩ {7, 12, 14, 16} = {16}
W(�I) =W( 3©∧ 4©) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14} ∩ {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 15} =
{1, 2, 3, 4, 5, 6, 8, 9, 11}
W(�O) =W( 7©∧ 8©) = {3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16}∩ {2, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15,
16} = {6, 8, 9, 11, 12, 13, 14, 15, 16}
♦Q =© ∨©
W(♦A) =W( 1©∨ 2©) = {1, 2, 4, 7} ∪ {1, 3, 5, 10} = {1, 2, 3, 4, 5, 7, 10}
W(♦E) =W( 5©∨ 6©) = {10, 13, 15, 16} ∪ {7, 12, 14, 16} = {7, 10, 12, 13, 14, 15, 16}
W(♦I) =W( 3©∨ 4©) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14} ∪ {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 15}
= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
W(♦O) =W( 7©∨ 8©) = {3, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16} ∪ {2, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15,
16} = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
∆Q = (© ∧©) ∨ (©∧©)
W(∆A) =W(( 1© ∧ 2©) ∨ ( 7©∧ 8©)) = {1} ∪ {6, 8, 9, 11, 12, 13, 14, 15, 16} =
{1, 6, 8, 9, 11, 12, 13, 14, 15, 16}
W(∆E) = W(( 5© ∧ 6©) ∨ ( 3© ∧ 4©)) = {16} ∪ {1, 2, 3, 4, 5, 6, 8, 9, 11} = {1, 2, 3, 4, 5, 6, 8, 9,
11, 16}
W(∆I) = W(( 3© ∧ 4©) ∨ ( 5© ∧ 6©)) = {1, 2, 3, 4, 5, 6, 8, 9, 11} ∪ {16} = {1, 2, 3, 4, 5, 6, 8, 9,
11, 16}
W(∆O) =W(( 7©∧ 8©) ∨ ( 1©∧ 2©)) = {6, 8, 9, 11, 12, 13, 14, 15, 16} ∪ {1} =
{1, 6, 8, 9, 11, 12, 13, 14, 15, 16}
∇Q = (© ∨©) ∧ (©∨©)
W(∇A) =W(( 1©∨ 2©) ∧ ( 7©∨ 8©)) = {1, 2, 3, 4, 5, 7, 10} ∩ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16} = {2, 3, 4, 5, 7, 10}
W(∇E) =W(( 5©∨ 6©) ∧ ( 3©∨ 4©)) = {7, 10, 12, 13, 14, 15, 16} ∩
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} = {7, 10, 12, 13, 14, 15}
W(∇I) =W(( 3©∨ 4©) ∧ ( 5©∨ 6©)) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, &3, 14, 15} ∩
{7, 10, 12, 13, 14, 15, 16} = {7, 10, 12, 13, 14, 15}
W(∇O) =W(W(( 7©∨ 8©) ∧ ( 1©∨ 2©)) = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} ∩
{1, 2, 3, 4, 5, 7, 10} = {2, 3, 4, 5, 7, 10}

De re modal statements: (±Paw1 ◦ ±Paw2) ◦ (±Pbw1 ◦ ±Pbw2)
Every de re statement amounts to a combination of 8 other subformulas 9©– 16©, viz., con-
junctions (necessary statements) or disjunctions (possible statements) about what a or b is
in both worlds w1 and w2. That is:

9© = (Paw1 ∧ Paw2) = {1, 2, 3, 6}
10© = (Pbw1 ∨ Pbw2) = {1, 4, 5, 11}
11© = (Paw1 ∧ Paw2) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13}
12© = (Pbw1 ∨ Pbw2) = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15}
13© = (¬Paw1 ∧ ¬Paw2) = {11, 14, 15, 16}
14© = (¬Pbw1 ∨ ¬Pbw2) = {6, 12, 13, 16}
15© = (¬Paw1 ∧ ¬Paw2) = {4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
16© = (¬Pbw1 ∨ ¬Pbw2) = {2, 3, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16}

Every de re statement consists of combining either of these subformulas with either
conjunction or disjunction, depending on which quantifying operator occurs in a broad
scope: conjunction, with universal quantifiers; disjunction, with existential quantifiers; dis-
junction of conjuncts, when existential quantifiers apply to determinacy (non-contingency);
conjunction of disjuncts, when universal quantifiers apply to contingency (indeterminacy).

