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1. Introduction

Optimization theory is widely used in concrete problems coming from decision theory,
game theory, economics, data classification, production inventory, and portfolio selection.
Since data in real-life problems are obtained, most of the time, by measurement or estima-
tion, errors are bound to occur. But, the accumulation of errors may imply the computation
results contradict the original problem. To overcome this shortcoming, the use of interval
analysis, fuzzy numbers, and the robust technique to represent data has become a popular
research direction in recent years.

The fractional optimization problem means to optimize the ratio of two objective
(cost) functions (functionals). However, Dinkelbach [1] and Jagannathan [2] formulated a
parametric technique to study a fractional optimization problem by converting it into an
equivalent non-fractional optimization problem. Over time, many researchers used this
technique to investigate various classes of fractional optimization problems. In this direc-
tion, we mention the works of Antczak and Pitea [3], Mititelu [4], Mititelu and Treanţă [5],
Treanţă and Mititelu [6], and Antczak [7]. Guo et al. [8,9] proposed symmetric gH-derivative
and its applications to dual interval-valued optimization problems. For other connected
ideas on this topic, interested readers are directed to Nahak [10], Patel [11], Kim and
Kim [12–14], and Manesh et al. [15] and references therein.

Uncertain optimization problems arise when we have a large volume of data, old
sources, sample disparity, inadequate information, and other factors that lead to data uncer-
tainty. Therefore, the robust technique has an important role in studying the optimization
problem governed by data uncertainty. Many researchers studied different optimization
problems, including data uncertainty, and tried to formulate new and efficient results (see,
for instance, Beck and Tal [16], Jeyakumar et al. [17], Treanţă [18–20], Baranwal et al. [21],
Jayswal et al. [22], Preeti et al. [23], and references therein).

In this paper, we state a constrained fractional optimization problem involving data
uncertainty in the objective functional generated by curvilinear-type integral. Namely,
by considering the parametric technique, we present the robust Karush-Kuhn-Tucker
necessary optimality conditions and establish their sufficiency by using the convexity
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and concavity assumptions of the involved functionals. The present paper has several
principal credits. We mention the most important: (i) defining, by using the parametric
approach, of the notions of robust optimal solution for the case of curvilinear integral-
type functionals, (ii) formulating novel proofs for the main results, and (iii) providing a
framework determined by infinite dimensional normed spaces of functions and curvilinear
integral-type functionals. These elements are original in the field of robust fractional
optimization problems.

The paper continues as follows. In Section 2, we state the basic notations and concepts
in order to formulate and prove the main results. We introduce the fractional optimization
problem involving data uncertainty in the objective functional, the associated non-fractional
optimization problem, and the corresponding robust counterparts. In Section 3, under suit-
able convexity and concavity assumptions, we establish the robust optimality (necessary
and sufficient) conditions for the considered problem. Finally, Section 4 provides the
conclusions and future research direction associated with this paper.

2. Notations, Assumptions and Problem Formulation

Next, we are considering some basic notations and assumptions in order to formulate
and prove the new main theorems derived in the present study. In this regard, we start
with the standard finite-dimensional Euclidean spaces Rm, Rn and Rl , with t = (tγ),
γ = 1, m, p = (pι), ι = 1, n, and y = (yj), j = 1, l as arbitrary points of Rm, Rn and
Rl , respectively. Let K = Kt0,t1 ⊂ Rm be a hyper-parallelepiped, having the diagonally
opposite corners t0 = (tγ

0 ) and t1 = (tγ
1 ), γ = 1, m, and let C ⊂ K be a curve (piecewise

differentiable), joining the points t0 = (tγ
0 ) and t1 = (tγ

1 ) in Rm. Define

P =
{

p : K 7→ Rn| p = piecewise smooth function
}

,

Y =
{

y : K 7→ Rl | y = piecewise continuous function
}

as the space of piecewise smooth functions (state variables), and the space of piecewise
continuous functions (control variables), respectively, and assume the product space P×Y
is endowed with the norm induced by the following inner product

〈(p, y), (b, z)〉 =
∫
C

[
p(t) · b(t) + y(t) · z(t)

]
dtπ

=
∫
C

[ n

∑
ι=1

pι(t)bι(t) +
l

∑
j=1

yj(t)zj(t)
]
dtπ , ∀(p, y), (b, z) ∈ P×Y.

