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Abstract: The objective of the present article is to introduce new subclasses of bi-Bazilevič functions,
bi-quasi-convex functions and α-exponentially bi-convex functions involving functions with bounded
boundary rotation of order ν. For the above-said newly defined classes, we obtain first two initial
coefficient bounds. In addition, the familiar Fekete–Szegö coefficient inequality is too found for the
newly introduced subclasses of bi-univalent functions. Apart from the new findings that are obtained,
it also improves the prior estimates that are presented already in the literature.
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1. Introduction

Signify A to be the class of all functions of the normalized form

f (z) = z +
∞

∑
n=2

anzn, (1)

normalized by the conditions f (0) = f ′(0)− 1 = 0, that are analytic in D = {z : |z| < 1}.
Furthermore, Let us symbolize by S , the subclass of A, where the functions in S are analytic
as well as univalent in D. Let f be a function analytic and locally univalent in a given
simply connected domain. Then, we call f as a function with bounded boundary rotation if
its range has bounded boundary rotation. It is to be recalled at this moment that bounded
boundary rotation is defined as the total variation of the direction angle of the tangent to
the boundary curve underneath the complete circuit. Let f (z) map D onto a domain G.
If G is a Schlicht domain with a continuously differentiable boundary curve and πµ(t)
denotes the angle of the tangent vector at the point f (eit) to the boundary curve with
respect to the positive real axis, then the boundary rotation of G is equal to π

∫ 2π
0 |dµ(t)|. If

G does not have a sufficiently smooth boundary curve, the boundary rotation is defined by
a limiting process.

Let k ≥ 2 and 0 ≤ ν < 1 and Pk(ν) be defined as

Pk(ν) = {p : p analytic and normalized with p(0) = 1}

and such that for z = reit ∈ D, it satisfies
2π∫
0

∣∣∣ℜ(p(z))−ν
1−ν

∣∣∣dθ ≤ kπ.

The class Pk(ν) was investigated by Padmanabhan and Parvatham [1]; see the work
in [2] for recent work on bounded boundary rotation. For ν = 0, Pk(ν) ≡ Pk, studied
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in detail by Pinchuk [3], which will consist of functions p(z) that are analytic with the
normalization p(0) = 1. Therefore, a function p ∈ Pk will possess an integral form as

p(z) =
2π∫
0

∣∣∣∣1 − zeit

1 + zeit

∣∣∣∣dµ(t).

Here µ is a real-valued function with a bounded variation and satisfies

2π∫
0

dµ(t) = 2 and
2π∫
0

|dµ(t)| ≤ k, k ≥ 2.

It is to be noted at this occurrence that P2 is the class of analytic functions with a
positive real part in D, prominently known as the Carathéodory function class, and is
denoted by P .

For the prominent class Pk, the lemma, which was established earlier in [3], is stated
now in the following lemma.

Lemma 1. Let p ∈ Pk. Then, there exist functions p1 ∈ P and p2 ∈ P such that

p(z) =
(

k
4
+

1
2

)
p1(z)−

(
k
4
− 1

2

)
p2(z).

Two of the subclasses of S are the starlike functions of order ν denoted by S∗(ν) and
convex functions of order ν, 0 ≤ ν < 1 denoted by C(ν). Analytic characterizations of the
classes S∗(ν) and C(ν) are given as below:

S∗(ν) =

{
f ∈ S : ℜ

(
z f ′(z)

f (z)

)
> ν, 0 ≤ ν < 1

}
and

C(ν) =
{

f ∈ S : ℜ
(

1 +
z f ′′(z)
f ′(z)

)
> ν, 0 ≤ ν < 1

}
.

We also observe that f ∈ C(ν) ⇔ z f ′(z) ∈ S∗(ν). We also have S∗(ν) ⊆ S∗(0) ≡ S∗,
C(ν) ⊆ C(0) ≡ C and C(ν) ⊆ S∗(ν) for 0 ≤ ν < 1. The classes S∗(ν) and C(ν) were
introduced and investigated by Robertson [4] and then were analyzed in [5–7] and also
in [8].

Let Uk(ν) and Vk(ν) represent the class of analytic functions f (z) in D with f (0) = 0,
f ′(0) = 1, satisfying

z f ′(z)
f (z)

∈ Pk(ν) and 1 +
z f ′′(z)
f ′(z)

∈ Pk(ν), 0 ≤ ν < 1,

respectively. The class Uk(ν) extends the class S∗(ν) of class of starlike functions of order
ν, introduced and studied by Robertson [4]. For ν = 0, the class Uk(ν) reduces to the
Uk(0) ≡ Uk, the family of all functions of bounded radius rotation. Similarly, for ν = 0,
Vk(ν) reduces to the class Vk(0) ≡ Vk, the family of all analytic functions of bounded
boundary rotation investigated in detail by Paatero [9]. If An(k) = max |an|, n ≥ 2, it is
known (see, for details, Leach [10] and Thomas [11]) that for k ≥ 2,

A2(k) =
k
2

, A3(k) =
k2 + 2

6
, A4(k) =

k3 + 8k
24

.

It is obvious that every univalent function f belonging to the class S has an inverse
f−1, given by

( f−1 ⊙ f )(z) = z (z ∈ D)
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and
( f ⊙ f−1)(w) = w (|w| < r0(h) ; r0( f ) ≥ 1

4
).