AM = (© ◦©) ∧ (© ◦©)
W(A�) =W( 9©∧ 10©) = {1, 2, 3, 6} ∧ {1, 4, 5, 11} = {1}
W(A♦) =W( 11©∧ 12©) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13} ∩ {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15} =
{1, 2, 3, 4, 5, 7, 8, 9, 10}
W(A∆) =W( 9©∧ 13©)∨ ( 10©∧ 14©)) = ({1, 2, 3, 6}∪{11, 14, 15, 16})∩ ({1, 4, 5, 11}∪{6, 12, 13,
16}) = {1, 2, 3, 6, 11, 14, 15, 16} ∩ {1, 4, 5, 6, 11, 12, 13, 16} = {1, 6, 11, 16}
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W(A∇) =W( 11©∧ 15©) ∧ ( 12©∧ 16©) = ({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13} ∩
{4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}) ∩ ({1, 2, 3, 4, 5, 7, 8, 9, 10, 14} ∩ {2, 3, 6, 7, 8, 9, 10, 12, 13,
14, 15, 16}) = {4, 5, 7, 8, 9, 10, 12, 13} ∩ {2, 3, 7, 8, 9, 10, 14, 15} = {7, 8, 9, 10}
EM = (© ◦©) ∧ (© ◦©)
W(E�) =W( 13©∧ 14©) = {11, 14, 15, 16} ∩ {6, 12, 13, 16} = {16}
W(E♦) = W( 15© ∧ 16©) = {4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} ∩ {2, 3, 6, 7, 8, 9, 10, 12, 13, 14,
15, 16} = {7, 8, 9, 10, 12, 13, 14, 15, 16}
W(E∆) = W(( 13© ∨ 9©) ∧ ( 14© ∧ 10©)) = ({11, 14, 15, 16} ∪ {1, 2, 3, 6}) ∩ ({6, 12, 13, 16} ∪
{1, 4, 5, 11}) = {1, 2, 3, 6, 11, 14, 15, 16} ∩ {1, 4, 5, 6, 11, 12, 13, 16} = {1, 6, 11, 16}
W(E∇) =W(( 15©∧ 11©) ∧ ( 16©∧ 12©)) = ({4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
∩{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13}) ∩ ({2, 3, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16} ∩ {1, 2, 3, 4, 5, 7, 8, 9,
10, 14}) = {2, 3, 7, 8, 9, 10, 14, 15} ∩ {4, 5, 7, 8, 9, 10, 12, 13} = {7, 8, 9, 10}
IM = (© ◦©) ∨ (© ◦©)
W(I�) =W( 9©∨ 10©) = {1, 2, 3, 6} ∪ {1, 4, 5, 11} = {1, 2, 3, 4, 5, 6, 11}
W(I♦) =W( 11©∨ 12©) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13} ∪ {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15} =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
W(I∆) =W(( 9©∨ 13©)∨ ( 10©∨ 14©)) = ({1, 2, 3, 6}∪ {11, 14, 15, 16})∪ ({1, 4, 5, 11}∪ {6, 12, 13,
16}) = {1, 2, 3, 6, 11, 14, 15, 16}∪{1, 4, 5, 6, 11, 12, 13, 16} = {1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16}
W(I∇) =W(( 11©∧ 15©) ∨ ( 12©∧ 16©)) = ({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13} ∩
{4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}) ∪ ({1, 2, 3, 4, 5, 7, 8, 9, 10, 14} ∩ {2, 3, 6, 7, 8, 9, 10, 12, 13,
14, 15, 16})) = {4, 5, 7, 8, 9, 10, 12, 13} ∪ {2, 3, 7, 8, 9, 10, 14, 15} = {2, 3, 4, 7, 8, 9, 10, 12, 13,
14, 15}
OM = (© ◦©) ∨ (© ◦©)
W(O�) =W( 13©∨ 14©) = {11, 14, 15, 16} ∪ {6, 12, 13, 16} = {6, 11, 12, 13, 14, 15, 16}
W(O♦) =W( 15©∨ 16©) = {4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} ∪ {2, 3, 6, 7, 8, 9, 10, 12, 13, 14, 15,
16} = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
W(O∆) = W(( 13© ∨ 9©) ∨ ( 14© ∨ 10©)) = ({11, 14, 15, 16} ∪ {1, 2, 3, 6}) ∪ ({6, 12, 13, 16} ∪
{1, 4, 5, 11}) = {1, 2, 3, 6, 11, 14, 15, 16} ∪ {1, 4, 5, 6, 11, 12, 13, 16} = {1, 2, 3, 4, 5, 6, 11, 12, 13,
14, 15, 16}
W(O∇) =W(( 15©∧ 11©) ∧ ( 16©∧ 12©)) = ({4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} ∩ {1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 12, 13}) ∪ ({2, 3, 7, 8, 9, 10, 14, 15} ∩ {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15}) =

{4, 5, 7, 8, 9, 10, 12, 13} ∪ {2, 3, 7, 8, 9, 14, 15} = {2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15}
Finally, it can be proved that what Ockham takes to be contingent and determinate

statements differs from our above translations of contingencies and determinacies.
Let (X)O symbolize Ockham’s reading of these contingent and determinate modal

statements. The difference between their set-theoretical meanings and ours clearly appears
in their characteristic numberings:

(∆A)O = K = �I ∨ �O
W(∆A)O =W(�I) ∪W(�O)= {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14} ∪ {6, 8, 9, 11, 12, 13, 14, 15, 16}
= {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16}
W(∆A) = {1, 6, 8, 9, 11, 12, 13, 14, 15, 16}
Hence (∆A)O 6= ∆A.