Using the above mathematical notations and elements, by denoting pγ(t) =
∂p
∂tγ

(t), we
formulate the following first-order PDE&PDI-constrained fractional optimization problem,
with data uncertainty in the objective functional, as follows

(P) min
(p(·),y(·))

∫
C

∆π(t, p(t), pγ(t), y(t), f )dtπ∫
C

Θπ(t, p(t), pγ(t), y(t), g)dtπ

subject to

Aβ(t, p(t), pγ(t), y(t)) ≤ 0, β = 1, q, t ∈ K,

Bι
γ(t, p(t), pγ(t), y(t)) :=

∂p
∂tγ

(t)−Qι
γ(t, p(t), y(t)) = 0,

ι = 1, n, γ = 1, m, t ∈ K,

p(t0) = p0 = given, p(t1) = p1 = given,
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where f and g are some uncertainty parameters in the convex compact sets F ⊂ R and
G ⊂ R, respectively, and ∆ = (∆π) : K× P2×Y× F 7→ Rm, Θ = (Θπ) : K× P2×Y×G 7→
Rm \ {0}, Aβ : K × P2 × Y 7→ R, β = 1, q, Bι

γ : K × P2 × Y 7→ R, ι = 1, n, γ = 1, m, are
assumed to be continuously differentiable functionals.

Definition 1. The above functionals∫
C

∆π(t, p(t), pγ(t), y(t), f )dtπ

and ∫
C

Θπ(t, p(t), pγ(t), y(t), g)dtπ

are named path-independent if Dγ∆π = Dπ∆γ and DγΘπ = DπΘγ, for π 6= γ.

Assumption 1. By considering the above functionals∫
C

∆π(t, p(t), pγ(t), y(t), f )dtπ

and ∫
C

Θπ(t, p(t), pγ(t), y(t), g)dtπ

are path-independent, the following working hypothesis is assumed:

dL := Dγ

[
∂hπ

∂pγ
(p− p0)

]
dtπ

is a total exact differential, with L(t0) = L(t1), h ∈ {∆, Θ}.

The robust counterpart for (P), reducing the possible uncertainties in (P), is given as

(RP) min
(p(·),y(·))

∫
C

max
f∈F

∆π(t, p(t), pγ(t), y(t), f )dtπ

∫
C

min
g∈G

Θπ(t, p(t), pγ(t), y(t), g)dtπ

subject to

Aβ(t, p(t), pγ(t), y(t)) ≤ 0, β = 1, q, t ∈ K,

Bι
γ(t, p(t), pγ(t), y(t)) = 0, ι = 1, n, γ = 1, m, t ∈ K,

p(t0) = p0 = given, p(t1) = p1 = given,

where ∆ = (∆π), Θ = (Θπ), A = (Aβ) and B = (Bι
γ) are defined as in (P).

The set of all feasible solutions to (RP), which is the same as the set of all feasible
solutions to (P), is defined as

D = {(p, y) ∈ P×Y | Aβ(t, p(t), pγ(t), y(t)) ≤ 0, Bι
γ(t, p(t), pγ(t), y(t)) = 0,

p(t0) = p0 = given, p(t1) = p1 = given, t ∈ K}.

For (p, y) ∈ D, we assume that ∆ ≥ 0 and Θ > 0. Further, by considering the positive
real number

R0
f ,g = min

(p(·),y(·))

∫
C

max
f∈F

∆π(t, p(t), pγ(t), y(t), f )dtπ

∫
C

min
g∈G

Θπ(t, p(t), pγ(t), y(t), g)dtπ
=

∫
C

max
f∈F

∆π(t, p0(t), p0
γ(t), y0(t), f )dtπ

∫
C

min
g∈G

Θπ(t, p0(t), p0
γ(t), y0(t), g)dtπ

,
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on the line of Jagannathan [2], Dinkelbach [1], and following Mititelu and Treanţă [5], we
build a non-fractional optimization problem associated with (P), as

(NP) min
(p(·),y(·))

{ ∫
C

∆π(t, p(t), pγ(t), y(t), f )dtπ − R0
f ,g

∫
C

Θπ(t, p(t), pγ(t), y(t), g)dtπ
}

subject to

Aβ(t, p(t), pγ(t), y(t)) ≤ 0, β = 1, q, t ∈ K,

Bι
γ(t, p(t), pγ(t), y(t)) = 0, ι = 1, n, γ = 1, m, t ∈ K,

p(t0) = p0 = given, p(t1) = p1 = given.