One may look into [12] for details. It is pointed out at this moment that for an
univalent function f belonging to the class S and of the form (1), the inverse f−1 may have
an analytic continuation to D, where

f−1(w) = g(w) = w − a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · · . (2)

Let Aσ denote the family of functions of the form (1) defined on D, for which the
function f ∈ A and its inverse f−1 ≡ g with Taylor series expansion as in (2), are univalent
in D. An univalent function f ∈ S is known as bi-univalent in D if there exists another
univalent function g ∈ S where g(z) has an univalent extension of f−1 to D. Let σ be the
class consisting of all bi-univalent functions in D. If

f1 =
z

1 − z
, f2(z) =

1
2

log
(

1 + z
1 − z

)
and f3(z) = − log(1 − z),

then it is to be noted that the functions f1(z), f2(z) and f3(z) are in the class σ, and it is

also a bit of surprise to make a note that the familiar Koebe function
z

(1 − z)2 is not in

the family of bi-univalent functions. Lewin [13] was the first one who investigated the
family of bi-univalent functions σ and obtained a non-sharp bound |a2| < 1.51. Moreover,
Brannan and Clunie [14] and Brannan and Taha [15] focused on certain subclasses of
the bi-univalent function class σ and obtained the bounds for their initial coefficients.
The analysis of bi-univalent functions gained attention as fine as push, primarily because
of the exploration by Srivastava et al. [16]. Brannan and Taha [15] defined the classes S∗

σ(ν)
and Cσ(ν) of bi-starlike functions of order ν and bi-convex functions of order ν. The bounds
on |an| (n = 2, 3) for the classes S∗

σ(ν) and Cσ(ν) (for details, see [15]) were established,
and were also identified as non-sharp ones.

Let β > 0 and 0 ≤ ν < 1. A function f ∈ A represented in (1) is known as in the family
of Bazilevič functions of order ν and type β denoted by B(β, ν) if there exist a function
ϕ(z) ∈ S∗ such that

ℜ
(

z f ′(z) f β−1(z)
ϕβ(z)

)
> ν, z ∈ D.

When ϕ(z) = z, we will denote the class B(β, ν) as the subclass B1(β, ν). For various
choices of the parameters, we have B(0, 0) ≡ B1(0, 0) ≡ S∗, B(0, ν) ≡ B1(0, ν) ≡ S∗(ν),
and that B1(1, ν) is the subclass of A consisting of functions for which ℜ( f ′(z)) > ν. This
is familiarly called as the class of functions where derivatives of the functions have positive
real parts of order ν. When ν = 0, the class B(β, 0) was studied by Singh [17] and also by
Obradović [18,19]. One may also look up a recent work of Aouf et al. [20] for results on the
bi-Bazilevič functions.

A function f ∈ S in the open unit disk D is known as exponentially convex if e f (z)

maps D onto a convex domain ([21], Theorem 1). Let α be a nonzero complex number.
Then a function f ∈ S is known as α-exponentially convex if the following condition is
satisfied:

f is α-exponentially convex ⇐⇒ ℜ
(

1 +
z f ′′(z)
f ′(z)

+ αz f ′(z)
)
> 0 z ∈ D.

The family of all α-exponentially convex functions are denoted by E(α).
Let 0 ≤ ν < 1. A function f ∈ A of the form (1) with a nonzero derivative on on D is

said to be in the class of the close-to-convex function of order ν if there exists a function
ϕ ∈ S∗ such that

ℜ
(

z f ′(z)
ϕ(z)

)
> ν.



Axioms 2024, 13, 25 4 of 20

The family of all close-to-convex functions of order ν are denoted by K(ν). Further
details on K(ν) or K function class may be found in the interesting works done in [22,23]
(see [24] also).

Let 0 ≤ ν < 1. A function f ∈ A of the form (1) with non zero derivative on D is said
to be in the family of the quasi-convex function of order ν if there exists a function χ ∈ C
such that

ℜ
(
(z f ′(z))′

χ′(z)

)
> ν.

The family of all quasi-convex functions of order ν are denoted by Q∗(ν). Note that
every quasi-convex function is close-to-convex. A function is

f ∈ Q∗(ν) ⇔ z f ′ ∈ K(ν).

For details on quasi-convex functions, one may see the work of [25].

2. Preliminaries and Lemmas

For
φ(z) = z + g2z2 + g3z3 + g4z4 + · · · , (3)

one may obtain

ψ(w) = w − g2w2 + (2g2
2 − g3)w3 − (5g3

2 − 5g2g3 + g4)w4 + · · · , (4)

where φ−1(w) = ψ(w). Also, for

χ(z) = z + c2z2 + c3z3 + c4z4 + · · · , (5)

one may obtain

ξ(w) = w − c2w2 + (2c2
2 − c3)w3 − (5c3

2 − 5c2c3 + c4)w4 + · · · , (6)

where χ−1(w) = ξ(w).

In order to prove our main theorems, we need few lemmas and stated now.

Lemma 2 ([2,26]). Let Ω(z) = 1 + Ω1z + Ω2z2 + Ω3z3 + · · · = 1 + ∑∞
n=1 Ωnzn, z ∈ D be

such that Ω(z) ∈ Pk(ν). Then,

|Ωn| ≤ k(1 − ν), ∀ n ∈ N = {1, 2, 3, · · · }. (7)

Lemma 3 ([12], Theorem 2.14, p. 44). If h(z) = z + h2z2 + · · · = z + ∑∞
n=2 hnzn, z ∈ D where

h ∈ S∗, then
|hn| ≤ n, ∀ n ≥ 2. (8)

Strict inequality holds for all n unless f is a rotation of the Koebe function
z

(1 − z)2 .

Lemma 4 ([27]). h(z) = z + h2z2 + · · · = z + ∑∞
n=2 hnzn, z ∈ D where h ∈ S∗, then for δ ∈ R,

∣∣∣h3 − δh2
2

∣∣∣ ≤


3 − 4δ for δ ≤ 1
2

,

1 for
1
2
≤ δ ≤ 1,

4δ − 3 for δ ≥ 1.

(9)



Axioms 2024, 13, 25 5 of 20

Lemma 5 ([15], Corollary, p. 45). If s(z) = z + s2z2 + · · · = z + ∑∞
n=2 snzn, z ∈ D, where s(z)

is a convex function, then
|sn| ≤ 1, ∀ n ≥ 2.

Strict inequality holds for all n unless f is a rotation of the function l defined by l(z) =
z

1 − z
.

