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Abstract: This paper proposes a new time-varying integer-valued autoregressive (TV-INAR) model
with a state vector following a logistic regression structure. Since the autoregressive coefficient in the
model is time-dependent, the Kalman-smoothed method is applicable. Some statistical properties of
the model are established. To estimate the parameters of the model, a two-step estimation method is
proposed. In the first step, the Kalman-smoothed estimation method, which is suitable for handling
time-dependent systems and nonstationary stochastic processes, is utilized to estimate the time-
varying parameters. In the second step, conditional least squares is used to estimate the parameter in
the error term. This proposed method allows estimating the parameters in the nonlinear model and
deriving the analytical solutions. The performance of the estimation method is evaluated through
simulation studies. The model is then validated using actual time series data.

Keywords: time-varying integer-valued autoregressive model; parameter estimation; Kalman-smoother;
logistic regression; conditional least squares
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1. Introduction

Time series models with an integer-valued structure are prevalent in fields such as
economics, insurance, medicine and crime. Recent reviews on count time series models
based on thinning operators, including modeling and numerous examples, can be found in
refs. [1–3]. The most classic one is the first-order integer-valued autoregressive INAR(1)
model introduced by ref. [4] and ref. [5] using the properties of binomial sparse operators
(ref. [6]). The class of INAR models is typically based on the assumption of observations
that follow a Poisson distribution, which facilitates subsequent computations due to the
equidispersion feature of the Poisson distribution (mean and variance being equal). Pa-
rameter estimation for these models is usually achieved by Yule–Walker, conditional least
squares and conditional maximum likelihood methods, as discussed in refs. [7–9], among
others. Recently, there has been a growing interest in research regarding the autoregressive
coefficients in these models. Generally, the autoregressive coefficients can be treated as ran-
dom variables, with rules such as a stationary process or specified mean and variance; see
refs. [10–12]. Unlike the above models, this paper proposes a time-varying integer-valued
autoregressive (TV-INAR) model in which the state equation is a nonstationary form.

In our work, the model is characterized by a state equation and time-varying param-
eters. The concept of state-space time series analysis was first introduced by ref. [13] in
the field of engineering. Over time, the term “state space” became entrenched in statistics
and econometrics, as the state-space model provides an effective method to deal with
a wide range of problems in time series analysis. Ref. [14] presented a comprehensive
treatment of the state-space approach to time series analysis. Recently, some progress
has been made on the use of state space in integer autoregressive and count time series
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models. Ref. [15] proposed a first-order random coefficient integer-valued autoregressive
model by introducing a Markov chain with a finite state space and derived some statistical
properties of the model in a random environment. Ref. [16] introduced a parameter-driven
state-space model to analyze integer-valued time series data. And, to accommodate the
features of overdispersion, zero-inflation and temporal correlation of count time series,
ref. [17] proposed a flexible class of dynamic models in the state-space framework. As
noted in ref. [18], the popularity of these models stems in large part from the development
of the Kalman recursion, proving a quick updating scheme for predicting, filtering and
smoothing a time series. The traditional understanding of Kalman filtering can be found
in the works of refs. [14,19,20]. Nevertheless, most of this research has focused on the use
of continuous time series models in an economic context, such as the analysis of stocks,
trade and currency. For example, ref. [21] proposed a class of time-varying parameter
autoregressive models and proved the equivalence of the Kalman-smoothed estimate and
generalized least squares estimate. Following this lead, [22] developed a trade growth
relationship model with time-varying parameters and estimated the transition of changing
parameters with a Kalman filter. Both of them all involved cases of Gaussian and linear
parameters. Ref. [14] attested that the results obtained by Kalman smoothing are equivalent
when the model is non-Gaussian or nonlinear. Therefore, integer-valued time series models
in the non-Gaussian case are also worth investigating.

Time series models with state-space and time-varying parameters are common in
economics. Many macroeconomists believe that time-varying parameter models can bet-
ter predict and adapt to the data than fixed-parameter models. Early research mostly
focused on time-varying continuous time series models, such as the autoregressive (AR)
models, vector autoregressive (VAR) models and autoregressive moving average (ARMA)
models (see refs. [21,23,24]). In recent years, research on INAR models with time-varying
parameters has attracted more attention and has been applied to natural disasters and
medical treatment. Ref. [25] introduced a multivariate integer-valued autoregressive model
of order one with periodic time-varying parameters and adopted a composite likelihood-
based approach. Ref. [26] considered a change-point analysis of counting time series data
through a Poisson INAR(1) process with time-varying smoothing covariates. However,
the time-varying parameters in the above models are not controlled by a state equation.
Additionally, it is difficult to deal with time-varying parameter models when there are
unobserved variables that need to be estimated. There are only a few effective methods
available. Ref. [27] proposed a Bayesian estimation method for time-varying parameters
and claimed that the Bayesian method is superior to the maximum likelihood method. Both
the Bayesian and maximum likelihood methods require Kalman filtering to estimate state
vectors that contain time-varying parameters. The application of the Kalman filter would
be made possible once the model is put into a state-space form. It is worth exploring some
new methods to deal with TV-INAR models.

Motivated by ref. [21], a new TV-INAR model with a state equation is presented in
this paper. Since the model is in a state-space form, the Kalman smoothing method uses
only known observation variables to estimate the parameters. Unlike traditional INAR
models, which are limited to modeling stationary time series data, our TV-INAR model
is equipped to handle nonstationary structures and time-varying dynamics, resulting in
improved model fit and more accurate predictions. The Kalman-smoothed estimates of the
time-varying unobserved state variables are derived. Furthermore, the mean of the Poisson
error term is estimated through the estimates obtained in the previous step and conditional
least squares methods.

The rest of this paper is organized as follows. A new TV-INAR model is presented and
its basic properties are constructed in Section 2. In Section 3, the Kalman smoother is utilized
to derive an estimate of the time-varying parameter. Then, incorporating conditional least
squares (CLS) methods, the estimation of the mean of the Poisson error term is established.
Numerical simulations and results are discussed in Section 4. In Section 5, the proposed
model is applied to the offense data sets in Rochester. The conclusion is given in Section 6.
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2. Poisson TV-INAR Model

In this section, the INAR(1) model is reviewed. A new TV-INAR model incorporat-
ing time-varying and nonstationary features is introduced. Then, some basic statistical
properties are derived.

Suppose Y is a non-negative integer-valued random variable and β ∈ (0, 1). The
binomial thinning ◦, introduced in ref. [6], is defined as β ◦ Y = ∑Y

i=1 Bi, where {Bi} is a
sequence of independent and identically distributed (i.i.d.) Bernoulli random variables,
independent of Y, and satisfying P(Bi = 1) = 1− P(Bi = 0) = β. Then, the INAR(1) model
is given by

Yt = β ◦ Yt−1 + εt, t = 1, 2, · · · , (1)

where {εt} is a sequence of uncorrelated non-negative integer-valued random variables,
with mean µε and finite variance σ2

ε , and εt is independent of all {Yt−i}, i = 1, 2, · · · .