The robust counterpart for (NP) is given by

(RNP) min
(p(·),y(·))

{ ∫
C

max
f∈F

∆π(t, p(t), pγ(t), y(t), f )dtπ

− R0
f ,g

∫
C

min
g∈G

Θπ(t, p(t), pγ(t), y(t), g)dtπ
}

subject to

Aβ(t, p(t), pγ(t), y(t)) ≤ 0, β = 1, q, t ∈ K,

Bι
γ(t, p(t), pγ(t), y(t)) = 0, ι = 1, n, γ = 1, m, t ∈ K,

p(t0) = p0 = given, p(t1) = p1 = given.

Next, for a simple presentation, we will use the following abbreviations throughout the
paper: p = p(t), y = y(t), p = p(t), y = y(t), p̂ = p̂(t), ŷ = ŷ(t), ζ = (t, p(t), pγ(t), y(t)),
ζ = (t, p(t), pγ(t), y(t)), ζ̂ = (t, p̂(t), p̂γ(t), ŷ(t)).

Definition 2. A point (p, y) ∈ D is said to be a robust optimal solution to (P), if∫
C

max
f∈F

∆π(ζ, f )dtπ

∫
C

min
g∈G

Θπ(ζ, g)dtπ
≤

∫
C

max
f∈F

∆π(ζ, f )dtπ

∫
C

min
g∈G

Θπ(ζ, g)dtπ
,

for all (p, y) ∈ D.

Definition 3. A point (p, y) ∈ D is said to be a robust optimal solution to (NP), if∫
C

max
f∈F

∆π(ζ, f )dtπ − R−f ,g

∫
C

min
g∈G

Θπ(ζ, g)dtπ

≤
∫
C

max
f∈F

∆π(ζ, f )dtπ − R−f ,g

∫
C

min
g∈G

Θπ(ζ, g)dtπ ,

for all (p, y) ∈ D.

Remark 1. We can observe that D is the set of feasible solutions to (NP) (and, also, for (RNP)).

Remark 2. The robust optimal solutions to (P) (or (NP)) are also robust optimal solutions to (RP)
(or (RNP)).

Next, in order to prove the principal results of this paper, we present the definition of
convex and concave curvilinear integral functionals (see, for instance, Treanţă [24]).
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Definition 4. A curvilinear integral functional
∫
C

∆π(ζ, f )dtπ is said to be convex at (p, y) ∈
P×Y if the following inequality∫

C
∆π(ζ, f )dtπ −

∫
C

∆π(ζ, f )dtπ ≥
∫
C

{
(p− p)

∂∆π

∂p
(ζ, f ) + (y− y)

∂∆π

∂y
(ζ, f )

}
dtπ

+
∫
C

{
(pγ − pγ)

∂∆π

∂pγ
(ζ, f )

}
dtπ

holds, for all (p, y) ∈ P×Y.

Definition 5. A curvilinear integral functional
∫
C

∆π(ζ, f )dtπ is said to be concave at (p, y) ∈
P×Y if the following inequality∫

C
∆π(ζ, f )dtπ −

∫
C

∆π(ζ, f )dtπ ≤
∫
C

{
(p− p)

∂∆π

∂p
(ζ, f ) + (y− y)

∂∆π

∂y
(ζ, f )

}
dtπ

+
∫
C

{
(pγ − pγ)

∂∆π

∂pγ
(ζ, f )

}
dtπ

holds, for all (p, y) ∈ P×Y.

3. Robust Optimality Conditions

In this part of the present study, under suitable hypotheses, we establish the robust
necessary and sufficient optimality conditions associated with the fractional optimization
problem (P).

Now, we provide an auxiliary result that will be used to establish the robust sufficient
optimality conditions for (P). More precisely, we present the equivalence between the
robust optimal solutions to (P) and (NP).

Proposition 1. If (p, y) ∈ D is a robust optimal solution to (P), then there exists the positive real
number R−f ,g such that (p, y) ∈ D is a robust optimal solution to (NP). Moreover, if (p, y) ∈ D is

a robust optimal solution to (NP) and R−f ,g =

∫
C

max
f∈F

∆π(ζ, f )dtπ∫
C

min
g∈G

Θπ(ζ, g)dtπ
, then (p, y) ∈ D is a robust

optimal solution to (P).