Lemma 6 ([28]). If s(z) = z + s2z2 + · · · = z + ∑∞
n=2 snzn, z ∈ D is a bi-convex function, then

for δ ∈ R,

∣∣∣s3 − δs2
2

∣∣∣ ≤


1 − δ for δ <
2
3

,

1
3

for
2
3
≤ δ ≤ 4

3
,

δ − 1 for δ >
4
3

.

(10)

Lemma 7 ([29]). If s(z) = z + ∑∞
n=2 snzn, z ∈ D, where s(z) is a convex function, then for

δ ∈ R,

∣∣∣s3 − δs2
2

∣∣∣ ≤


1 − δ for δ <
2
3

,

1 for
2
3
≤ δ ≤ 4

3
,

δ − 1 for δ >
4
3

.

(11)

In the present exploration, we introduced novel subclasses, namely the class of
bi-Bazilevič functions, bi-quasi-convex functions and α-exponentially bi-convex functions
associated with bounded boundary rotation. For the new subclasses of functions that are
being introduced, the authors obtain the first two initial coefficient bounds. Additionally,
for the newly defined subclasses of bi-univalent functions, the famous Fekete–Szegö
coefficient bounds are also found.

3. Coefficient Bounds for Bβ
σ(k, ν)

In this section, we introduce a new class of bi-Bazilevič functions with bounded
boundary rotation of order ν and type β of bi-univalent functions.

Definition 1. Let 0 ≤ ν < 1, k ∈ [2, 4] and β > 0. Additionally, let f ∈ σ given by (1) be such
that f ′(z) ̸= 0 on D. Then, f is known as a bi-Bazilevič function with bounded boundary rotation
of order ν if there exist two functions φ ∈ S∗ and ψ ∈ S∗ such that the following conditions hold
good:

z f ′(z) f β−1(z)
φβ(z)

∈ Pk(ν)

and
wg′(w)gβ−1(w)

ψβ(w)
∈ Pk(ν)

with g being the analytic continuation of f−1 to the open unit disk D. The family of all bi-Bazilevič
functions with bounded boundary rotation of order ν and type β is denoted by Bβ

σ(k, ν).

Remark 1.

(i) When β = 1, we have Bβ
σ(k, ν) ≡ B1

σ(k, ν) ≡ Kσ(k, ν), the family consisting of bi-close-to-convex
functions with bounded boundary rotation of order ν.

(ii) When β = 1 and ν = 0, one may obtain Bβ
σ(k, ν) ≡ B1

σ(k, 0) ≡ Kσ(k), the family consisting
of bi-close-to-convex functions with bounded boundary rotation.



Axioms 2024, 13, 25 6 of 20

(iii) When k = 2, we have Bβ
σ(k, ν) ≡ Bβ

σ(2, ν) ≡ Bβ
σ(ν), the family consisting of bi-Bazilevič

functions of order ν and type β.
(iv) If k = 2 and ν = 0, we have Bβ

σ(k, ν) ≡ Bβ
σ(2, 0) ≡ Bσ(β), the family consisting of

bi-Bazilevič functions of type β.
(v) By selecting the value of k = 2 and β = 1, we have Bβ

σ(k, ν) ≡ B1
σ(2, ν) ≡ Kσ(ν), the family

of bi-close-to-convex functions of order ν.

Now, we attain the first two initial coefficient estimates and |a3 − δa2
2| for the new class

Bβ
σ(k, ν).

Theorem 1. Let 0 ≤ ν < 1, k ∈ [2, 4] and β > 0. If the function f ∈ σ given by (1) belong to the
class Bβ

σ(k, ν), then

|a2| ≤

√
2k(1 − ν)(2β + 1) + 4β(1 + β)

(1 + β)(2 + β)
, (12)

|a3| ≤
3β(1 + β) + 2k(1 − ν)(2β + 1)

(1 + β)(2 + β)
. (13)

Further, if δ ∈ R, then

|a3 − δa2
2| ≤



β(1 + β)(3 − 4δ) + 4βk(1 − ν)(1 − δ) + 2k(1 − ν)(1 − δ)

(1 + β)(2 + β)
for δ <

1 − β

2
,

β(1 + β)(3 − 4δ) + 4βk(1 − ν)(1 − δ) + (1 + β)k(1 − ν)

(1 + β)(2 + β)
for

1 − β

2
≤ δ <

1
2

,

β(1 + β) + 4βk(1 − ν)(1 − δ) + (1 + β)k(1 − ν)

(1 + β)(2 + β)
for

1
2
≤ δ < 1,

β(1 + β)(4δ − 3) + 4βk(1 − ν)(δ − 1) + (1 + β)k(1 − ν)

(1 + β)(2 + β)
for 1 ≤ δ <

β + 3
2

,

β(1 + β)(4δ − 3) + 4βk(1 − ν)(δ − 1) + 2k(1 − ν)(δ − 1)
(1 + β)(2 + β)

for δ ≥ β + 3
2

.

(14)

Proof. Let g, φ and ψ be represented, respectively, in the form (2)–(4). As the function
f ∈ Bβ

σ(k, ν), there exist functions p ∈ Pk(ν) and q ∈ Pk(ν) that are analytic with

p(z) = 1 +
∞

∑
n=1

pnzn = 1 + p1z + p2z2 + p3z3 · · ·

and
q(z) = 1 + q1z + q2z2 + · · ·

satisfying
z f ′(z) f β−1(z)

φβ(z)
= p(z) (15)

and
wg′(w)gβ−1(w)

ψβ(w)
= q(w). (16)

From (15) and (16), we attain
(1 + β)a2 = βg2 + p1, (17)

(2 + β)a3 = βg3 + βg2a2 + p2 + βg2 p1 + a2 p1 −
β(β + 3)

2
a2

2 +
β(β − 1)

2
g2

2, (18)

−(1 + β)a2 = −βg2 + q1 (19)
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and

−(2 + β)a3 = −βg3 + βg2a2 + q2 − βg2q1 − a2q1 −
8 + β − β2

2
a2

2 +
β(β + 3)

