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Abstract: The aim of this article is to develop efficient methods of expressing multilevel structured
information from various modalities (images, speech, and text) in order to naturally duplicate the
structure as it occurs in the human brain. A number of theoretical and practical issues, including the
creation of a mathematical model with a stability point, an algorithm, and software implementation
for the processing of offline information; the representation of neural networks; and long-term
synchronization of the various modalities, must be resolved in order to achieve the goal. An artificial
neural network (ANN) of the Cohen–Grossberg type was used to accomplish the objectives. The
research techniques reported herein are based on the theory of pattern recognition, as well as speech,
text, and image processing algorithms.

Keywords: neural network; mathematical modeling; Cohen–Grossberg; structured information;
algorithm

MSC: 68W10; 68T15

1. Introduction

Some problems in the field of pattern recognition have been successfully solved.
Commercial systems for speech recognition, image recognition, and automatic text analysis
are known. The degree of success in solving these problems depends on the degree
of formalized description of the subject area [1]. Face image recognition is solved in
isolation. The problem of identifying grammar and syntax errors is a more complex task.
Recognition of images and scenes, dictation of texts from a microphone, and automatic
classification of text are unsolved tasks. Existing systems only demonstrate their level of
complexity. The difficulties that arise in solving these problems are in the synchronization
of the analyzed information. This leads to the formation of large, pure hypotheses. In
the case of the processing and synchronization of a large amount of information, their
verification becomes a non-trivial task and is also unsolved within the framework of the
applied methods. Currently, the complexity of the methods for representing semantic and
mathematical information with both metalinguistic and figurative means practically does
not allow for their effective use to solve problems. Within the scientific direction of artificial
intelligence, numerous attempts have been made and are being made to use semantic and
pragmatic information, mainly to solve the problem of human–machine communication in
natural language. The works of Alkon, Alwang, and Bengio [2–4] are widely known. Their
success is due to the fact that the semantic picture is replaced by the rigid structure of the
relational database, from which natural language interpretations are made and attempts
to interpret statements in terms of concepts are made. However, the great ambiguity of
these interpretations arises from the inaccuracy of language models. It is not possible
to automatically form a model based on texts alone. Less well-known are the ways in
which semantic information is used. Image recognition Quasi-Zo [4,5] has been used as a
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world model to analyze scenes in which individual objects are represented by generalized
geometric shapes such as balls and cylinders. With the help of this model, objects in the
scene are represented, segmented, and identified and further described in metalinguistic
terms, as well as the relations between them and their dynamics. Furthermore, all these
steps are processed separately.

The development of methods for the representation of information at the semantic
and pragmatic levels (equally convenient for both linguistic and image recognition tasks)
is a key point in improving both the quality and functionality of these systems and in
the transition to the next stage of development of intelligent systems (IS), i.e., the stage
of creating integrated multimodal systems for information processing and storage. The
existence of these tasks makes us look for new approaches to the methods of presenting
and processing information from different modalities—verbal, visual, and supermodal
(semantic and pragmatic) information—in synchrony [6].

Introducing knowledge into artificial IS is effective not due to modeling of individual
intellectual functions but due to modeling of the computing environment in which entire
tasks are solved. Intellectual systems are those that perform intellectual functions within
the framework of cognitive behavior: perception, learning, formation of thinking patterns
(using a pattern to solve current problems), problem solving, prediction, decision making,
linguistic behavior, etc. Therefore, IS include natural language processing information
systems, word processing systems, and automated systems. The classification of existing
systems allows them to be divided into two classes: single-level systems that recognize
speech events using one-way or modified Bayesian rules (implemented on a neural network)
and synchronous processing systems using empirical linguistic rules [7].

For example, after an acoustic speech signal is fed into the system, it is digitized,
cleaned up, normalized by amplitude, and freed from related information. Then, its pieces
are compared to the standards for each level that were made during the training stage.