Proof. By reductio ad absurdum, let us assume that (p, y) ∈ D is a robust optimal solution to
(P), but it is not a robust optimal solution to (NP). In consequence, there exists (p, y) ∈ D
such that∫

C
max
f∈F

∆π(ζ, f )dtπ − R−f ,g

∫
C

min
g∈G

Θπ(ζ, g)dtπ

<
∫
C

max
f∈F

∆π(ζ, f )dtπ − R−f ,g

∫
C

min
g∈G

Θπ(ζ, g)dtπ .
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Now, if we consider R−f ,g =

∫
C

max
f∈F

∆π(ζ, f )dtπ

∫
C

min
g∈G

Θπ(ζ, g)dtπ
, we get

∫
C

max
f∈F

∆π(ζ, f )dtπ −

∫
C

max
f∈F

∆π(ζ, f )dtπ

∫
C

min
g∈G

Θπ(ζ, g)dtπ

∫
C

min
g∈G

Θπ(ζ, g)dtπ

<
∫
C

max
f∈F

∆π(ζ, f )dtπ −

∫
C

max
f∈F

∆π(ζ, f )dtπ

∫
C

min
g∈G

Θπ(ζ, g)dtπ

∫
C

min
g∈G

Θπ(ζ, g)dtπ ,

which is equivalent with∫
C

max
f∈F

∆π(ζ, f )dtπ

∫
C

min
g∈G

Θπ(ζ, g)dtπ
<

∫
C

max
f∈F

∆π(ζ, f )dtπ

∫
C

min
g∈G

Θπ(ζ, g)dtπ
,

and this contradicts (p, y) is a robust optimal solution to (P).
Conversely, let (p, y) ∈ D be a robust optimal solution to (NP), with

R−f ,g =

∫
C

max
f∈F

∆π(ζ, f )dtπ

∫
C

min
g∈G

Θπ(ζ, g)dtπ
,

and suppose that (p, y) ∈ D is not a robust optimal solution to (P). Thus, there exists
(p, y) ∈ D such that ∫

C
max
f∈F

∆π(ζ, f )dtπ

∫
C

min
g∈G

Θπ(ζ, g)dtπ
<

∫
C

max
f∈F

∆π(ζ, f )dtπ

∫
C

min
g∈G

Θπ(ζ, g)dtπ
,

and, by taking into account the definition of R−f ,g, the above inequality becomes

∫
C

max
f∈F

∆π(ζ, f )dtπ − R−f ,g

∫
C

min
g∈G

Θπ(ζ, g)dtπ < 0.

or, equivalently,∫
C

max
f∈F

∆π(ζ, f )dtπ − R−f ,g

∫
C

min
g∈G

Θπ(ζ, g)dtπ

<
∫
C

max
f∈F

∆π(ζ, f )dtπ − R−f ,g

∫
C

min
g∈G

Θπ(ζ, g)dtπ ,

which contradics that (p, y) ∈ D is a robust optimal solution to (NP), and the proof is
complete.

The next theorem formulates the robust necessary conditions of optimality for (P).

Theorem 1. Consider ( p̄, ȳ) ∈ D is a robust optimal solution for the robust fractional optimization
problem (P) and max f∈F ∆π(ζ, f ) = ∆π(ζ, f̄ ), ming∈G Θπ(ζ, g) = Θπ(ζ, ḡ). Then, there exist
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θ̄ ∈ R and the piecewise differentiable functions µ̄ = (µ̄β(t)) ∈ Rq
+, λ̄ = (λ̄ι

γ(t)) ∈ Rnm,
satisfying

θ̄
[
∆π,p(ζ̄, f̄ )− R−f ,gΘπ,p(ζ̄, ḡ)

]
+ µ̄T Ap(ζ̄) + λ̄T Bp(ζ̄) (1)

− ∂

∂tγ

{
θ̄
[
∆π,pγ(ζ̄, f̄ )− R−f ,gΘπ,pγ(ζ̄, ḡ)

]
+ µ̄T Apγ(ζ̄) + λ̄T Bpγ(ζ̄)

}
= 0,

θ̄
[
∆π,y(ζ̄, f̄ )− R−f ,gΘπ,y(ζ̄, ḡ)

]
+ µ̄T Ay(ζ̄) + λ̄T By(ζ̄) = 0, (2)

µ̄T A(ζ̄) = 0, µ̄β ≥ 0, β = 1, q, (3)

θ̄ ≥ 0, (4)

for t ∈ K, π = 1, m, except at points of discontinuity.