2
g2

2. (20)

Then, from (17) and (19), we obtain p1 = −q1. Adding (18), (20), and by using relation
p1 = −q1, we obtain

a2
2 =

2βg2 p1 + β(1 + β)g2
2 + p2 + q2

(1 + β)(2 + β)
. (21)

Now, by triangle inequality and by using Lemmas 2 and 3 in (21), we obtain

|a2|2 ≤ 2k(1 − ν)(2β + 1) + 4β(1 + β)

(1 + β)(2 + β)
. (22)

Upon simplification of Equation (22) gives (12). Again from (18), (20) and by using
relation p1 = −q1 and (21), we obtain

a3 =
2β(1 + β)g3 + 4βg2 p1 + p2(β + 3) + q2(1 − β)

2(1 + β)(2 + β)
. (23)

Now, by triangle inequality and by using Lemma 2 and Lemma 3 in (23), which
gives (13), for any δ ∈ R and by Equations (21) and (23), we have

a3 − δa2
2 =

2β(1 + β)[g3 − δg2
2] + 4βg2 p1[1 − δ] + p2[β + 3 − 2δ] + q2[1 − β − 2δ]

2(1 + β)(2 + β)
. (24)

Now, by triangle inequality and by using Lemma 2 and Lemma 3 in (24), we obtain

|a3 − δa2
2| ≤

2β(1 + β)|g3 − δg2
2|+ 8βk(1 − ν)|1 − δ|+ k(1 − ν)[|β + 3 − 2δ|+ |1 − β − 2δ|]

2(1 + β)(2 + β)
. (25)

By applying Lemma 4 in (25), we obtain (14). The proof of Theorem 1 is now
completed.

By selecting the value of β as β = 1, Theorem 1 reduces to the next coefficient bounds
for the class Kσ(k, ν), and is given now below as a corollary.

Corollary 1. Let 0 ≤ ν < 1 and k ∈ [2, 4]. If f ∈ σ given by (1) be in the class Kσ(k, ν), then

|a2| ≤
√

4 + 3k(1 − ν)

3
,

|a3| ≤ 1 + k(1 − ν).

Further, if δ ∈ R, then

∣∣∣a3 − δa2
2

∣∣∣ ≤



1
3
[(3 − 4δ) + 3k(1 − ν)(1 − δ)] for δ < 0,

1
3
[(3 − 4δ) + k(1 − ν)(3 − 2δ)] for 0 ≤ δ <

1
2

,

1
3
[1 + k(1 − ν)(3 − 2δ)] for

1
2
≤ δ < 1,

1
3
[(4δ − 3) + k(1 − ν)(2δ − 1)] for 1 ≤ δ < 2,

1
3
[(4δ − 3) + 3k(1 − ν)(δ − 1)] for δ ≥ 2.
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Remark 2. Corollary 1 verifies the coefficient bounds of |a2|, |a3| and |a3 − µa2
2|, attained by

Prathviraj et al. [30].

By making a selection for k as k = 2, Theorem 1 reduces to the following coefficient
estimates for the class Bβ

σ(ν), and is given now below as a corollary.

Corollary 2. Let 0 ≤ ν < 1 and β ≥ 0. If the function f ∈ σ given by (1) be in the class Bβ
σ(ν),

then

|a2| ≤

√
4(1 − ν)(2β + 1) + 4β(1 + β)

(1 + β)(2 + β)
,

|a3| ≤
3β(1 + β) + 4(1 − ν)(2β + 1)

(1 + β)(2 + β)
.

Further, if δ ∈ R, then

|a3 − δa2
2| ≤



β(1 + β)(3 − 4δ) + 8β(1 − ν)(1 − δ) + 4(1 − ν)(1 − δ)

(1 + β)(2 + β)
for δ <

1 − β

2
,

β(1 + β)(3 − 4δ) + 8β(1 − ν)(1 − δ) + 2(1 + β)(1 − ν)

(1 + β)(2 + β)
for

1 − β

2
≤ δ <

1
2

,

β(1 + β) + 8β(1 − ν)(1 − δ) + 2(1 + β)(1 − ν)

(1 + β)(2 + β)
for

1
2
≤ δ < 1,

β(1 + β)(4δ − 3) + 8β(1 − ν)(δ − 1) + 2(1 + β)(1 − ν)

(1 + β)(2 + β)
for 1 ≤ δ <

β + 3
2

,

β(1 + β)(4δ − 3) + 8β(1 − ν)(δ − 1) + 4(1 − ν)(δ − 1)
(1 + β)(2 + β)

for δ ≥ β + 3
2

.

Let us make an assumption for ϕ(z) as ϕ(z) = z. For this choice of ϕ, let us denote
the class Bβ

σ(k, ν) by Bβ
σ [k, ν]. In fact, the class Bβ

σ [k, ν] will be consisting of functions of the
form (1) with f ∈ σ, and satisfying the conditions(

z
f (z)

)1−β

f ′(z) ∈ Pk(ν)

and (
w

g(w)

)1−β

g′(z) ∈ Pk(ν),

with g being the analytic continuation of f−1 to the open unit disk D. For attaining
the bounds for the class Bβ

σ [k, ν], the computation that may be akin to Theorem 1 has
to be worked again. However, it is affirmed at this instant as a theorem without the
details concerned.

Theorem 2. Let 0 ≤ ν < 1, k ∈ [2, 4] and β ≥ 0. A function f ∈ σ given by (1) be in the class
Bβ

σ [k, ν], then

|a2| ≤

√
2k(1 − ν)

(1 + β)(2 + β)
, (26)

|a3| ≤
2k(1 − ν)

(1 + β)(2 + β)
. (27)
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Further, if δ ∈ R, then

|a3 − δa2
2| ≤



2k(1 − ν)(1 − δ)

(1 + β)(2 + β)
for δ <

1 − β

2
,

k(1 − ν)

β + 2
for

1 − β

2
≤ δ <

3 + β

2
,

2k(1 − ν)(δ − 1)
(1 + β)(2 + β)

for δ ≥ 3 + β

2
.