2.1. Definition of TV-INAR Process

It is very common to extend the autoregressive coefficient to a random parameter in
time series models. However, it differs from the time-varying parameter introduced in
this paper. In random coefficient (RC) models, the variable is usually assigned a definite
distribution or given its expectation and variance. Although it is a random variable, its
expectation and variance do not change with time. In contrast, in time-varying parameter
models, the parameter does not have a fixed distribution, and its expectation and variance
often change over time. This is also one of the challenges of such models compared with the
ordinary RC models. Thus, based on the above INAR(1) process, we define the time-varying
integer-valued autoregressive (TV-INAR) process as follows.

Definition 1. Let {yt}t∈N0 be an integer-valued regressive process. It is a time-varying integer-
valued regressive model if

yt = g(αt) ◦ Zt + εt,

αt = αt−1 + ηt,
(2)

where g(·) ∈ (0, 1) is a function of αt; {εt} is a sequence of i.i.d. Poisson-distributed random
variables with mean λ; {ηt} is a sequence of i.i.d. standard normally distributed random variables;
and εt is independent of Zt and ηt when t ≥ 1.

In the model (2), yt and Zt are observation variables, and αt is an unobserved vari-
able, often called a time-varying parameter. Our model allows the class of TV-INAR
models. For example, Zt = yt−1 yields a TV-INAR(1) model. Model (2) becomes a TV-
INAR(p) model when Zt = (yt−1, · · · , yt−p)′ and the autocorrelation coefficient expands
to (g(αt), · · · , g(αt−p+1)). Furthermore, Zt can also be considered as a covariate of yt.

In this paper, we devote the case of g(αt) = eαt
1+eαt . The idea of this model is that

the development of the system over time is determined by αt in the second equation of
(2). However, since αt cannot be observed directly, we need to analyze it based on the
observations yt. The first equation of (2) is called the observation equation; the second is
called the state equation [14]. We assume initially that α0 ∼ N(µ0, σ2

0 ) where µ0 and σ2
0 are

known, because the state equation is nonstationary. Variances of the error terms εt and ηt
in (2) are time-invariant.

Studies on the class of TV-AR models have been extensive, especially in the field of
economics. Such models are flexible enough to capture the complexity of macroeconomic
systems and fit the data better than models with constant parameters. Retaining the
advantages of the above models, we propose the TV-INAR model, which can deal with
integer-valued discrete data and exists in real life. And, it is of interest that αt is always
nonstationary, as αt is a random walk. Therefore, the existence of the above state equation
is justified. And the binomial thinning operator ◦ portrays the probability of the event, so
g(αt) is given the form eαt

1+eαt to ensure that the probability is between (0,1).
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2.2. Statistical Properties

To have a better understanding of the model and to apply it directly to parameter
estimation, some statistical properties of the model are provided. The mean, conditional
mean, second-order conditional origin moment, variance and conditional variance of the
time-varying integer-valued regressive process are given in the following proposition. The
case of TV-INAR(1) is given in the corollary.

Proposition 1. Suppose {Yt} is a process defined by (2), and FZ,t is a σ-field generated by
{Z1, · · · , Zt, η1, · · · , ηt, α0}. Then, when t ≥ 1, we have

(1) E[Yt] = E[Yt|FZ,t] =
eαt

1+eαt Zt + µε =
eαt

1+eαt Zt + λ;
(2) E[Y2

t ] = E[Y2
t |FZ,t]

= E[( eαt
1+eαt ◦ Zt)2|FZ,t] + E[ε2

t |FZ,t] + 2E[ eαt
1+eαt ◦ Zt|FZ,t]E[εt|FZ,t]

= eαt
1+eαt (1 − eαt

1+eαt )Zt + ( eαt
1+eαt Zt)2 + λ + λ2 + 2( eαt

1+eαt Zt + λ)λ

= eαt
1+eαt Zt(1 − eαt

1+eαt +
eαt

1+eαt Zt + 2λ) + 3λ2 + λ;
(3) Var[Yt] = Var[Yt|FZ,t]

= E[Y2
t |FZ,t]− E2[Yt|FZ,t]

= eαt
1+eαt (1 − eαt

1+eαt )Zt + 2λ2 + λ.

Corollary 1. Suppose {Yt} satisfies the TV-INAR(1) model, i.e., Zt = Yt−1, and FY,t−1 =
σ(Y1, · · · , Yt−1, η1, · · · , ηt, α0), then for t ≥ 1,

(1) E[Yt|FY,t−1] =
eαt

1+eαt Yt−1 + λ;
(2) E[Yt] = E[E(Yt|FY,t−1)] =

λ

1− eαt
1+eαt

;

(3) Var[Yt|FY,t−1] =
eαt

1+eαt (1 − eαt
1+eαt )Yt−1 + λ;

(4) Var[Yt] =
eαt

1+eαt λ+λ

1−( eαt
1+eαt )

2
= λ(1 + eαt).

Clearly, when Zt = Yt−1, {Yt, αt}t∈N0 is a bivariate Markov chain with the following
transition probabilities:

P(Yt = j; αt = n|Yt−1 = i, αt−1 = m)

= P( eαt
1+eαt ◦ Yt−1 + εt = j; αt−1 + ηt = n|Yt−1 = i, αt−1 = m)

=
min(i,j)

∑
l=0

P( eαt
1+eαt ◦ Yt−1 = l|Yt−1 = i, αt−1 = m)P(εt = j − l)P(ηt = n − m)

=
min(i,j)

∑
l=0

(
i
l

)
( en

1+en )l( 1
1+en )i−l λj−le−λ

(j−l)!
1√
2π

e−
(n−m)2

2 .

3. Estimation Procedure

There are two interesting parameters in the model, one is the time-varying parameter
αt, and the other is the mean λ of εt. The main goal of this section is to estimate these two
parameters using a new two-step estimation method. The first step gives the estimate α̂t
by Kalman-smoothed state. In the second step, the estimate λ̂ is obtained by α̂t and the
conditional least squares (CLS) method.