(∆I)O = U = �A∨ �E
W(∆I)O =W(�A) ∪ W(�E) = {1} ∪ {16} = {1, 16}
W(∆I) = {1, 2, 3, 4, 5, 6, 8, 9, 11, 16}
Hence (∆I)O 6= ∆I.
(∇A)O = Z = ♦A ∧ ♦E
W(∇A)O =W(♦A) ∩ W(♦E) = {1, 2, 3, 4, 5, 7, 10} ∩ {7, 10, 12, 13, 14, 15, 16} = {7, 10}
W(∇A) = {2, 3, 4, 5, 7, 10}
Hence (∇A)O 6= ∇A.
(∇I)O = Y = ♦I ∧ ♦O
W(∇I)O =W(♦I) ∩ W(♦O) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}∩
{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
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W(∇I) = {7, 10, 12, 13, 14, 15}
Hence (∇I)O 6= ∇I.

Appendix B. Logical Relations between De dicto and De re Modal Statements

The set of 20 modal statements leads to a set of 20(20− 1)/2 = 190 logical interrela-
tions as depicted in the following table in which each kind of logical relation is symbolized
as follows: ‘ct’ for contrariety, ‘cd’ for contradiction, ‘sct’ for subcontrariety, ‘sb’ for subal-
ternation, ‘sp’ for superalternation, and ‘ind’ for independence.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
(1) ct sp ct sp ct sp cd sp sp
(2) ct ct sp ct sp cd sp sp sp
(3) sb ct ind ind cd sp sct ind sp
(4) ct sb ind cd ind sct sp sp ind
(5) sb ct ind cd ind sp sct sct ind
(6) ct sb cd ind ind sct sp ind sct
(7) sb cd sb sct sb sct sct sct sct
(8) cd sb sct sb sct sct sct sct sct
(9) sb sb ind sb sct ind sct sct ind
(10) sb sb sb ind ind sct sct sct ind

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
(11) ind sp ct ind ind ind ind sp ct
(12) ind ind ct ind sp ct ind sp ind
(13) sb ind ind sb ind ind sct ind cd
(14) ct ct ind ct ind ind sp cd ind
(15) ind ind sp ct sp ct cd sp ct
(16) ind sb ind ind sb cd sct ind ind
(17) ind ct ind ind ct cd sp ind ind
(18) ind ind sct sb cd sct sb sct sb
(19) sb sb ind ind sb ind ind sct ind
(20) ct ind cd ind ct ind ind sp ind

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
(1) ct ct sp sp ct ct sp sp ct ct
(2) ct ct ct sp ct sp ct sp ct sp
(3) ind ct ind ind ind sct sb ind ind ind
(4) ct ind sct ind ind ind ind ind ind sb
(5) sb ind sp ind ind ind ind ind ind ct
(6) ind sb ind ind ind sp ind ind ind ind
(7) sb sb sb sct sb sct sb sct sb sct
(8) sb sb sct sct sb sb sct sct sb sb
(9) cd ind sct sb ind ind ind ind sct sb

(10) ind cd ind sb ind sct sb ind sct ind

Here is a complete list of the 27 embedded squares occurring in the logical icosagon,
where each ordered set of four vertices a-b-c-d is such that a-b are contraries, c-d are
subcontraries, a-d and b-c are contradictories, and c and d are respective subalterns of a
and b:

SQ1: (1)-(2)-(7)-(8); SQ2: (1)-(4)-(5)-(8); SQ3: (1)-(6)-(3)-(8); SQ4: (1)-(11)-(9)-(8);
SQ5: (1)-(12)-(10)-(8); SQ6: (1)-(15)-(18)-(8); SQ7: (1)-(16)-(17)-(8); SQ8: (1)-(19)-(14)-(8)
SQ9: (1)-(20)-(13)-(8); SQ10: (2)-(3)-(6)-(7); SQ11: (2)-(5)-(4)-(7); SQ12: (2)-(11)-(9)-(7)
SQ13: (2)-(12)-(10)-(7); SQ14: (2)-(13)-(20)-(7); SQ15: (2)-(15)-(18)-(7); SQ16: (2)-(17)-(16)-(7)
SQ17: (2)-(19)-(14)-(7); SQ18: (3)-(12)-(10)-(8); SQ19: (4)-(11)-(9)-(5); SQ20: (5)-(20)-(13)-(4)
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SQ21: (11)-(14)-(19)-(9); SQ22: (11)-(20)-(13)-(9); SQ23: (12)-(14)-(19)-(10); SQ24: (12)-(17)-
(16)-(10)
SQ25: (14)-(15)-(13)-(19); SQ26: (15)-(17)-(16)-(13); SQ27: (15)-(20)-(13)-(18).
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