Proof. Let us consider some variations for p̄(t) and ȳ(t), respectively, as follows:
p̄(t) + ε1h(t) and ȳ(t) + ε2m(t), where ε1, ε2 are the variational parameters. Therefore,
we convert the involved integral functionals in functions depending on (ε1, ε2), defined as

F (ε1, ε2) =
∫
C

[
∆π(t, p̄(t) + ε1h(t), p̄γ(t) + ε1hγ(t),

ȳ(t) + ε2m(t), f̄ )− R−f ,gΘπ(t, p̄(t) + ε1h(t), p̄γ(t) + ε1hγ(t), ȳ(t) + ε2m(t), ḡ)
]
dtπ ,

Z(ε1, ε2) =
∫
C

A(t, p̄(t) + ε1h(t), p̄γ(t) + ε1hγ(t),

ȳ(t) + ε2m(t))dtπ ,

and
J (ε1, ε2) =

∫
C

B(t, p̄(t) + ε1h(t), p̄γ(t) + ε1hγ(t),

ȳ(t) + ε2m(t))dtπ .

By hypothesis, the pair ( p̄, ȳ) is assumed to be a robust optimal solution to (P). Thus,
the point (0, 0) becomes an optimal solution to the following robust optimization problem

min
ε1,ε2
F (ε1, ε2)

subject to
Z(ε1, ε2) 5 0, J (ε1, ε2) = 0

h(t0) = h(t1) = m(t0) = m(t1) = 0.

In consequence, there exist the Lagrange multipliers θ̄ ∈ R, µ̄ = (µ̄β(t)) ∈ Rq
+,

λ̄ = (λ̄ι
γ(t)) ∈ Rnm, fulfilling the Fritz John conditions

θ̄∇F (0, 0) + µ̄T∇Z(0, 0) + λ̄T∇J (0, 0) = 0, (∗)

µ̄TZ(0, 0) = 0, µ̄ = 0,

θ̄ ≥ 0,

(see ∇∆(x1, x2) as the gradient of ∆ at (x1, x2)). The first relation fomulated in (∗) is
rewritten as ∫

C

[
θ̄
(∂∆π

∂ p̄ι
− R−f ,g

∂Θπ

∂ p̄ι

)
hι + θ̄

(∂∆π

∂ p̄ι
γ
− R−f ,g

∂Θπ

∂ p̄ι
γ

)
hι

γ

+µ̄T ∂A
∂ p̄ι

hι + µ̄T ∂A
∂ p̄ι

γ
hι

γ
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+λ̄T ∂B
∂ p̄ι

hι + λ̄T ∂B
∂ p̄ι

γ
hι

γ

]
dtπ = 0,

∫
C

[
θ̄
(∂∆π

∂ȳj − R−f ,g
∂Θπ

∂ȳj

)
mj + µ̄T ∂A

∂ȳj m
j + λ̄T ∂B

∂ȳj m
j
]

dtπ = 0,

or, in an equivalent manner, as follows∫
C

[
θ̄
(∂∆π

∂ p̄ι
− R−f ,g

∂Θπ

∂ p̄ι

)
− ∂

∂tγ
θ̄
(∂∆π

∂ p̄ι
γ
− R−f ,g

∂Θπ

∂ p̄ι
γ

)

+µ̄T ∂A
∂ p̄ι
− ∂

∂tγ
µ̄T ∂A

∂ p̄ι
γ

+λ̄T ∂B
∂ p̄ι
− ∂

∂tγ
λ̄T ∂B

∂ p̄ι
γ

]
hιdtπ = 0,

∫
C

[
θ̄
(∂∆π

∂ȳj − R−f ,g
∂Θπ

∂ȳj

)
+ µ̄T ∂A

∂ȳj + λ̄T ∂B
∂ȳj

]
mjdtπ = 0,

where we used the method of integration by parts, the boundary conditions, and the
divergence formula.

In the following, taking into account one of the fundamental lemmas from the theory
of calculus of variations, we get

θ̄
(∂∆π

∂ p̄ι
− R−f ,g

∂Θπ

∂ p̄ι

)
− ∂

∂tγ
θ̄
(∂∆π

∂ p̄ι
γ
− R−f ,g

∂Θπ

∂ p̄ι
γ

)