3.1. Kalman-Smoothed Estimate of State Vector α

In this subsection, the Kalman-smoothed method is used to estimate the time-varying
parameter. In fact, the essence of the Kalman filter is the minimum variance linear unbiased
estimation (MVLUE). From ref. [14], we know that when the model is nonlinear and
non-Gaussian, the results obtained from the standpoint of MVLUE are equivalent to the
linear and Gaussian cases. To find the Kalman-smoothed estimate of the unobserved state
vector, we employ the matrix formulation of Equation (2) following ref. [14]. The required
moments are calculated and the analytic expression of this estimate is given at the end.
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For convenience, set βt = eαt
1+eαt . Then, αt = log βt

1−βt
≜ logitβt is a logistic trans-

formation. For t = 1, · · · , T, Equation (2) can be written in matrix form, similarly to
ref. [21]:

Y = β ◦ Z + ε,
α = (µ + η)C,

(3)

where

Y = (y1, · · · , yT), β = (β1, · · · , βT), Z =

Z1 0
. . .

0 ZT

, ε = (ε1, · · · , εT),

α = (α1, · · · , αT), µ = (µ, 0, · · · , 0), η = (η1, · · · , ηT), C =

1 · · · 1
. . .

...
0 1

.

Now, consider the problem of estimating the parameter. The following theorem
adapted from ref. [14] provides the Kalman-smoothed estimate of the state vector α in
model (3).

Theorem 1. The Kalman-smoothed estimate of α in model (3) is given by the conditional expectation
of α, which contains all the observations of yt:

α̂ = E[α|Y ] = E(α) + (Y − E(Y))Var(Y)−1Cov(Y , α). (4)

Proof. Let α̂ = Y A + B, where Y is a vector (1 × T), B is a vector(1 × T) and A is a matrix
(T × T). Denote

I = E[(α̂ − α)(α̂ − α)T ]
= E[(Y A + B − α)(Y A + B − α)T ]
= trE[(Y A + B − α)T(Y A + B − α)].

This is the error covariance matrix of state vector estimation, and it can be regarded as a
function on A and B. To minimize I, we need{

∂I
∂A = 2E[YT(Y A + B − α)] = 0,
∂I
∂B = 2E[Y A + B − α] = 0.

We obtain A = E[YTα]−E[YT ]E[α]
E[YTY ]−E[YT ]E[Y ] = Var(Y)−1Cov(Y , α),

B = E(α)− E(Y)A = E(α)− E(Y)Var(Y)−1Cov(Y , α).

This proves that α̂ = YVar(Y)−1Cov(Y , α) + E(α)− E(Y)Var(Y)−1Cov(Y , α).

Theorem 1 contains some numerical characteristics of the random variable. Following
model (3), we denote Λ := E(ε) = (λ, · · · , λ). Then, the mean of α and Y , the variance of
Y and the covariance between Y and α are given in the following proposition.

Proposition 2. Suppose {Y} is a TV-INAR process defined by (3). Then, for any time T,

(i) E(α) = µC;
(ii) E(Y) = E(β)Z + Λ;
(iii) Var(Y) = ZVar(β)Z′ + E[diag(1 − β1, · · · , 1 − βt)diag(β1, · · · , βT)]Z +

diag(λ, · · · , λ);
(iv) Cov(Y , α) = E(β′α)Z − ZE(β′)µC.
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The proofs of Proposition 2 are given in Appendix A. From Proposition 2, the Kalman-
smoothed estimate of the time-varying parameter is

α̂ = E[α|Y ]
= µC + [Y − E(β)Z − Λ]{ZVar(β)Z′ + E[diag(1 − β1, · · · , 1 − βT)

diag(β1, · · · , βT)]Z + diag(λ, · · · , λ)}−1[E(β′α)Z − ZE(β′)µC],
(5)

where α and β are random variables. Hence, in order to obtain the concrete result of the
estimate, we need to compute the numerical characteristics of the random variables in
Equation (5), i.e., E(βk), Var(βk), E[βk(1 − βk)], E(βiαj) and E(βk−l βk), where k, i, j denote
instances in time.

First, we set α0 ∼ N(µ0, σ2
0 ). Then, we have

αk = α0 +
k

∑
i=1

ηi ∼ N(µ0, σ2
0 + k),

eαk ∼ LN(µ0, σ2
0 + k).

Here, LN stands for the logarithmic Normal distribution. Denote X as eαk (k = 1, · · · , T), µ
as its mean and σ2 as its variance, respectively. Then, X ∼ LN(µ, σ2), and the probability
density function of X is

p(x) =
1√

2πσx
exp

{
− (ln x − µ)2

2σ2

}
.

Similarly, denote Y as e∑i
l=j+1 ηl and τ2 as its variance, respectively. Then, Y ∼ LN(0, τ2).

According to the logistic transformation, βt =
eαt

1+eαt . So βk can be expressed in terms of X,
i.e., βk = 1 − 1

1+X . Thus, from the distributions of X and Y, the following proposition can
be established.

Proposition 3. Suppose βk and βi are elements of β in Proposition 2, and αj is an element of α.
Denote

er,k = erµ0+
r2
2 (σ2

0+k),

Φr,k = Φ
(

µ0√
σ2

0+k
− r

√
σ2

0 + k
)

,

Φ−1,r,k = Φ
(
− µ0√

σ2
0+k

− r
√

σ2
0 + k

)
.

Then, for any k, i, j ∈ (1, · · · , T), l ∈ (1, · · · , k − 1),

(1) E(βk) = 1 −
∞
∑

r=0

[
(−1)rer,kΦ−1,r,k + (−1)r+1e−(r+1),kΦr+1,k

]
;

(2) Var(βk) =
∞
∑

r=0
(−1)r(r + 1)

[
er,kΦ−1,r,k + e−(r+2),kΦr+2,k

]
−

{ ∞
∑

r=0

[
(−1)rer,kΦ−1,r,k +

(−1)r+1e−(r+1),kΦr+1,k

]}2
;

(3) E[βk(1 − βk)] =
∞
∑

r=1
(−1)r+1r

[
er,kΦ−1,r,k + e−r,kΦr,k

]
;

(4) When j < i,

E(βiαj) =
1
2 (

√
σ2

0+j
2π +µ0)

∞
∑

r=1
(−1)r+1

[
(erµ0 − e−rµ0)(

√
σ2

0+j
2π +µ0)+ (erµ0 + e−rµ0)r(σ2

0

+ j)
]
e

r2
2 (σ2

0+i)Φ(−r
√

i − j);
When j > i,

E(βiαj) =
∞
∑

r=1
(−1)r−1

√
2
[
(µ0 + r(σ2

0 + i))er,iΦ−1,r,i + (µ0 − (r − 1)(σ2
0 + i))e−(r−1),i

Φr−1,i

]
;
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(5) E(βk−l βk) =
1√
2

∞
∑

r=1
(−1)r−1

[
er,k−lΦ−1,r,k−l + e−(r−1),k−lΦr−1,k−l

]
+

∞
∑

r=1

√
2e

r2
2 l

Φ(−r
√

l)
[ r

∑
m=1

(−1)m−1em,k−l + (−1)me−(m−1),k−l

]
.