In the case of solving simple recognition problems, commands with a limited vocab-
ulary and single-level statistical approaches are most often used. In order to solve more
complicated problems, such as finding keywords in a stream of continuous speech, the
structural approach needs to use information from all levels of language, from morphol-
ogy to syntax, as well as information from outside of languages, such as semantics and
pragmatics. The complexity of the task of building speech recognition systems comes
from the fact that a lot of information with different internal structures to be processed by
different algorithms needs to be put together into a single whole. In addition, the use of
practical solutions to the problem of speech recognition encounters a psychological barrier,
which consists of the fact that a person expects the same possibilities in communication
from speech recognition systems as in communication with a person. Solving the latter
task involves recreating—if possible—processing, and presenting the information at one’s
disposal. This means that in addition to integrating linguistic and extralinguistic sources of
knowledge at different levels, it is necessary to integrate information processing subsys-
tems from other modalities—primarily visual. When three problems are solved, effective
synchronization and integration of a large amount of disparate information become possi-
ble. First, it is necessary to use the same algorithms to process information with different
structures. Second, it is desirable to implement these algorithms with the use of specialized
(directed precisely to these algorithms) equipment instead of universal processing means.
Thirdly, it is necessary to implement an associative means of synchronizing information.

Analysis of existing systems showed that, as in the case of speech recognition, when
solving the problem of image recognition, two main approaches are used: geometric and
linguistic. Image recognition has its own problems when it comes to sorting through large
quantities of information because it requires a considerable amount of math. IS that work
well can only be made if they are synchronized and have a high level of resilience. They
can be represented in the form of a set of rules or a declarative representation of knowledge
when the information is represented in the form of a database. Solving the problem of
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integrating information from different modalities would allow us to escape this vicious
circle [8–10].

The aim of this work is to identify effective ways of synchronizing multilevel structured
information from different modalities (images, speech, and text), which allows for natural
reproduction of the structure of information as it occurs in the human brain. Processing
optimization methods should allow for modeling of a sustainable process. For this purpose,
neural network representation and processing of different modalities can be used. It is also
necessary to develop a method and algorithm to train neural networks for robustness and
synchronization.

The current paper contains five sections in which we described the used of CGNN
training to analyze time sequences to represent speech as textual information, resulting in
h stability for dynamic information generation. Then, a description of the algorithm and an
example implementation of a stability model in a CGNN are presented.

2. Cohen–Grossberg Network Training for Different Modalities

Using an ANN and considering existing solutions showed that they can be broken
down into two types: static and dynamic systems. Classical networks with elements that are
like neurons can solve the problem of recognizing spatial images and speech characteristics.
Dynamic images and speech can also be recognized by using networks with delay elements
and dynamic neural networks. In this case, special techniques are used to take into account
the way information is organized over time.

An ANN that takes into account dynamic time-based information can be used to
analyze temporal sequences in which the representation of both speech and visual/textual
information is reduced, such as a Cohen–Grossberg network.

Cohen and Grossberg presented their variation of an ANN in [11] represents self-
organization, competitiveness, etc. Grossberg designed a continuous time-based racing
network based on the human visual system. His work is characterized by the use of non-
linear mathematics to model specific functions. The topics of their papers include specific
areas, such as how adversarial networks can provide an improvement in recognizable
information in vision, and their work is characterized by a high level of mathematical
complexity [12,13].

In order to take the temporal structure of the information into account, a special
technique is used. Information is fed with delays due to additional network inputs, and
the highest output is expected to be produced. In this case, the network begins to take into
account the time context of the input, and dynamic images are automatically formed.

We propose the use of the learning law of the adaptive weights in the Grossberg
network, which W. Grossberg calls long-term memory (LTM) because the rows of W
represent patterns that have been stored and can be recognized by the network. The stored
pattern that is closest to the input produces the highest output in the second layer.

One law of learning for W2 is given by:

dw2
i,j(t)

dt
= α

{
−w2

i,j(t) + n2
i (t)n

1
j (t)

}
(1)

where α is yjr learning rate coefficient, W is the input vector, and t is the time variable. The
two-layer equations show a passive decay term in the first term in the bracket on the right
and a Hebbian-like learning process in the second term. Combined, these terms result in
the deterioration of Hebb’s rule.

The first-layer equation normalizes the strength of an input pattern after receiving
external inputs. The input vector (p) is used to calculate the excitatory and inhibitory inputs.
It takes the shape of

ε
dn1(t)

dt
= −n1(t) +

(
+b1 − n1(t)

)[
+W1

]
p−

(
n1(t) + −b1

)[
−W1

]
p (2)
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where ε determines the speed of response, p is the input vector, t is the time variable, and b
is inhibitory bias.

Equation (2) is an intriguing shunt model with the following input:

+W1 =


1 0 ... 0
0 1 ... 0
...

...
...