(28)

Remark 3.

(i) By making a choice for β as β = 1 in Theorem 2, we have the class Bβ
σ [k, ν] ≡ Nσ(k, ν),

consisting of all functions f ∈ σ of the form (1) and satisfying the conditions

f ′(z) ∈ Pk(ν)

and
g′(w) ∈ Pk(ν).

(ii) By making a choice of β as β = 1 and k = 2 in Theorem 2, we have the class Bβ
σ [k, ν] ≡ Hσ(ν),

consisting of all functions f ∈ σ of the form (1) and satisfying the conditions

ℜ( f ′(z)) > ν

and
ℜ(g′(w)) > ν.

By making a selection for β as β = 1, Theorem 2 reduces to the following coefficient
estimates for the class Nσ(k, ν), and is given now below as a corollary.

Corollary 3. Let 0 ≤ ν < 1 and k ∈ [2, 4]. A function f ∈ σ given by (1) is said to be in the class
Nσ(k, ν), then

|a2| ≤
√

k(1 − ν)

3
,

|a3| ≤
k(1 − ν)

3
.

Further, if δ ∈ R, then

|a3 − δa2
2| ≤



k(1 − ν)(1 − δ)

3
for δ <

1 − β

2
,

k(1 − ν)

3
for

1 − β

2
≤ δ <

3 + β

2
,

k(1 − ν)(δ − 1)
3

for δ ≥ 3 + β

2
.

By making a selection for β and k as β = 1 and k = 2, Theorem 2 reduces to the
following coefficient estimates for the class Hσ(ν), and is given now below as a corollary.

Corollary 4. Let 0 ≤ ν < 1. A function f ∈ σ given by (1) is said to be in the class Hσ(ν), then

|a2| ≤
√

2(1 − ν)

3
,
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|a3| ≤
2(1 − ν)

3
.

Further, if δ ∈ R, then

|a3 − δa2
2| ≤



2(1 − ν)(1 − δ)

3
for δ < 0,

2(1 − ν)

3
for 0 ≤ δ < 2,

2(1 − ν)(δ − 1)
3

for δ ≥ 2.

Definition 2. Let 0 ≤ ν < 1, k ∈ [2, 4] and η > 0. A function f ∈ σ given by (1) is said to be in
the class T η

σ (k, ν) if the following conditions holds good:(
f (z)

z

)η

∈ Pk(ν)

and (
g(w)

w

)η

∈ Pk(ν).

Here, g is the analytic continuation of f−1 to the open unit disk D.

Theorem 3. Let 0 ≤ ν < 1, k ∈ [2, 4] and η > 0. If f given by (1) is in the class T η
σ (k, ν), then

|a2| ≤

√
2k(1 − ν)

η(η + 1)
, (29)

|a3| ≤
2k(1 − ν)

η(η + 1)
(30)

and

|a3 − δa2
2| ≤



2k(1 − ν)(1 − δ)

η(η + 1)
for δ <

1 − η

2
,

k(1 − ν)

η
for

1 − η

2
≤ δ <

η + 3
2

,

2k(1 − ν)(δ − 1)
η(η + 1)

for δ ≥ η + 3
2

.

(31)

Proof. Let g be given in the form (2). Since f ∈ T η
σ (k, ν), there exist functions p, q ∈ Pk(ν)

that are analytic with

p(z) = 1 +
∞

∑
n=1

pnzn = 1 + p1z + p2z2 + · · ·

and
q(z) = 1 + q1z + q2z2 + · · ·

satisfying (
f (z)

z

)η

= p(z) (32)

and (
g(w)

w

)η

= q(w). (33)
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Hence, from (32) and (33), we obtain

ηa2 = p1, (34)

ηa3 +
η(η − 1)

2
a2

2 = p2, (35)

−ηa2 = q1 (36)

and

η(2a2
2 − a3) +

η(η − 1)
2

a2
2 = q2. (37)

Then, from (34) and (36), we obtain p1 + q1 = 0. Adding (35) and (37), we obtain

a2
2 =

p2 + q2

η(η + 1)
. (38)

By using triangle inequality and Lemma 2 in (38), we obtain

|a2|2 ≤ 2k(1 − ν)

η(η + 1)
. (39)

Hence, (39) gives (29). Now, again from (35), (37) and (38), we get

a3 =
p2[η + 3] + q2[1 − η]

2η(η + 1)
. (40)

By using triangle inequality and Lemma 2 in (40) which gives (30), for any δ ∈ R and
by Equation (38) and (40), we have

a3 − δa2
2 =

p2[η + 3 − 2δ] + q2[1 − η − 2δ]

2η(η + 1)
. (41)

By using triangle inequality and Lemma 2 in (41), we obtain

|a3 − δa2
2| ≤

k(1 − ν)[|η + 3 − 2δ|+ |1 − η − 2δ|]
2η(η + 1)

. (42)

Upon simplification of Equation (42) gives (31). The proof of Theorem 3 is now
completed.

Remark 4. For η = 1, Theorem 3 verifies the coefficient bounds of |a2| and |a3|, attained by
Prathviraj et al. [30].

4. Coefficient Bounds for Q∗
σ(k, ν)

In this section, we introduce and obtain the initial bounds for the family of bi-quasi-convex
with bounded boundary rotation of order ν, which we define now.

Definition 3. Let 0 ≤ ν < 1 and k ∈ [2, 4]. Let the function of the form (1) belong to the class σ
such that f ′(z) ̸= 0 on D. Then, f is known as bi-quasi-convex with bounded boundary rotation of
order ν if there exist functions χ ∈ C and ξ ∈ C satisfying

(z f ′(z))′

χ′(z)
∈ Pk(ν)

and
(wg′(w))′

ξ ′(w)
∈ Pk(ν).
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Here, g is the analytic continuation of f−1 to D. Let Q∗
σ(k, ν) denote the family of all

bi-quasi-convex functions with bounded boundary rotation of order ν.