The proofs of Proposition 3 are given in Appendix B. And the distribution function
Φ(·) of the standard normal distribution and Taylor’s formula are used. Clearly, the exact
solution α̂ of the time-varying parameter α is found by substituting (1)–(5) of Proposition 3
into Equation (5). Since lim

u→+∞
Φ(u) = 1, if r tends to infinity, all of the Φ(·) in Proposition 3

converge to 0. The corresponding results are specified in Remark 1.

Remark 1. The items involving Φ(·) in Proposition 3 can be divided into two categories, namely
Φ(−a − rb) and Φ(a − rb), where a and b are constants greater than 0. According to the properties
of the distribution function of the standard normal distribution, if r tends to infinity, the following
limits apply:

lim
r→+∞

Φ(−a − rb) = 1 − lim
r→+∞

Φ(rb + a) = 0,

lim
r→+∞

Φ(a − rb) = 1 − lim
r→+∞

Φ(rb − a) = 0.

Therefore, (1)–(5) in Proposition 3 are convergent. Moreover, the Kalman-smoothed
estimate α̂ in (5) is also convergent.

3.2. CLS Estimation of Parameter λ

Based on the proposed TV-INAR model and its statistical properties, we consider
the parameter estimation problem on λ in the model. Here, the estimate α̂t obtained
in the previous section is used directly. Due to the characteristics of the model, that
is, the state equation is nonstationary, the autoregressive coefficient in the observation
equation is time-varying and the distribution is unknown, many estimation methods are
not suitable for this model. Considering that the CLS estimation method does not need the
distribution hypothesis of the model but only the corresponding moment information, and
the estimation accuracy is relatively high, we prefer using the CLS method to estimate λ.

Suppose there is a TV-INAR process {Yt}. Let

Q(λ) =
T

∑
t=1

[Yt − E(Yt|Zt)]
2 (6)

be the CLS criterion function. Then, the CLS estimator of the parameter λ can be obtained
by minimizing the CLS criterion function, i.e.,

λ̂CLS = arg min Q(λ).

Taking the derivative of Q(λ) with respect to λ and setting it to zero, the minimizer λ̂CLS
can be found:

λ̂CLS =
1
T

T

∑
t=1

Yt −
1
T

T

∑
t=1

Zt
eα̂t

1 + eα̂t
.

This is the CLS estimate of λ.

4. Simulation

In this section, we perform simulations using Matlab R2018b to assess the performance
of the two-step estimation approach discussed in Section 3. The approach recovers the true
time-varying parameters, as well as the performance of the CLS estimator.
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For the data generating process, using Equation (3), pseudodata are randomly gener-
ated by changing time T (T = {50, 100, 200}) and the parameter λ (λ = {0.05, 0.1, 0.8, 1.3, 4})
of the error term in the observation equation. The number of replications was 100. Here,
the choice of λ is based on the size of the signal-to-noise ratio (SNR), which is defined as
the variance in ηt relative to that in εt, i.e., SNR = σ2

ηt /σ2
εt . In our model, the error of the

state equation is constant. So, we consider the SNRs for 1/0.05, 1/0.1, 1/0.8, 1/1.3 and
1/4 by changing the variance in the error (σ2

εt ) in the observation equation. And these five
sample paths of the TV-INAR(1) model are plotted in Figure 1, respectively. We can see
that the sample path of yt is unsteady, and the variation in parameter combinations results
in a change in the sample dispersion of the samples.
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Figure 1. Sample paths of the TV-INAR(1) model for λ = {0.05, 0.1, 0.8, 1.3, 4}.

Then, we should notice the choice of the parameter’s initial value. The initial value
of αt follows a known normal distribution, which is mentioned in Section 2.1. In practice,
it is difficult to gauge the true value of its mean and the variance of the distribution. For
simplicity, we assume α0 is known and nonstochastic, i.e., α0 = 0(µ0 = 0, σ2

0 = 0). This
assumption brings great convenience in simulation studies and does not affect numerical
results. This can be observed in Proposition 3 when the sample size is sufficiently large.

Our simulation concerns a first-order integer-valued autoregressive model with time-
varying parameters (TV-INAR(1)). For the first step estimation, let αt,n denote the true
value of the parameter in the data generation process and α̂t,n denote the Kalman-smoothed
estimate of the parameter. We compute the sample means and sample standard deviations
of the true and estimated values, respectively:

ᾱn =
1
T

T

∑
t=1

αt,n, sd(αn) =

√√√√ 1
T − 1

T

∑
t=1

(αt,n − ᾱn)2,
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¯̂αn =
1
T

T

∑
t=1

α̂t,n, sd(α̂n) =

√√√√ 1
T − 1

T

∑
t=1

(α̂t,n − ¯̂αn)2.

After N = 100 replications, the averages of the above four indicators are found, respectively:

ᾱ =
1
N

N

∑
n=1

ᾱn, s̄ =
1
N

N

∑
n=1

sd(αn),

¯̂α =
1
N

N

∑
n=1

¯̂αn, ¯̂s =
1
N

N

∑
n=1

sd(α̂n).

Let biasα = |ᾱ − ¯̂α|. We take the difference between ᾱ and ¯̂α directly to evaluate the
effectiveness of the Kalman-smoothed estimate approach. In addition, denote

rat =
1
N

N

∑
n=1

sd(α̂n)

sd(αn)

as the mean of the ratio of the standard deviation of α̂n to the standard deviation of the
real process αn. The quality of the estimator depends on whether rat is close to one. This is
similar to the criterion in [21].

Next, we evaluate the performance of the second step estimation, which is to ap-
ply the α̂t and the conditional least squares (CLS) method to estimate the parameter
λ in the model (2). As we mentioned above, the true value of λ is considered λ =
{0.05, 0.1, 0.8, 1.3, 4}. To evaluate the estimation performance, besides considering biasλ =
|λ − λ̂|, two other indicators were selected, which are the mean absolute deviation (MAD)
and mean square error (MSE), as defined below:

MAD =
1
N

N

∑
n=1

∣∣λ̂n − λ
∣∣, MSE =

1
N

N

∑
n=1

(
λ̂n − λ

)2
,

where λ̂n is the estimation result of λ at the nth replication. Then, considering various
sample sizes and initial parameter values, the simulation results of the two-step estimation
process are listed in Tables 1 and 2.

Table 1. Simulation results of α.