0 0 ... 1

 (3)

The sum of each element in the input vector—aside from the ith element—therefore
constitutes the inhibitory input to the ith neuron.

The on-center/off-surround pattern is created by the two matrices: −W1 and +W1

because the inhibitory input, which shuts the neuron off, comes from locations outside of
the input vector, while the excitatory input, which includes the neuron, comes from the
ith element of the input vector, which is centered at the same point. The input pattern is
normalized by this style of binding pattern.

The lower bound of the maneuver pattern is set to zero by setting the inhibitory bias
(−b1) to zero for the sake of simplicity. Moreover, it uniformly adjusts all components of
the excitation bias (+b1):

+b1
i = +b1, i = 1, 2, . . . , S1 (4)

As a result, the upper bound for each neuron is equal. Let us examine the first layer’s
normalizing effect, where the ith neuron’s response has the following form:

ε
dn1

i (t)
dt

= −n1
i (t) +

(
+b1 − n1

i (t)
)

pi − n1
i (t)∑

j 6=i
pj (5)

At steady state,
(
dn1

i (t)/dt = 0
)

gives us:

0 = −n1
i +

(
+b1 − n1

i

)
pi − n1

i ∑
j 6=i

pj (6)

If we opt for neuron n1
i steady-state output, the outcome is:

n1
i =

+b1 pi

S1 .

1 + ∑
j=1

pj
(7)

The relative intensity of the ith input is defined as follows:

p̄i =
pi
P

where P =
S1

∑
j=1

pj (8)

The steady-state activity of neurons takes the following form:

n1
i =

( +b1P
1 + P

)
p̄i (9)

Hence, regardless of the size of the overall input (P), n1
i is always proportional to the

relative intensity (p̄i). Moreover, the neuron’s overall activity is modest:

S1

∑
j=1

n1
j =

S1

∑
j=1

( +b1P
1 + P

)
p̄j =

( +b1P
1 + P

)
≤ +b1 (10)
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The input vector is normalized to maintain the relative intensities of its separate
components while reducing the overall activity to less than +b. As a result, rather than
encoding the instantaneous variations in the total input activity (P), the first layer’s outputs
(n1

i ) encode the relative input intensities (p̄i). This outcome is the result of the shunt model’s
nonlinear gain control and the on-center/off-surround coupling of the inputs.

The consistency of the information that has been processed and the dynamic properties
of the visual system are explained in the first layer of the Grossberg network. The network
responds to relative, not absolute, picture intensities.

The continuous-time period layer, the second layer of the Grossberg network, serves a
number of purposes. The entire activity in the layer is first normalized, just like the first
layer. Second, the detected information enhances its model, making it more likely that the
neuron with the greatest input also produces the strongest response. Lastly, it stores the
amplified model, acting as short-term memory (STM).

The presence of feedback in the second layer is the primary distinction between the
two layers. It enables the network to retain a pattern even when the input is no longer
present. The band also engages in competition, which amplifies the information that may
be recognized in the pattern.

The equation for the second layer takes the following form:

ε
dn2(t)

dt
= −n2(t) +

(
+b2 − n2(t)

){[
+W2

]
f 2
(

n2(t)
)
+ W2a1

}
−
(

n2(t) + −b2
)[
−W2

]
f 2
(

n2(t)
) (11)

This is a shunt model with an excitation input of
{[

+W2] f 2(n2(t)
)
+ W2a1}, while

on-center feedback is expressed as +W2 = +W1, and adaptive weights similar to those in
a Kohonen network make up W2. Following training, the rows of W2 indicate prototype
models. The off-surround feedback provided by

[−W2] f 2(n2(t)
)

is the inhibitory input to
the shunting model. −W2 = −W1 provides this feedback.

The following example of a network with two neurons can be taken into consideration
to demonstrate the impact of the second layer of a Grossberg network:

ε = 0.1 +b2 =

[
1
1

]
W2 =

[
(1w2)T

(2w2)T

]
=

[
0.9 0.45

0.45 0.9

]
(12)

and

f 2(n) =
10(n)2

1 + (n)2 (13)

The layer equations are:

(0.1)
dn2

1(t)
dt

= −n2
1(t) +

(
1− n2

1(t)
){

f 2
(

n2
1(t)

)
+
(

1w2
)T

a1
}

− n2
1(t) f 2

(
n2

2(t)
) (14)