Remark 5.

(i) For the choice of k = 2, we get Q∗
σ(k, ν) ≡ Q∗

σ(2, ν) ≡ Q∗
σ(ν), the family of bi-quasi-convex

functions of order ν.
(ii) For k = 2 and ν = 0, we get Q∗

σ(k, ν) ≡ Q∗
σ(2, 0) ≡ Q∗

σ, the family of bi-quasi-convex
functions.

Next, we attain the initial coefficient bounds and the bound |a3 − δa2
2| for the class

Q∗
σ(k, ν).

Theorem 4. Let 0 ≤ ν < 1 and k ∈ [2, 4] and let f given by (1) be in the class Q∗
σ(k, ν). Then

|a2| ≤
√

1 + k(1 − ν)

3
, (43)

|a3| ≤
1 + k(1 − ν)

3
. (44)

Further, if δ ∈ R, then

|a3 − δa2
2| ≤



(1 + M)(1 − δ)

3
for δ < 0,

3(1 − δ) + M(3 − 2δ)

9
for 0 ≤ δ <

2
3

,

1 + M(3 − 2δ)

9
for

2
3
≤ δ < 1,

1 + M(2δ − 1)
9

for 1 ≤ δ ≤ 4
3

,

3(δ − 1) + M(2δ − 1)
9

for
4
3
< δ < 2,

(1 + M)(δ − 1)
3

for δ ≥ 2,

(45)

where
M ≤ k(1 − ν).

Proof. Let us consider the functions g, χ and ξ, which are represented as in Equations (2),
(5) and (6). Since f ∈ Q∗

σ(k, ν), there exist functions p, q ∈ Pk(ν) that are analytic with

p(z) = 1 +
∞

∑
n=1

pnzn = 1 + p1z + p2z2 + · · ·

and
q(z) = 1 + q1z + q2z2 + · · ·

satisfying
(z f ′(z))′

χ′(z)
= p(z) (46)

and
(wg′(w))′

ξ ′(w)
= q(w). (47)
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From (46) and (47), we obtain

4a2 = 2c2 + p1, (48)

9a3 = 3c3 + 2c2 p1 + p2, (49)

−4a2 = −2c2 + p1 (50)

and
18a2

2 − 9a3 = 6c2
2 − 3c3 − 2c2q1 + q2. (51)

Then, from (48) and (50), we obtain p1 + q1 = 0. Adding (49) and (51), we obtain

18a2
2 = 6c2

2 + 4c2 p1 + p2 + q2. (52)

By applying triangle inequality now and using Lemmas 2 and 5 in (52), we obtain

|a2
2| ≤

1 + k(1 − ν)

3
. (53)

Upon simplification of Equation (53) gives (43). Now, again from (49) and (51), we
obtain

9a3 = 3c3 + 2c2 p1 + p2. (54)

By applying triangle inequality now and using Lemma 2 and Lemma 5 in (54), we
obtain

3|a3| ≤ 1 + k(1 − ν). (55)

Upon simplification of Equation (55) gives (44). For any δ ∈ R and by Equations (53)
and (55), we have

a3 − δa2
2 =

6[c3 − δc2
2] + 4c2 p1[1 − δ] + p2[2 − δ]− δq2

18
. (56)

By applying triangle inequality now and using Lemma 2 in (56), we obtain

|a3 − δa2
2| ≤

6|c3 − δc2
2|+ 4k(1 − ν)|1 − δ|+ k(1 − ν)[|2 − δ|+ |δ|]

18
. (57)

Now, by using Lemma 6 in (57), we obtain (57). This completes the proof of
Theorem 4.

By making a selection for k as k = 2, Theorem 4 gives the coefficient estimates for the
class Q∗

σ(ν), and is declared now as a corollary as below.

Corollary 5. Let 0 ≤ ν < 1. If a function f ∈ σ of the form (1) belongs to the class Q∗
σ(ν), then

we have

|a2| ≤
√

1 + 2(1 − ν)

3
,

|a3| ≤
1 + 2(1 − ν)

3
.
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Further, if δ ∈ R, then

|a3 − δa2
2| ≤



(1 + N)(1 − δ)

3
for δ < 0,

3(1 − δ) + N(3 − 2δ)

9
for 0 ≤ δ <

2
3

,

1 + N(3 − 2δ)

9
for

2
3
≤ δ < 1,

1 + N(2δ − 1)
9

for 1 ≤ δ ≤ 4
3

,

3(δ − 1) + N(2δ − 1)
9

for
4
3
< δ < 2,

(1 + N)(δ − 1)
3

for δ ≥ 2,

where
N ≤ 2(1 − ν).

For the special choices of ν = 0 and k = 2, Theorem 4 will reduce to the following
coefficient estimates for the class Q∗

σ, and is detailed below as a corollary.

Corollary 6. If a function f ∈ σ of the form (1) belongs to the class Q∗
σ, then

|a2| ≤ 1,

|a3| ≤ 1.

Further, if δ ∈ R, then

|a3 − δa2
2| ≤



1 − δ for δ < 0,

9 − 7δ

9
for 0 ≤ δ <

2
3

,

7 − 4δ

9
for

2
3
≤ δ < 1,

4δ − 1
9

for 1 ≤ δ ≤ 4
3

,

7δ − 5
9

for
4
3
< δ < 2,

δ − 1 for δ ≥ 2.

Remark 6. It can be visible at this point that for the family of bi-quasi-convex functions, the first
two initial coefficient bounds are same as for a quasi-convex function. Since the coefficients are
unpredictable, it may be interesting to verify whether all coefficients of bi-quasi-convex functions
behave in the same way as the first two coefficients.