λ SNR T ᾱ ¯̂α biasα rat

0.05 20 50 0.7132 0.7790 0.0658 0.4982
100 0.5941 0.6414 0.0473 0.5305
200 −0.8605 −0.8671 0.0066 0.7479

0.1 10 50 −0.2026 −0.1137 0.0889 0.6547
100 −0.9860 −0.9333 0.0527 0.7899
200 −0.6248 −0.6175 0.0073 0.9138

0.8 1.25 50 0.3801 0.4772 0.0971 0.8308
100 0.4309 0.3666 0.0643 0.8965
200 0.6438 0.6154 0.0284 0.9276

1.3 0.77 50 −0.5826 −0.4699 0.1127 0.8869
100 0.3095 0.2246 0.0849 0.9304
200 −0.2924 −0.3385 0.0461 1.0483

4 0.25 50 −0.3752 −0.2143 0.1609 0.9025
100 0.7106 0.5856 0.1250 0.9514
200 0.6634 0.5762 0.0872 1.1287
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Table 2. Simulation results of λ.

λ SNR T λ̂ biasλ MAD MSE

0.05 20 50 0.0621 0.0121 0.0256 0.0018
100 0.0587 0.0087 0.0179 0.0015
200 0.0441 0.0059 0.0103 0.0010

0.1 10 50 0.0803 0.0197 0.0407 0.0023
100 0.0858 0.0142 0.0373 0.0021
200 0.0906 0.0094 0.0211 0.0017

0.8 1.25 50 0.6632 0.1368 0.1014 0.0751
100 0.6829 0.1171 0.0762 0.0657
200 0.7157 0.0843 0.0399 0.0481

1.3 0.77 50 1.1347 0.1652 0.1729 0.1251
100 1.1827 0.1173 0.1094 0.0727
200 1.2090 0.0910 0.0529 0.0512

4 0.25 50 4.1880 0.1880 0.1931 0.1634
100 3.8397 0.1603 0.1652 0.1252
200 3.8903 0.1097 0.1140 0.0938

It is shown that the smaller the variance (λ) of the error term, the smaller the biases of
estimates biasα and biasλ. This implies that the Kalman smoothing and CLS approaches
work better in the sense of bias. In the first-step estimation, the larger the variance (λ),
the closer rat is to one. In this sense, the Kalman smoothing method is the best if λ is
equal to 1.3. This suggests that only using one criterion to measure the effectiveness of the
estimation method is insufficient. In addition, by increasing the sample size, baisα is smaller
and rat is closer to one. This shows that the Kalman-smoothed estimate is closer to the
true process. From the perspective of SNR, the larger the SNR, the smaller the bias in the
estimation. The smaller the SNR, the closer the estimated median sample variance is to the
true process. In summary, when the SNR is around 1, the estimation is relatively good. In
the second-step estimation, the values of MAD and MSE are small, suggesting a relatively
acceptable estimation effect. The estimation results as a whole show a trend that the larger
the SNR, the smaller the estimation error. Consequently, the CLS estimate method works
better. Additionally, when the sample size T increases, the corresponding MAD and MSE
gradually decrease, and the estimates of the parameter gradually converge to the true
values. In conclusion, the proposed two-step estimation method is a credible approach.

5. Case Application

In this section, we apply the model and method of Section 3 to predict real-time series
data. The data set is a count time series of offense data, obtainable from the NSW Bureau of
Crime Statistics and Research covering January 2000 to December 2009. The observations
represent monthly counts of Sexual offenses in Ballina, NSW, Australia, which comprise
120 monthly observations. Figure 2 shows the time plot and partial autocorrelation function
(PACF). It shows that the data are nonstationary and are first-order autocorrelated, which
is an indication that it could be reasonable to model this data set with our model. The
descriptive statistics of the data are displayed in Table 3. Next, we compared our TV-
INAR(1) model with the INAR(1) model to fit the data set. In general, it is expected that
the better model to fit the data presents smaller values for -log-likelihood, AIC and BIC.
From the results in Table 4, we can conclude that the proposed model fits the data better.

Table 3. Descriptive statistics for sexual offense data.

Sample Size Minimum Maximum Median Mean Variance

120 0 32 4 5.1 14.225
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Figure 2. Time plot and PACF of sexual offense data for the period 2000−2009.

Table 4. Estimates of the parameters and goodness-of-fit statistics for the offense data.

Model ¯̂α(α̂) λ̂ −log-likelihood AIC BIC RMSE

TV-
INAR(1) 0.1574 2.5928 315.96 635.92 641.49 2.5278

INAR(1) 0.2299 3.9236 317.51 639.01 644.59 3.2137

For the prediction, the predicted values of the offense data are given by

E(Yt+k|FY,t) =
k

∏
h=1

eα̂t+h

1 + eα̂t+h
Yt +

k−1

∑
h=1

h−1

∏
m=0

eα̂t+k−m

1 + eα̂t+k−m
λ̂ + λ̂.

Specifically, the one-step-ahead conditional expectation point predictor is given by

E(Yt|FY,t−1) =
eα̂t

1 + eα̂t
Yt−1 + λ̂.

We compute the root mean square of the prediction errors (RMSEs) of the data in the past 6
months, with the RMSE defined as

RMSE =

√
1
n

n

∑
t=1

(Yt − Ŷt)2.

The estimators and RMSE results are also shown in Table 4. To analyze the adequacy of the
model, we analyze the standardized Pearson residuals, defined as

et =
Yt − E(Yt|FY,t−1)√

Var(Yt|FY,t−1)
,

with t ∈ (1, · · · , n). For our model, the mean and variance of the Pearson residuals are
0.8022 and 1.2000, respectively. As discussed in ref. [28], for an adequately chosen model,
the variance of the residuals should take a value close to 1. And 1.2 seems to be close to 1.
Therefore, we conclude that the proposed model fits the data well.

6. Conclusions

This paper proposes a time-varying integer-valued autoregressive model with au-
toregressive coefficients driven by a logistic regression structure. It can be more flexible
and efficient to handle integer-valued discrete and even nonstationary data. Some statisti-
cal properties of the model are derived, such as mean, variance, covariance, conditional
mean and conditional variance. A two-step estimation method was introduced. Since
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the model is in a state-space form, the Kalman smoothing method would instead be used
to estimate the time-varying parameter. In the first step, the Kalman-smoothed estimate
of the state vector is obtained using the information of the known observation variables.
In the second step, the estimate from the previous step and the CLS method are used to
obtain the estimate of the error term parameter. The analysis formulae of the estimates in
the two steps are both derived. The solution challenge lies in calculating the covariance
matrix and the correlation between the variables. The advantage of this method is that
the approximate estimation of the unknown parameters can be obtained from all the ob-
servable variables, and the approach has superior performance in practical applications,
even in the case of nonlinear and non-Gaussian errors. The proposed method can also
estimate the time-varying parameters well. In addition, an application of forecasting a real
data set is presented. The results suggest that the TV-INAR(1) model is more suitable for
practical data sets. In model (3), if the variances of the error terms εt and ηt are allowed
to be time-dependent, the model will be regarded as a stochastic volatility model. This is
a topic for discussion. Moreover, extending the research outcomes to the p-order model
TV-INAR(p) is one direction of future research.
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Appendix A. Proof of Proposition 2

From models (3) and (2), we have

(i) E(α) = E[(µ + η)C] = µC;
(ii) E(Y) = E(β ◦ Z + ε) = E(β)Z + Λ;
(iii) Var(Y) = Var(β ◦ Z) + diag(λ, · · · , λ);

Var(β ◦ Z) = E{[β ◦ Z − E(β ◦ Z)]′[β ◦ Z − E(β ◦ Z)]}

=

Cov(β1 ◦ Z1, β1 ◦ Z1) · · · Cov(β1 ◦ Z1, βT ◦ ZT)
...

