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Abstract: Differential cohomology is a topic that has been attracting considerable interest. Many inter-
esting applications in mathematics and physics have been known, including the description of WZW
terms, string structures, the study of conformal immersions, and classifications of Ramond–Ramond
fields, to list a few. Additionally, it is an interesting application of the theory of infinity categories.
In this paper, we give an expository account of differential cohomology and the classification of
higher line bundles (also known as S1-banded gerbes) with a connection.We begin with how Čech
cohomology is used to classify principal bundles and define their characteristic classes, introduce
differential cohomology à la Cheeger and Simons, and introduce S1-banded gerbes with a connection.
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1. Introduction

Higher differential geometry is a study of differential geometry in the context of
homotopy theory and higher category theory. It appears in many aspects of differential
geometry, such as the theory of the higher analog of line bundles with a connection,
considered as sheaves of ∞-groupoids, equivariant refinements, and the theory of orbifolds,
and derived geometry (see, for example, [1–3]).

Differential cohomology and the theory of gerbes are topics that have been attracting
interest. The idea of differential cohomology is that we can combine data from cohomology
groups and differential forms in a homotopy theoretic way. The first construction of
differential cohomology was due to Deligne [4] and Cheeger and Simons [5], and numerous
applications have been found to date. A few examples include index theorems, the study of
conformal immersions, topological quantum field theories, arithmetic Chow groups, and
hyperbolic volumes. It is also an interesting application of the theory of infinity categories
(see [5–7]). This theory, as generalized by Hopkins and Singer [8], explicitly constructs a
differential cohomology theory for any generalized cohomology theory and brings in all of
the objects in the category of spectra as topological data for differential extension.

S1-banded n-gerbes are higher analogs of principal S1-bundles. Just as line bundles
represent, up to isomorphism, the degree-two integral cohomology group of the base space,
one-gerbes (or simply gerbes) are geometric objects representing, up to isomorphism,
the degree-three integral cohomology, and n-gerbes represent the degree n + 2 integral
cohomology. Endowed with a connection, we have the following pattern of classification:

Ĥ1(M) ∼= C∞(M, S1)

Ĥ2(M) ∼= Prin∇S1(M)/ ∼=
Ĥ3(M) ∼= Grb∇(M)/ ∼=
Ĥ4(M) ∼= 2-Grb∇(M)/ ∼=
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and so on. It is thus clear that differential cohomology is the proper home for classifying
gerbes with a connection and their higher-categorical generalizations.

Historically, gerbes were first conceived by Giraud [9] as sheaves of groupoids
(cf. Grothendieck [10]) in the study of non-abelian cohomology. Perhaps the most popular
model of gerbes in the literature would be bundle gerbes by Murray and Stevenson [11,12],
which has an obvious advantage in that we can remain in the category of smooth manifold
while handling it. There are numerous applications of gerbes with a connection, includ-
ing the description of the Wess–Zumino–Witten terms, string structures, classifications of
Ramond–Ramond fields, and topological insulators (see [13–15]). Of course, gerbes banded
with other (possibly non-abelian) groups are of interest as well. We do not treat them in
this paper, but interested readers should compare Schreiber and Waldorf [16].

The goal of this paper is to give a self-contained expository account of differential
cohomology and gerbes and to guide readers to the literature at the forefront of this
research. There are several well-written research papers and dissertations in this area from
which one can learn about this topic. Nonetheless, there are not many monographs and
expository articles for second- or third-year Ph.D. students trying to choose a topic for
their dissertations. Perhaps Brylinski [17] is one of such a limited list of compilations. This
paper pursues an exposition that is accessible to early-year Ph.D. students and takes the
length of three standard 1 h talks. Indeed, this paper is based on the author’s notes for
a minicourse at the 13th Korea Institute for Advanced Study (KIAS) Winter School on
Differential Geometry, intended to accommodate non-experts in the audience.