(0.1)
dn2

2(t)
dt

= −n2
2(t) +

(
1− n2

2(t)
){

f 2
(

n2
2(t)

)
+
(

2w2
)T

a1
}

− n2
2(t) f 2

(
n2

1(t)
) (15)

The prototype models (rows of the weight matrix (W2)) and the output of the first
layer serve as the internal multipliers for the second layer (normalized input model). The
prototype model that is most similar to the input model has the highest internal multiplier.
The second layer then engages in competition among neurons, which has the effect of
supporting large outputs while attenuating small outputs, thereby tending to improve the
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output pattern. Competition in a Grossberg network preserves large values while reducing
small values, yet it need not necessarily reduce all small values to zero. The activation
function controls how much recognizable information is amplified [11].

Two key characteristics are mentioned. First, some information augmentation occurs
before the input is eliminated. According to the second layer’s inputs:

(1w2)Ta1 =
[
0.9 0.45

][0.2
0.8

]
= 0.54 (16)

(2w2)Ta1 =
[
0.45 0.9

][0.2
0.8

]
= 0.81 (17)

As a result, the input to the second neuron is 1.5 times that of the first neuron. However,
after a quarter of a second, the second neuron’s output surpasses that of the first neuron by
a factor of 6.34.

The network subsequently develops and saves the pattern once the input is set to zero,
which is the second distinguishing feature of the response. Even after the input is stopped,
the output continues. Grossberg [11] refers to this tendency as reverberation. The network
can store the pattern and the on-center versus off-surround pattern of the connections,
which are determined by +W2 and −W2, thanks to nonlinear feedback. This leads to an
improvement.

It is taken into consideration that both levels of the Grossberg network use an on-
center/off-surround structure [14]. Other connection patterns are available for usage in
various applications. The directed receptive field has been suggested as a structure to
implement this technique [15]. The “on” (excitatory) connections for this structure originate
from one side of the field, whereas the “off” (inhibitory) connections originate from the
other side of the field.

When n2
i (t) is not active, it is feasible to disable learning in specific circumstances. The

equation in this case has the following training form:

dw2
i,j(t)

dt
= αn2

i (t)
{
−w2

i,j + n1
j (t)

}
, (18)

which is expressed in the form of a vector as

d
[

iw
2(t)

]
dt

= αn2
i (t)

{
−
[

iw
2(t)

]
+ n1(t)

}
(19)

where
[

iw
2(t)

]
.The elements of the ith row of W2 make up the vector.

Learning is only possible when the terms on the right-hand side of Equation (1) are
multiplied by the integer n2

i (t). This is an ongoing application of the principle of learning
from the beginning. The topology and structure of the data being converted are preserved
because of the learning law of adaptive weights. Similar pieces are converted along the
same trajectory, whereas distinct fragments are converted along various paths. In this
scenario, the network starts to consider the temporal context of the input. Then, it is
possible to automatically create dynamic picture standards [12,13].

3. H-Stability Results

The recurrent ANN performed well when used to handle temporal information;
however, the act of manually transforming the structure into recognizable data is where the
issue lies. A neural network that performs multilevel information processing must make
use of the robustness concept with regard to manifolds and robustness criteria in order to
successfully resolve this issue [16]. ANNs are useful for the study of temporal sequences in
which the presentation of speech, visual, and textual information is condensed. In these
networks, impulse events are realized at a given moment and can be derived as a result of
the current H-stability result. The major findings concerning the equilibrium state of the
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(20) model’s h stability are taken into consideration. The authored lemma and authored
theorem are found in [16–18].

Equation (20) was taken from [17], which presents the theoretical model mentioned in
Theorem 1 from the same paper.

ẋi(t) = −ai(xi(t))

[
bi(xi(t))−

m

∑
j=1

cij f j(yj(t))

−
m

∑
j=1

dijgj(yj(t− σj(t)))− Ii

]
, t 6= τk(x(t), y(t)),

ẏj(t) = −âj(yj(t))

[
b̂i(xi(t))

n

∑
j=1

pij f̂ j(xi(t))

−
n

∑
i=1

qij ĝj(xi(t− σ̂j(t)))− Jj

]
, t 6= τk(x(t), y(t)),

(xi(t+), yj(t+))T = (xi(t) + Pik(xi(t), yj(t) + Qjk(yj)))
T ,

t 6= τk(x(t), y(t)),

(20)

Theorem 1. Let us assume that:

1. There exists a positive number (µ), and

min1≤i≤n

(
aiBi − aj

m

∑
j=1
|pij|L̂i|

)
+ min1≤j≤m

(
âj B̂j − âj

n

∑
i=1
|cij|Lj|

)

−
(

max1≤j≤maj

n

∑
i=1
|dij|Mj + max1≤i≤n âi

m

∑
j=1
|qij|M̂i

)
≥ µ;

(21)

2. The functions Pik and Qjk are such that

Pik(xi(tk)) = −γik(xi(tk)− x∗i ), Qjk(yj(tk)) = −µjk(yj(tk)− y∗j ),

where 0 < γik < 2, 0 < µjk < 2, i = 1, 2, . . . , n, j = 1, 2, . . . , m, k = 1, 2, . . .;
3. Such a function exists (h(t, z)), where the following inequalities hold [19–21]:

‖h(t, z)‖ ≤ ‖z‖ < Λ(H)‖h(t, z)‖, (t, z) ∈ [t0, ∞)×Rn+m,

where Λ(H) ≥ 1 exists for each 0 < H ≤ ∞.
When this happens, the equilibrium (z∗) of a pulsed CGNN with bidirectional associative
memory and a delay of (20) is globally exponentially stable with regard to the function
h [17,22,23].

The Lyapunov function is defined as: [23,24]

V(t, z̃(t)) = ‖z̃‖ =
n

∑
i=1
|x̃i(t)|+

m

∑
j=1
|ỹj(t)|.

LetM =M(ψ0) = Λ(H) sup−v≤ζ≤0‖h(t
+
0 , ψ0(ζ)− z∗)‖. Then,

‖h(t, z(t, t0, ψ0)− z∗)‖ ≤ M exp(−µ(t− t0)), t ≥ t0,

where it is known thatM≥ 0 andM = 0 only for h(t+0 , ψ0(ζ)− z∗) = 0, ζ ∈ [−v, 0]. The
last estimate concludes the global exponential stability of the equilibrium state (z∗) of (20)
with respect to the function (h) from [17].
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Associative reproduction and dynamic information generation make up the neural
network technology for processing unstructured data from various modalities that are
being presented. It is based on neural elements in a steady state. Such associative memory
data consist of a collection of pieces resembling neurons that are connected in parallel,
share an input and an output, and differ from one another in the order of the signals of the
synaptic connections on a generalized dendrite. The links each weigh one pound.

A sequence along a trajectory in a multidimensional signal space represents the
changed information [21,24,25,25].

4. Algorithms of a Stability Model in Cohen–Grossberg-Type Neural Networks

The software implementation of the mathematical model was developed in C pro-
gramming language. We used OpenMPI technology [26] on a cluster of eight machines, each
equipped with four Intel® Xeon® [27] processors.

A neural network based on the generalized CGNN model was used for the software
implementation. The implemented model has the following form [28]:

xi(t)
dt

= −ai(xi(t))

[
bi(xi(t))−

2

∑
j=1

cji f j(yj(t))

−
2

∑
j=1

djigj(yj(t− σj(t)))− Ii

]
, t 6= τk(x(t), y(t)),

yj(t)
dt

= −âj(yj(t))

[
b̂j(yj(t))−

2

∑
j=1

pij f̂i(xi(t))

−
2

∑
i=1

qij ĝj(xi(t− σ̂i(t)))− Jj

]
, t 6= τk(x(t), y(t)),

(22)

with impulse disturbances of the following type:

x(t+)− x(t) =
(
−0.5 + 1

3k 0
0 −0.5 + 1

3k

)
x(t), t = τk(x(t), y(t)), k = 1, 2, . . . ,

y(t+)− y(t) =
(
−0.5 + 1

4k 0
0 −0.5 + 1

4k

)
y(t), t = τk(x(t), y(t)), k = 1, 2, . . . ,

(23)

where t > 0,

x(t) =
(

x1(t)
x2(t)

)
, y(t) =

(
y1(t)
y2(t)

)
, I1 = I2 = J1 = J2 = 0.5,

f j(yj) = gj(yj) =
|yj + 0.5| − |yj − 0.5|

1.5
,

f̂i(xi) = ĝi(xi) =
|xi + 0.5| − |xi − 0.5|

1.5
,

0 ≤ σj(t) ≤ 1, 0 ≤ σ̂i(t) ≤ 1,

ai(xi) = âj(yj) = 1.5,

b1(xi) = 1.5xi, b2(xi) = 2.5xi,

b̂1 = b̂2 = 1.5yj, i = 1, 2, j = 1, 2

τk(x, y) = |x|+ |y|+ k + 1, k = 1, 2, . . . .