. . .
...

Cov(βT ◦ ZT , β1 ◦ Z1) · · · Cov(βT ◦ ZT , βT ◦ ZT)

.

The main diagonal elements are

Var(βk ◦ Zk) = Var(βk)Z2
k + E[βk(1 − βk)]Zk, k = 1, · · · , T,

and the rest of the elements are

Cov(βk−l ◦ Zk−l , βk ◦ Zk)
= E{E[(βk−l ◦ Zk−l)(βk ◦ Zk)|βk−l , βk]} − E[E(βk−l ◦ Zk−l |βk−l)]E[E(βk ◦ Zk|βk)]
= E{E[(B′

1 + · · ·+ B′
Zk−l

)(B′′
1 + · · ·+ B′′

Zk
)|βk−l , βk]} − E(βk−l)Zk−lE(βk)Zk

= E[E(B′
1B′′

1 + · · ·+ B′
1B′′

Zk
) + · · ·+ E(B′

Zk−l
B′′

1 + · · ·+ B′
Zk−l

B′′
Zk
)|βk−l , βk]− E(βk−l)

Zk−lE(βk)Zk
= E(βk−l βk)Zk−lZk − E(βk−l)E(βk)Zk−lZk.

https://data.nsw.gov.au/data/dataset/nsw-criminal-court-statistics
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Therefore,

Var(Y) = ZVar(β)Z′ + E[diag(1 − β1, · · · , 1 − βt)diag(β1, · · · , βT)]Z + diag(λ, · · · , λ).

(iv) Cov(Y , α) = Cov(β ◦ Z, α) =

Cov(β1 ◦ Z1, α1) · · · Cov(β1 ◦ Z1, αT)
...

. . .
...

Cov(βT ◦ ZT , α1) · · · Cov(βT ◦ ZT , αT)

.

For any i, j ∈ (1, · · · , T),

Cov(βi ◦ Zi, αj) = E{E[(βi ◦ Zi)αj|βi, β j]} − E[E(βi ◦ Zi|βi)]E[E(αj|β j)]
= E[(B1 + · · ·+ BZi )αj|βi, β j]− E(βi)Ziµ0
= E[B1αj + · · ·+ BZj αj|βi, β j]− E(βi)Ziµ0

= E[βiαj]Zi − E(βi)Ziµ0.

Thus, Cov(Y , α) = E(β′α)Z − ZE(β′)µC.

Appendix B. Proof of Proposition 3

(1) E(βk) = E
( eαk

1+eαk

)
= 1 − E

( 1
1+eαk

)
= 1 − E

(
1

1+X

)
. Denote X ∼ LN(µ, σ2). Using

substitution and Taylor’s expansion, we obtain

E
( 1

1 + X

)
=

∫ ∞

0

1
1 + x

1√
2πσx

exp
{
− (ln x − µ)2

2σ2

}
dx

=
∫ ∞

−∞

1

1 + e
√

2σs+µ

1
√

2πσe
√

2σs+µ
e−s2

e
√

2σs+µ
√

2σds

=
1√
π

∫ ∞

−∞
e−s2

(1 + e
√

2σs+µ)−1ds

=
1√
π

[∫ − µ√
2σ

−∞
e−s2

(1 + e
√

2σs+µ)−1ds +
∫ ∞

− µ√
2σ

e−s2−
√

2σs−µ(1 + e−
√

2σs−µ)−1ds

]

=
1√
π

[ ∫ − µ√
2σ

−∞
e−s2

ds − eµ+ σ2
2

∫ − µ√
2σ

−∞
e−(s− σ√

2
)2

ds + e2µ+2σ2
∫ − µ√

2σ

−∞
e−(s−

√
2σ)2

ds − · · ·

+ e−µ+ σ2
2

∫ ∞

− µ√
2σ

e−(s+ σ√
2
)2

ds − e−2µ+2σ2
∫ ∞

− µ√
2σ

e−(s+
√

2σ)2
ds + e−3µ+ 9

2 σ2
∫ ∞

− µ√
2σ

e−(s+ 3√
2

σ)2

ds − · · ·
]

=

[
Φ
(
− µ

σ

)
− eµ+ σ2

2 Φ
(
− µ

σ
− σ

)
+ e2µ+2σ2

Φ
(
− µ

σ
− 2σ

)
− · · ·

]
+

[
e−µ+ σ2

2 Φ
(µ

σ
− σ

)
− e−2µ+2σ2

Φ
(µ

σ
− 2σ

)
+ e−3µ+ 9

2 σ2
Φ
(µ

σ
− 3σ

)
− · · ·

]
=

∞

∑
r=0

[
(−1)rerµ+ r2

2 σ2
Φ
(
− µ

σ
− rσ

)
+ (−1)r+1e−(r+1)µ+ (r+1)2

2 σ2
Φ
(µ

σ
− (r + 1)σ

)]
.

Then,

E(βk) =1 −
∞

∑
r=0

[
(−1)rerµ0+

r2
2 (σ2

0+k)Φ
(
− µ0√

σ2
0 + k

− r
√

σ2
0 + k

)
+ (−1)r+1

e−(r+1)µ0+
(r+1)2

2 (σ2
0+k)Φ

( µ0√
σ2

0 + k
− (r + 1)

√
σ2

0 + k
)]

.
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(2) Var(βk) = Var
(
1 − 1

1+eαk

)
= Var

( 1
1+eαk

)
= E

(
1

1+X

)2
−

[
E
(

1
1+X

)]2
,

[
E
( 1

1 + X

)]2

=
∫ ∞

0

1
(1 + x)2

1√
2πσx

exp
{
− (ln x − µ)2

2σ2

}
dx

=
∫ ∞

−∞

1

(1 + e
√

2σs+µ)2

1
√

2πσe
√

2σs+µ
e−s2

e
√

2σs+µ
√

2σds

=
1√
π

∫ ∞

−∞
e−s2

(1 + e
√

2σs+µ)−2ds

=
1√
π

[ ∫ − µ√
2σ

−∞
e−s2

(1 + e
√

2σs+µ)−2ds +
∫ ∞

− µ√
2σ

e−s2−2
√

2σs−2µ(1 + e−
√

2σs−µ)−2ds
]