+µ̄T ∂A
∂ p̄ι
− ∂

∂tγ
µ̄T ∂A

∂ p̄ι
γ

+λ̄T ∂B
∂ p̄ι
− ∂

∂tγ
λ̄T ∂B

∂ p̄ι
γ
= 0, ι = 1, n,

θ̄
(∂∆π

∂ȳj − R−f ,g
∂Θπ

∂ȳj

)
+ µ̄T ∂A

∂ȳj + λ̄T ∂B
∂ȳj = 0, j = 1, l,

or, in an equivalent way,

θ̄
[
∆π,p(ζ̄, f̄ )− R−f ,gΘπ,p(ζ̄, ḡ)

]
+ µ̄T Ap(ζ̄) + λ̄T Bp(ζ̄)

− ∂

∂tγ
{θ̄
[
∆π,pγ(ζ̄, f̄ )− R−f ,gΘπ,pγ(ζ̄, ḡ)

]
+ µ̄T Apγ(ζ̄) + λ̄T Bpγ(ζ̄)} = 0,

θ̄
[
∆π,y(ζ̄, f̄ )− R−f ,gΘπ,y(ζ̄, ḡ)

]
+ µ̄T Ay(ζ̄) + λ̄T By(ζ̄) = 0.

Finally, the second part formulated in (∗),

µ̄TZ(0, 0) = 0, µ̄ = 0,

θ̄ ≥ 0

provides us
µ̄T A(ζ̄) = 0, µ̄ = 0,

θ̄ ≥ 0

and this completes the proof.

Remark 3. The relations (1)–(4) in Theorem 1 are called robust necessary optimality conditions
for the robust fractional optimization problem (P).
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Definition 6. The feasible solution ( p̄, ȳ) ∈ D is said to be a normal robust optimal solution to
(P) if θ̄ > 0 (see Theorem 1).

Further, we state a result on the robust sufficient conditions associated with the
considered fractional optimization problem.

Theorem 2. If max f∈F ∆π(ζ, f ) = ∆π(ζ, f ), ming∈G Θπ(ζ, g) = Θπ(ζ, g), the robust necessary

optimality conditions (1)–(4) are fulfilled, and the involved integral functionals
∫
C

θ̄∆π(ζ, f )dtπ ,∫
C

µT A(ζ)dtπ and
∫
C

λ
T B(ζ)dtπ are convex at (p, y) ∈ D, and

∫
C

θ̄Θπ(ζ, g)dtπ is concave at

(p, y) ∈ D, then the pair (p, y) ∈ D is a robust optimal solution to (P).

Proof. By contrary, let us suppose the pair (p, y) ∈ D is not a robust optimal solution to
(P). By considering Proposition 1, it results that the pair (p, y) ∈ D is not a robust optimal
solution to (NP), as well. Thus, there exists (p, y) ∈ D satisfying∫

C
max
f∈F

∆π(ζ, f )dtπ − R−f ,g

∫
C

min
g∈G

Θπ(ζ, g)dtπ

<
∫
C

max
f∈F

∆π(ζ, f )dtπ − R−f ,g

∫
C

min
g∈G

Θπ(ζ, g)dtπ ,

and by taking max f∈F ∆π(ζ, f ) = ∆π(ζ, f ) and ming∈G Θπ(ζ, g) = Θπ(ζ, g), we obtain∫
C

∆π(ζ, f )dtπ − R−f ,g

∫
C

Θπ(ζ, g)dtπ <
∫
C

∆π(ζ, f )dtπ − R−f ,g

∫
C

Θπ(ζ, g)dtπ . (5)

By hypothesis, the integral functional
∫
C

θ̄∆π(ζ, f )dtπ is convex at (p, y) ∈ D, and the

integral functional
∫
C

θ̄Θπ(ζ, g)dtπ is concave at (p, y) ∈ D. Therefore, it follows∫
C

θ̄∆π(ζ, f )dtπ −
∫
C

θ̄∆π(ζ, f )dtπ ≥
∫
C

{
(p− p)θ̄

∂∆π

∂p
(ζ, f ) + (y− y)θ̄

∂∆π

∂y
(ζ, f )

}
dtπ (6)

+
∫
C

{
(pγ − pγ)θ̄

∂∆π

∂pγ
(ζ, f )

}
dtπ

and∫
C

θ̄Θπ(ζ, g)dtπ −
∫
C

θ̄Θπ(ζ, g)dtπ ≤
∫
C

{
(p− p)θ̄

∂Θπ

∂p
(ζ, g) + (y− y)θ̄

∂Θπ

∂y
(ζ, g)

}
dtπ (7)

+
∫
C

{
(pγ − pγ)θ̄

∂Θπ

∂pγ
(ζ, g)