Let us make an assumption now as χ(z) = z. Moreover, for the above assumption,
let us denote the class Q∗

σ(k, ν) by Fσ[k, ν]. In fact, the class Fσ[k, ν] will be consisting of
functions of the f ∈ σ of the form (1) and satisfying the conditions

f ′(z) + z f ′′(z) ∈ Pk(ν)

and
g′(w) + wg′′(w) ∈ Pk(ν)
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with g being the analytic continuation of f−1 to the open unit disk D.
However, for attaining the bounds for the class Fσ[k, ν], the computation that may

be akin to Theorem 4 has to be worked again. However, it is affirmed at this instant as a
theorem without the details concerned.

Theorem 5. Let 0 ≤ ν < 1, k ∈ [2, 4]. If a function f ∈ σ given by (1) is in the class Fσ[k, ν],
then

|a2| ≤
√

k(1 − ν)

3
,

|a3| ≤
k(1 − ν)

9
and

|a3 − δa2
2| ≤



k(1 − ν)(1 − δ)

9
for δ < 0,

k(1 − ν)

9
for 0 ≤ δ < 2,

k(1 − ν)(δ − 1)
9

for δ ≥ 2.

By selecting the value of k as k = 2 in Theorem 5, we have the class Fσ[2, ν] ≡ Fσ[ν],
which consists of all functions of the form (1) belonging to the class f ∈ σ and satisfying
the conditions

ℜ
(

f ′(z) + z f ′′(z)
)
> ν

and
ℜ
(

g′(w) + wg′′(w)
)
> ν.

The following corollary that is stated now gives the coefficient estimates for the class
Fσ[ν], and is as below.

Corollary 7. Let 0 ≤ ν < 1. A function f ∈ σ given by (1) be in the class Fσ[ν], then

|a2| ≤
√

2(1 − ν)

3
,

|a3| ≤
2(1 − ν)

9
and

|a3 − δa2
2| ≤



2(1 − ν)(1 − δ)

9
for δ < 0,

2(1 − ν)

9
for 0 ≤ δ < 2,

2(1 − ν)(δ − 1)
9

for δ ≥ 2.
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Remark 7. Instead of applying Lemma 6, if we use Lemma 7, the inequality (45) becomes

|a3 − δa2
2| ≤



(1 + M)(1 − δ)

3
for δ < 0,

3(1 − δ) + M(3 − 2δ)

9
for 0 ≤ δ <

2
3

,

3 + M(3 − 2δ)

9
for

2
3
≤ δ < 1,

3 + M(2δ − 1)
9

for 1 ≤ δ ≤ 4
3

,

3(δ − 1) + M(2δ − 1)
9

for
4
3
< δ < 2,

(1 + M)(δ − 1)
3

for δ ≥ 2,

(58)

where
M ≤ k(1 − ν).

Example 1. Let the function f be given by

f (z) = z +
z3

6
, χ(z) = z − z3

9
.

Then, we have

g(w) = w − w3

6
, ξ(w) = w +

w3

9
.

These functions belong to the class Q∗
σ(k, ν).

5. Coefficient Bounds for Eα
σ(k, ν)

In this section, we introduce and obtain the initial bounds for the family of α-
exponentially-bi-convex functions with bounded boundary rotation of order ν, which
we define now.

Definition 4. Let 0 ≤ ν < 1, k ∈ [2, 4] and α ∈ C \ {0}. Let f ∈ σ be of the form (1) such that
f ′(z) ̸= 0 on D. Then, f is known as α-exponentially-bi-convex function with bounded boundary
rotation of order ν if the following conditions holds good:

1 +
z f ′′(z)
f ′(z)

+ αz f ′(z) ∈ Pk(ν)

and

1 +
wg′′(w)

g′(w)
+ αwg′(w) ∈ Pk(ν).

Here,g is the analytic continuation of f−1 to the open unit disk D. We denote the family of all
α-exponentially-bi-convex functions with bounded boundary rotation of order ν by Eα

σ (k, ν).

Remark 8.

(i) If α = 1, Eα
σ(k, ν) reduces to Eα

σ(k, ν) ≡ E1
σ(k, ν) ≡ Eσ(k, ν), the family of exponentially-bi-convex

functions with bounded boundary rotation of order ν.
(ii) If α = 1 and ν = 0, Eα

σ (k, ν) reduces to Eα
σ (k, ν) ≡ E1

σ(k, 0) ≡ Eσ(k), the family of
exponentially-bi-convex functions with bounded boundary rotation.

(iii) If k = 2, Eα
σ (k, ν) reduces to Eα

σ (k, ν) ≡ Eα
σ (2, ν) ≡ Eα

σ (ν), the family consisting of
α-exponentially-bi-convex functions of order ν.
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(iv) When α = 1 and k = 2, Eα
σ (k, ν) reduces to Eα

σ (k, ν) ≡ E1
σ(2, ν) ≡ Eσ(ν), the family of

exponentially-bi-convex functions of order ν.

Next, we attain the initial coefficient bounds and |a3 − δa2
2| for the class Eα

σ (k, ν).

Theorem 6. Let 0 ≤ ν < 1, k ∈ [2, 4] and α ∈ C \ {0}. Let f given by (1) be in the class Eα
σ (k, ν),

then

|a2| ≤
√

k(1 − ν)

2
, (59)

|a3| ≤
|α|2 + |α|k(1 − ν) + 3k(1 − ν)

6
. (60)

Further, if δ ∈ R, then

|a3 − δa2
2| ≤



|α|2 + |α|k(1 − ν) + 3k(1 − ν)(1 − δ)

6
for δ <

2
3

,

|α|2 + k(1 − ν)(|α|+ 1)
6

for
2
3
≤ δ <

3
4

,

|α|2 + |α|k(1 − ν) + 3k(1 − ν)(δ − 1)
6

for δ ≥ 3
4

.