=
1√
π

[ ∫ − µ√
2σ

−∞
e−s2

ds − 2eµ+ σ2
2

∫ − µ√
2σ

−∞
e−(s− σ√

2
)2

ds + 3e2µ+2σ2
∫ − µ√

2σ

−∞
e−(s−

√
2σ)2

ds − · · ·

+ e−2µ+2σ2
∫ ∞

− µ√
2σ

e−(s+
√

2σ)2
ds − 2e−3µ+ 9

2 σ2
∫ ∞

− µ√
2σ

e−(s+ 3√
2

σ)2
ds + 3e−4µ+ 16

2 σ2
∫ ∞

− µ√
2σ

e−(s+ 4√
2

σ)2
ds − · · ·

]
=

[
Φ
(
− µ

σ

)
− 2eµ+ σ2

2 Φ
(
− µ

σ
− σ

)
+ 3e2µ+2σ2

Φ
(
− µ

σ
− 2σ

)
− · · ·

]
+

[
e−2µ+2σ2

Φ
(µ

σ

− 2σ
)
− 2e−3µ+ 9

2 σ2
Φ
(µ

σ
− 3σ

)
+ 3e−4µ+ 16

2 σ2
Φ
(µ

σ
− 4σ

)
− · · ·

]
=

∞

∑
r=0

(−1)r(r + 1)
[

erµ+ r2
2 σ2

Φ
(
− µ

σ
− rσ

)
+ e−(r+2)µ+ (r+2)2

2 σ2
Φ
(µ

σ
− (r + 2)σ

)]
.

Then,

Var(βk) =
∞

∑
r=0

(−1)r(r + 1)
[

erµ0+
r2
2 (σ2

0+k)Φ
(
− µ0√

σ2
0 + k

− r
√

σ2
0 + k

)
+ e−(r+2)µ0+

(r+2)2

2 (σ2
0+k)

Φ
( µ0√

σ2
0 + k

− (r + 2)
√

σ2
0 + k

)]
−

{ ∞

∑
r=0

[
(−1)rerµ0+

r2
2 (σ2

0+k)Φ
(
− µ0√

σ2
0 + k

− r
√

σ2
0 + k

)

+ (−1)r+1e−(r+1)µ0+
(r+1)2

2 (σ2
0+k)Φ

( µ0√
σ2

0 + k
− (r + 1)

√
σ2

0 + k
)]}2

.

(3) E[βk(1 − βk)]

= E
( 1

1 + X

)
− E

( 1
1 + X

)2

= eµ+ σ2
2 Φ

(
− µ

σ
− σ

)
− 2e2µ+2σ2

Φ
(
− µ

σ
− 2σ

)
+ 3e3µ+ 9

2 σ2
Φ
(
− µ

σ
− 3σ

)
− · · ·

+ e−µ+ σ2
2 Φ

(µ

σ
− σ

)
− 2e−2µ+2σ2

Φ
(µ

σ
− 2σ

)
+ 3e−3µ+ 9

2 σ2
Φ
(µ

σ
− 3σ

)
− · · ·

=
∞

∑
r=1

(−1)r+1r
[

erµ+ r2
2 σ2

Φ
(
− µ

σ
− rσ

)
+ e−rµ+ r2

2 σ2
Φ
(µ

σ
− rσ

)]
=

∞

∑
r=1

(−1)r+1r
[

erµ0+
r2
2 (σ2

0+k)Φ
(
− µ0√

σ2
0 + k

− r
√

σ2
0 + k

)
+ e−rµ0+

r2
2 (σ2

0+k)

Φ
( µ0√

σ2
0 + k

− r
√

σ2
0 + k

)]
.
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(4)

βiαj =
eαi

1 + eαi
αj =



exp

{
α0+

j
∑

l=1
ηl+

i
∑

l=j+1
ηl

}

1+exp

{
α0+

j
∑

l=1
ηl+

i
∑

l=j+1
ηl

} (α0 +
j

∑
l=1

ηl), j < i,

exp
{

α0+
i

∑
l=1

ηl

}
1+exp

{
α0+

i
∑

l=1
ηl

} (α0 +
i

∑
l=1

ηl +
j

∑
l=i+1

ηl), j ≥ i,

where α0 +
j

∑
l=1

ηl = αj ∼ N(µ0, σ2
0 + j),

i
∑

l=j+1
ηl ∼ N(0, i − j), and they are independent of

each other. The same applies when j ≥ i. Let Y denote e∑i
l=j+1 ηl and τ2 denote its variance.

Thus, Y ∼ LN(0, τ2).
When j < i,

E
(

βiαj
)

=
∫ ∞

0

∫ ∞
0

xy ln x
1+xy

1√
2πσx

e−
(ln x−µ)2

2σ2 1√
2πτy

e−
(ln y)2

2τ2 dxdy

=
∫ ∞

0
ln x√
2πσ

e−
(ln x−µ)2

2σ2 dx
∫ ∞

0
1√

2πτ(1+xy)
e−

(ln y)2

2τ2 dy,

where

1√
2πτ

∫ ∞
0

1
1+xy e−

(ln y)2

2τ2 dy

= 1√
2πτ

∫ ∞
−∞

1
1+xe

√
2τs

e−s2
e
√

2τs
√

2τds

= 1√
π

∫ ∞
−∞ e−s2+

√
2τs(1 + xe

√
2τs)−1ds

= 1√
π

[ ∫ 0
−∞ e−s2+

√
2τs(1 + xe

√
2τs)−1ds +

∫ ∞
0 x−1e−s2

(1 + x−1e−
√

2τs)−1ds
]

= 1√
π

[
e

τ2
2
∫ 0
−∞ e−(s− τ√

2
)2

ds − xe2τ2 ∫ 0
−∞ e−(s−

√
2τ)2

ds + x2e
9
2 τ2 ∫ 0

−∞ e−(s− 3√
2

τ)2
ds − · · ·

+ x−1
∫ ∞

0 e−s2
ds − x−2e

τ2
2
∫ ∞

0 e−(s+ τ√
2
)2

ds + x−3e2τ2 ∫ ∞
0 e−(s+

√
2τ)2

ds − · · ·
]

= e
τ2
2 Φ(−τ)− xe2τ2

Φ(−2τ) + x2e
9
2 τ2

Φ(−3τ)− · · ·+ x−1Φ(0)− x−2e
τ2
2 Φ(−τ)

+ x−3e2τ2
Φ(−2τ)− · · · .