}
dtπ

Now, on multiplying the inequality (7) with R−f ,g, and subtracting it from the inequal-
ity (6), it results∫

C
θ̄∆π(ζ, f )dtπ − R−f ,g

∫
C

θ̄Θπ(ζ, g)dtπ −
∫
C

θ̄∆π(ζ, f )dtπ + R−f ,g

∫
C

θ̄Θπ(ζ, g)}dtπ

≥
∫
C
(p− p)θ̄

∂∆π

∂p
(ζ, f )dtπ − R−f ,g

∫
C
(p− p)θ̄

∂Θπ

∂p
(ζ, g)dtπ

+
∫
C
(y− y)θ̄

∂∆π

∂y
(ζ, f )dtπ − R−f ,g

∫
C
(y− y)θ̄

∂Θπ

∂y
(ζ, g)dtπ

+
∫
C
(pγ − pγ)θ̄

∂∆π

∂pγ
(ζ, f )dtπ − R−f ,g

∫
C
(pγ − pγ)θ̄

∂Θπ

∂pγ
(ζ, g)dtπ ,
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and, by using relation (5), we get∫
C
(p− p)θ̄

∂∆π

∂p
(ζ, f )dtπ − R−f ,g

∫
C
(p− p)θ̄

∂Θπ

∂p
(ζ, g)dtπ

+
∫
C
(y− y)θ̄

∂∆π

∂y
(ζ, f )dtπ − R−f ,g

∫
C
(y− y)θ̄

∂Θπ

∂y
(ζ, g)dtπ

+
∫
C
(pγ − pγ)θ̄

∂∆π

∂pγ
(ζ, f )dtπ − R−f ,g

∫
C
(pγ − pγ)θ̄

∂Θπ

∂pγ
(ζ, g)dtπ < 0. (8)

Also, by using the assumptions formulated in the theorem, since the integral function-

als
∫
C

µT A(ζ)dtπ and
∫
C

λ
T B(ζ)dtπ are convex at (p, y) ∈ D, we obtain

∫
C

{
µT A(ζ)− µT A(ζ̄)

}
dtπ ≥

∫
C
(p− p)µT ∂A

∂p
(ζ)dtπ +

∫
C
(y− y)µT ∂A

∂y
(ζ)dtπ

+
∫
C
(pγ − pγ)µ

T ∂A
∂pγ

(ζ)dtπ

and ∫
C

{
λ

T B(ζ)− λ
T B(ζ̄)

}
dtπ ≥

∫
C
(p− p)λT ∂B

∂p
(ζ)dtπ +

∫
C
(y− y)λT ∂B

∂y
(ζ)dtπ

+
∫
C
(pγ − pγ)λ

T ∂B
∂pγ

(ζ)dtπ .

Taking into account the feasibility of (p, y) for (P) and by using the relations (1)–(4),
we obtain ∫

C
(p− p)µT ∂A

∂p
(ζ)dtπ +

∫
C
(y− y)µT ∂A

∂y
(ζ)dtπ

+
∫
C
(pγ − pγ)µ

T ∂A
∂pγ

(ζ)dtπ ≤ 0 (9)

and ∫
C
(p− p)λT ∂B

∂p
(ζ)dtπ +

∫
C
(y− y)λT ∂B

∂y
(ζ)dtπ

+
∫
C
(pγ − pγ)λ

T ∂B
∂pγ

(ζ)dtπ ≤ 0. (10)

On adding the inequalities (8)–(10), we obtain∫
C
(p− p)θ̄

∂∆π

∂p
(ζ, f )dtπ − R−f ,g

∫
C
(p− p)θ̄

∂Θπ

∂p
(ζ, g)dtπ (11)

+
∫
C
(y− y)θ̄

∂∆π

∂y
(ζ, f )dtπ − R−f ,g

∫
C
(y− y)θ̄

∂Θπ

∂y
(ζ, g)dtπ

+
∫
C
(pγ − pγ)θ̄

∂∆π

∂pγ
(ζ, f )dtπ − R−f ,g

∫
C
(pγ − pγ)θ̄

∂Θπ

∂pγ
(ζ, g)dtπ

+
∫
C
(p− p)µT ∂A

∂p
(ζ)dtπ +

∫
C
(y− y)µT ∂A

∂y
(ζ)dtπ

+
∫
C
(pγ − pγ)µ

T ∂A
∂pγ

(ζ)dtπ ≤ 0
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+
∫
C
(p− p)λT ∂B

∂p
(ζ)dtπ +

∫
C
(y− y)λT ∂B

∂y
(ζ)dtπ

+
∫
C
(pγ − pγ)λ

T ∂B
∂pγ

(ζ)dtπ < 0.