(61)

Proof. Since f ∈ Eα
σ (k, ν), there exist functions p, q ∈ Pk(ν) that are analytic with

p(z) = 1 + p1z + p2z2 + · · · ,

q(z) = 1 + q1z + q2z2 + · · ·

and satisfying

1 +
z f ′′(z)
f ′(z)

+ αz f ′(z) = p(z) (62)

and

1 +
wg′′(w)

g′(w)
+ αwg′(w) = q(w). (63)

From (62) and (63), we attain

2a2 + α = p1, (64)

6a3 + 4αa2 = 2a2 p1 + p2, (65)

−2a2 + α = q1 (66)

and
12a2

2 − 6a3 − 4αa2 = −2a2q1 + q2. (67)

Then, from (64) and (66), we obtain p1 + q1 = 2α. Adding (65) and (67), we obtain

12a2
2 = 2a2(p1 − q1) + p2 + q2. (68)

Now, by using (64) and (66) in (68), we obtain

4a2
2 = p2 + q2. (69)

Hence, by using triangle inequality and Lemma 2 in (69), we obtain

2|a2|2 ≤ k(1 − ν). (70)
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Upon simplification of Equation (70) gives (59). Again from (65), (67) and by using (69),
we obtain

6a3 = α2 − αp1 + 2p2 + q2. (71)

Hence, by using triangle inequality and Lemma 2 in (71), we obtain

6|a3| ≤ |α|2 + |α|k(1 − ν) + 3k(1 − ν). (72)

Upon simplification of Equation (72) gives (60). For any δ ∈ R and by Equations (69)
and (71), we have

a3 − δa2
2 =

2α2 − 2αp1 + p2(4 − 3δ) + q2(2 − 3δ)

12
. (73)

Hence, by using triangle inequality and Lemma 2 in (73), we obtain

|a3 − δa2
2| ≤

2|α|2 + 2|α|k(1 − ν) + k(1 − ν)[|4 − 3δ|+ |2 − 3δ|]
12

. (74)

Upon simplification of Equation (74) at once implies (61). The proof of Theorem 6 is
thus completed.

Remark 9. It is interesting to observe that the coefficient bound of |a2| is independent of α.

For the special choice of α = 1, Theorem 6 gives the following coefficient estimates for
the class Eσ(k, ν) and is stated as a corollary below.

Corollary 8. Let 0 ≤ ν < 1 and k ∈ [2, 4]. Let f given by (1) be in the class Eσ(k, ν). Then,

|a2| ≤
√

(1 − ν)k
2

,

|a3| ≤
1 + 4k(1 − ν)

6
and

|a3 − δa2
2| ≤



1 + k(1 − ν)(1 + 3(1 − δ))

6
for δ <

2
3

,

1 + 2k(1 − ν)

6
for

2
3
≤ δ <

3
4

,

1 + k(1 − ν)(1 + 3(δ − 1))
6

for δ ≥ 3
4

.

For the special selection of k = 2, Theorem 6 reduces to the next coefficient bounds for
the class Eα

σ (ν), and is stated as a corollary as follows.

Corollary 9. Let 0 ≤ ν < 1 and α ∈ C \ {0}. Let f ∈ Eα
σ (ν) be given as in (1). Then, we have

the estimates
|a2| ≤

√
1 − ν,

|a3| ≤
|α|2 + |α|2(1 − ν) + 6(1 − ν)

6
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and

|a3 − δa2
2| ≤



|α|2 + |α|2(1 − ν) + 6(1 − ν)(1 − δ)

6
for δ <

2
3

,

|α|2 + 2(1 − ν)(|α|+ 1)
6

for
2
3
≤ δ <

3
4

,

|α|2 + |α|2(1 − ν) + 6(1 − ν)(δ − 1)
6

for δ ≥ 3
4

.

6. Concluding Remarks and Observations

In this investigation, the authors have introduced four new subclasses of σ, the class
of bi-univalent functions of order ν with bounded boundary rotation. The first two initial
upper bounds |a2| and |a3| for the Taylor–Maclaurin’s coefficients for the classes Bβ

σ(k, ν),
Q∗

σ(k, ν) and Eα
σ (k, ν) are established. Looking at the initial coefficients, it is indeed easy to

see that there is an unpredictability in the nature of coefficients and one cannot predict the
next coefficients from the existing one. Also, Fekete–Szegö coefficient bounds for the classes
Bβ

σ(k, ν), Q∗
σ(k, ν) and Eα

σ (k, ν) are moreover established. Motivating observations on the
foremost consequences as well as improvements of the previous bounds were also specified.
For the selection of ν = 0, interested researchers can also obtain additional consequences
and corollaries, and those details are omitted here.
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26. Alkahtani, B.S.T.; Goswami, P.; Bulboacă, T. Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent

functions. Miskolc Math. Notes. 2016, 17, 739–748. [CrossRef]
27. Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12.

[CrossRef]
28. Zaprawa, P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin 2014, 21,

169–178. [CrossRef]
29. Kanas, S.R. An unified approach to the Fekete-Szegö problem. Appl. Math. Comput. 2012, 218, 8453–8461. [CrossRef]
30. Sharma, P.; Sivasubramanian, S.; Cho, N.E. Initial coefficient bounds for certain new subclasses of bi-univalent functions with

bounded boundary rotation. AIMS Math. 2023, 8, 29535–29554. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/17476939708815010
http://dx.doi.org/10.2307/2046556
http://dx.doi.org/10.1307/mmj/1031710535
http://dx.doi.org/10.1155/S0161171290000473
http://dx.doi.org/10.1155/S0161171287000310
http://dx.doi.org/10.18514/MMN.2017.1565
http://dx.doi.org/10.1090/S0002-9939-1969-0232926-9
http://dx.doi.org/10.36045/bbms/1394544302
http://dx.doi.org/10.1016/j.amc.2012.01.070
http://dx.doi.org/10.3934/math.20231512

	Introduction
	Preliminaries and Lemmas
	Coefficient Bounds for B(k,)
	Coefficient Bounds for Q(k,)
	Coefficient Bounds for E(k,)
	Concluding Remarks and Observations
	References