(A1)

Thus,

E
(

βiαj
)

= ( σ√
2π

+ µ)Φ(0) +
[
(eµ − e−µ)( σ√

2π
+ µ) + (eµ + e−µ)σ2

]
e

σ2+τ2
2 Φ(−τ)−

[
(e2µ − e−2µ)

( σ√
2π

+ µ) + (e2µ + e−2µ)2σ2
]
e2σ2+2τ2

Φ(−2τ) +
[
(e3µ − e−3µ)( σ√

2π
+ µ) + (e3µ+

e−3µ)3σ2
]
e

9
2 (σ

2+τ2)Φ(−3τ)− · · ·

= 1
2 (

σ√
2π

+ µ) +
∞
∑

r=1
(−1)r+1

[
(erµ − e−rµ)( σ√

2π
+ µ) + (erµ + e−rµ)rσ2

]
( σ√

2π
+ µ)Φ(−

rτ)

= 1
2 (

√
σ2

0+j
2π + µ0)

∞
∑

r=1
(−1)r+1

[
(erµ0 − e−rµ0 )(

√
σ2

0+j
2π + µ0) + (erµ0 + e−rµ0 )r(σ2

0 + j)
]

e
r2
2 (σ2

0+i)Φ(−r
√

i − j).

Similarly, when j ≥ i,

E
(

βiαj
)
= E

(
X ln X
1 + X

+
XY

1 + X

)
,
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X and Y are independent, and E(Y) = 0. Therefore,

E
(

βiαj
)

= E
(

X ln X
1+X

)
=

∫ ∞
0

x ln x
1+x

1√
2πσx

e−
(ln x−µ)2

2σ2 dx

= 1√
π

∫ ∞
−∞

√
2σs+µ

1+e
√

2σs+µ
e−s2+

√
2σs+µds

=
√

2σ√
π

∫ − µ√
2σ

−∞ se−s2+
√

2σs+µ(1 + e
√

2σs+µ)−1ds +
√

2σ√
π

∫ ∞
− µ√

2σ

se−s2
(1 + e−

√
2σs−µ)−1ds

+
µ√
π

∫ − µ√
2σ

−∞ e−s2+
√

2σs+µ(1 + e
√

2σs+µ)−1ds + µ√
π

∫ ∞
− µ√

2σ

e−s2
(1 + e−

√
2σs−µ)−1ds

=
√

2(µ + σ2)eµ+ σ2
2 Φ(− µ

σ − σ)−
√

2(µ + 2σ2)e2µ+2σ2
Φ(− µ

σ − 2σ)− · · ·+
√

2µΦ(
µ
σ )

−
√

2(µ − σ2)e−µ+ σ2
2 Φ(

µ
σ − σ) +

√
2(µ − 2σ2)e−2µ+2σ2

Φ(
µ
σ − 2σ)− · · ·

=
∞
∑

r=1
(−1)r−1

√
2
[
(µ + rσ2)erµ+ r2

2 σ2
Φ(− µ

σ − rσ) + (µ − (r − 1)σ2)e−(r−1)µ+ (r−1)2

2 σ2

Φ(
µ
σ − (r − 1)σ)

]
=

∞
∑

r=1
(−1)r−1

√
2
[
(µ0 + r(σ2

0 + i))erµ0+
r2
2 (σ2

0+i)Φ
(
− µ0√

σ2
0+i

− r
√

σ2
0 + i

)
+ (µ0 − (r − 1)

(σ2
0 + i))e−(r−1)µ0+

(r−1)2

2 (σ2
0+i)Φ

( µ0√
σ2

0+i
− (r − 1)

√
σ2

0 + i
)]

.

(5) According to the state equation in (2),

βk−l βk =
eαk−l

1 + eαk−l
· eαk

1 + eαk
=

eαk−l

1 + eαk−l
· eαk−l+∑k

i=k−l+1 ηl

1 + eαk−l+∑k
i=k−l+1 ηl

.

Let X denote eαk−l and Y denote e∑k
i=k−l+1 ηl . Then, X ∼ LN(µ0, σ2

0 + k − l), Y ∼ LN(0, l).
For convenience, let µ and σ represent the mean and variance of X in the computation. Thus,

E(βk−l βk)

= E
(

X
1+X · XY

1+XY

)
=

∫ ∞
0

∫ ∞
0

x
(1+x)(1+xy)

1√
2πσ

exp
{
− (ln x−µ)2

2σ2

}
1√
2πl

exp
{
− (ln y)2

2l

}
dydx

=
∫ ∞

0
x√

2πσ(1+x)
exp

{
− (ln x−µ)2

2σ2

}
dx

∫ ∞
0

1√
2πl(1+xy)

exp
{
− (ln y)2

2l

}
dy,

where
∫ ∞

0
1√

2πl(1+xy)
exp

{
− (ln y)2

2l

}
dy can be obtained from (A1).

Therefore,

E(βk−l βk)

= 1√
2πσ

∫ ∞
0

x
1+x e−

(ln x−µ)2

2σ2
[
e

l
2 Φ(−

√
l)− xe2lΦ(−2

√
l) + x2e

9
2 lΦ(−3

√
l)− · · ·+ x−1

Φ(0)− x−2e
l
2 Φ(−

√
l) + x−3e2lΦ(−2

√
l)− · · ·

]
dx

=
√

2Φ(0)
[
eµ+ σ2

2 Φ(− µ
σ − σ)− e2µ+2σ2

Φ(− µ
σ − 2σ) + e3µ+ 9

2 σ2
Φ(− µ

σ − 3σ)− · · ·+

Φ( µ
σ )− e−µ+ σ2

2 Φ( µ
σ − σ) + e−2µ+2σ2

Φ( µ
σ − 2σ)− · · ·

]
+
√

2e
l
2 Φ(−

√
l)
[
eµ+ σ2

2 − 1
]

+
√

2e2lΦ(−2
√

l)
[
− e2µ+2σ2

+ eµ+ σ2
2 − 1 + e−µ+ σ2

2

]
+ · · ·

= 1√
2

∞
∑

r=1
(−1)r−1

[
erµ0+

r2
2 (σ2

0+k−l)Φ(− µ0√
σ2

0+k−l
− r

√
σ2

0 + k − l)+

e−(r−1)µ0+
(r−1)2

2 (σ2
0+k−l)Φ( µ0√

σ2
0+k−l

− (r − 1)
√

σ2
0 + k − l)

]
+

∞
∑

r=1

√
2e

r2
2 lΦ(−r

√
l)[ r

∑
m=1

(−1)m−1emµ0+
m2
2 (σ2

0+k−l) + (−1)me−(m−1)µ0+
(m−1)2

2 (σ2
0+k−l)

]
.
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