On the other hand, after multiplying the robust necessary optimality conditions (1)
and (2) with the terms (p− p) and (y− y), and integrating them, by adding the resulting
equations, we get∫

C
(p− p)θ̄

∂∆π

∂p
(ζ, f )dtπ − R−f ,g

∫
C
(p− p)θ̄

∂Θπ

∂p
(ζ, g)dtπ

+
∫
C
(y− y)θ̄

∂∆π

∂y
(ζ, f )dtπ − R−f ,g

∫
C
(y− y)θ̄

∂Θπ

∂y
(ζ, g)dtπ

+
∫
C
(pγ − pγ)θ̄

∂∆π

∂pγ
(ζ, f )dtπ − R−f ,g

∫
C
(pγ − pγ)θ̄

∂Θπ

∂pγ
(ζ, g)dtπ

+
∫
C
(p− p)µT ∂A

∂p
(ζ)dtπ +

∫
C
(y− y)µT ∂A

∂y
(ζ)dtπ

+
∫
C
(pγ − pγ)µ

T ∂A
∂pγ

(ζ)dtπ ≤ 0

+
∫
C
(p− p)λT ∂B

∂p
(ζ)dtπ +

∫
C
(y− y)λT ∂B

∂y
(ζ)dtπ

+
∫
C
(pγ − pγ)λ

T ∂B
∂pγ

(ζ)dtπ = 0,

that contradicts the inequality (11) and the proof is complete.

Example 1. The following application illustrates the theoretical developments formulated in the
previous sections of this study. In this regard, we consider we are interested only in real-valued (that
is, n = l = 1) affine piecewise smooth control and state functions, F = G = [1, 2], and K ⊂ R2

(that is, m = 2) is a square fixed by the diagonally opposite corners t0 = (t1
0, t2

0) = (0, 0) and
t1 = (t2

1, t2
1) = ( 1

2 , 1
2 ) ∈ R2. Let us introduce the following fractional optimization problem with

data uncertainty in objective functional:

(P1) min
(p(·),y(·))

{ ∫
C

∆(ζ, f )dtπ∫
C

Θ(ζ, g)dtπ
=

∫
C
[y2 + f ]dtπ∫

C
[gpe2p+ 1

2 ]dtπ

}

subject to

A(ζ) = p2 + p− 2 ≤ 0

Nγ(ζ) =
∂p
∂tγ

+ 2y− 1 = 0, γ = 1, 2

p(0, 0) = 1, p
(

1
2

,
1
2

)
=

1
3

.

We can notice that the robust feasible solution set to (P1) is

D =
{
(p, y) ∈ P×Y : −2 ≤ p ≤ 1,

∂p
∂t1 =

∂p
∂t2 = 1− 2y, p(0, 0) = 1, p

(
1
2

,
1
2

)
=

1
3

}
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and, by direct computation (see Theorem 1), we find (p, y) =
(
− 2

3 (t
1 + t2) + 1, 5

6
)
∈ D, and at

t1 = t2 = 0 it satisfies the robust necessary optimality conditions (1)–(4) with R−f ,g = 169

36e
5
2

, the un-

certainty parameters f = 2, g = 1, and Lagrange multipliers θ = 1
2 ,

µ = 0, λ1 = λ2 = 5
24 . Further, it can also be easily verified that all the conditions of

Theorem 2 are satisfied, which ensure that (p, y) is a robust optimal solution to (P1).

4. Conclusions

In this paper, we have studied a class of fractional variational control problems in-
volving data uncertainty in the objective functional. Under the convexity and concavity
hypotheses of the involved functionals, we have established the associated robust Karush-
Kuhn-Tucker necessary and sufficient optimality conditions. Concretely, we have defined,
by using the parametric approach, the notions of a robust optimal solution for the case
of curvilinear integral-type functionals. Also, we have formulated novel proofs for the
main results, and we have provided a framework determined by infinite dimensional
normed spaces of functions and curvilinear integral-type functionals. To the best of the
authors’ knowledge, the results presented in this paper are new in the specialized literature.
In addition, as future research directions of this paper, the author mentions the presence
of data uncertainty in the constraints, the associated duality theory, and saddle-point
optimality criteria.
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