(24)

There are fixed values for the arrays (C, D, P, Q) only in the procedural implementation,
as presented in (25). In the implementations using a parallel technique, the initial values of
the arrays are set with the minimum value passed as a parameter to the program [26,29].
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C2×2 =

(
c11 c12
c21 c22

)
=

(
1 −0.5

0.5 0.6

)
D2×2 =

(
d11 d12
d21 d22

)
=

(
0.4 −0.3
0.3 0.5

)
P2×2 =

(
p11 p12
p21 p22

)
=

(
0.7 −0.9
0.9 1

)
Q2×2 =

(
q11 q12
q21 q22

)
=

(
0.3 0.3
−0.2 0.5

)
(25)

All assumptions in Theorem 1 are assumed to be satisfied; therefore, hypotheses 1 to 5
are satisfied [18,19,24]. We set the corresponding constants as follows:

L1 = L2 = 1, M1 = M2 = 1, L̂1 = L̂2 = 1, M̂1 = M̂2 = 1,

ai = ai = 1, âi = âi = 1, B1 = 2, B2 = 3, B̂1 = B̂2 = 2.

A stable point is sought such that there exists a positive number (µ) that satisfies
Equation (21). For each value of the four arrays (C, D, P, Q), a cyclic calculation is performed
for the value of µ, as well as a check for the fulfillment of Equation (21).

5. Implementation

All input parameters are entered and saved in a structure for faster access. A link is
made to records in different files, depending on the obtained result. All calculated values
for the searched function are saved in a common file [25,30]. Only obtained values are
stored in a separate file, where the system is stable according to the theorem, i.e., the
obtained results are for µ > 0. The algorithm used for validation of the stability point is
presented in Figure 1.

Figure 1. Algorithm for validation of the stability point.

In a third separate file, the maximum values of the increasing stability function are
recorded, together with the corresponding values for the given arrays. For this purpose, at
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the time of calculations, the last calculated highest value of µ is kept in a structure and com-
pared with the current calculated value. A higher value is recorded and saved as the next
reference value to check. Graphically summarized data are presented in Figures 2 and 3.

Figure 2. Positive µ values for C .

Figure 3. Positive µ values for a D array .

Based on the obtained results, we built an ANN with sixteen input parameters and
sixty-four neurons in the hidden layer. Supplied values for the parameters were determined
according to Equation (25). The stability results are shown in Figure 4. The blue and red
lines represent the response of the first and second layer of the neural network.

The example in Figure 4 explains how impulsive perturbations can be used to influence
the stability behavior of CGNNs and demonstrates the usefulness of the theoretical findings
that have been proposed. The blue and red colors represent the responses of the first and
second layers of the neural network for the period of 8π. After π period, we can see that
the neural network stabilizes.
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Figure 4. Stability result for x1 and x2.

6. Conclusions

Based on an analysis of existing intelligent systems, we suggest the use an ANN
of the Cohen–Grossberg type to model a sustainable processing of any information in a
multidimensional space and a multilevel time structure using dynamic networks with
neuro-like elements and a sustainable signal amount. Different modalities using a homo-
geneous representation of information for a neural network allow for easily integrated
information at all levels of the decision-making process. The qualitative properties and
global exponential robustness of the solutions with respect to the manifold, as defined by a
function for the bidirectional associative memory neural network with time-varying delays,
were investigated. A procedural implementation was applied to demonstrate the validity
of the obtained criteria for the h stability of the equilibrium state of the model. The software
implementation of the mathematical model was developed in C language. The results were
examined through a representative sample, since the volume of data was large. Values that
meet the requirements of the H-stability theorem, namely positive values of µ, were used,
which is a mechanism to account for the statistical properties of the information, along with
a nonlinear transformation, and recovery was allowed. Changes in input parameters for
the model with all network training were considered to find a stable point. The detailed
constraints are discussed in [17] and specified in Section 4. Using the dictionary of elements
of the internal structure of the information sequence, an ANN including a dictionary was
formed. In future work, we will explore multimodality synchronization by including video
and audio data.
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