This paper is organized as follows. In Section 2, we give a gentle introduction to the
characteristic classes of complex line bundles and U1-gerbes. We begin with the principal
G-bundles and Čech cohomology with coefficients in G, introduce relevant results from
Dixmier and Douady [18], and then give various examples, each of which leads to the
construction of a characteristic class. In Section 3, we introduce the differential cohomology
group, as in Cheeger–Simons [5], and introduce a classification of complex line bundles with
connection by the degree-two differential cohomology group. In Section 4, we introduce
bundle gerbes and their Dixmier–Douady classes. After that, we explain what connections,
curvings, and three-curvatures are. We then define the Deligne complex and introduce a
classification of bundle gerbes with connection by the degree-three differential cohomology
group. We also introduce the two-groupoid structure of the category of bundle gerbes with
a connection.

2. Čech Cohomology and Characteristic Classes

In this section, we shall review the principal G-bundles and how Čech cohomology
can be used to classify them and define their characteristic classes. A good reference for
learning more about these topics is Brylinsky [17], which has a broader account.

Definition 1. Let G be a Lie group. A principal G-bundle over a smooth manifold M is a smooth
map π : P→ M and a right G-action on P satisfying:

(1) π is G-invariant; that is, π(p · g) = π(p) for all p ∈ P and g ∈ G.
(2) On each fiber, G acts freely and transitively from the right.
(3) P is locally trivial via G-equivariant trivialization; that is, at every m ∈ M, there exists an open

subset U ⊂ M and a diffeomorphism φ : π−1(m) → U × G such that p 7→ (π(p), ϕ(p))
satisfying p · g 7→ (π(p), ϕ(p) · g).

Conditions (1) and (2) mean that the G-orbits are fibers of π. This is equivalent to
saying P× G → P×M P, (p, g) 7→ (p, p · g) is a diffeomorphism; that is, P is a G-torsor.

Definition 2. A bundle map of the principal G-bundles from π1 : P1 → M to π2 : P2 → M is a
diffeomorphism f : P1 → P2 that preserves the fiber and G-equivariant; that is, f (p · g) = f (p) · g
and π2 ◦ f = π1.
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The principal G-bundles over M with maps form a groupoid (a category whose
morphisms are invertible), and it is denoted by PrinG(M). We will also use the notation
BunCn(M) to denote the groupoid of rank n complex vector bundles over M.

Example 1. Let G = GLn(C). Consider π : P → M and take an associated fiber bundle
E(P)→ M with a fiber Cn defined by E(P) := (P×Cn)/G with a diagonal G-action: (p, v) 7→
(pg, g−1v). The bundle E(P) is a complex vector bundle over M of rank n. On the other hand,
let E ∈ BunCn(M). At each x ∈ M, consider the set Fr(E)x of all bases of the vector space Ex;
equivalently the set of all C-linear maps p : Cn → Ex. Then, the smooth map π : Fr(E)→ M with
π−1(x) = P(E)x and a right G-action on Fr(E) defined by p 7→ p ◦ g is a principal G-bundle over
M. It leads to the following equivalence of categories.

PrinGLn(C)(M)
E // BunCn(M)
Fr
oo

For this reason, in what follows, we do not distinguish a C×-, S1-, or U1-bundle from a complex
line bundle.

Notation 1. We shall use the notation Ui1···in to denote the n-fold intersection Ui1 ∩ · · · ∩Uin .

Definition 3. Let G be an abelian group, M be a topological space, and U = {Ui}i∈Λ be an open
cover of M. The set Čp(U ; G) = { fi0···ip : Ui0···ip → G}i0,··· ,ip∈Λ inherits the operation from the
group G and is termed the degree-p Čech cochain group. Together with the map δp : Čp(U ; G)→
Čp+1(U ; G), ( f )i0···ip 7→ (δ f )i0···ip+1 := f î0i1···ip+1

− fi0 î1···ip+1
+ · · ·+ (−1)p+1

i0i1···ip îp+1
, the se-

quence of groups (Č•(U ; G), δ•) is the Čech cochain complex. (It is easy to verify that δ2 = 0.
Here, the hat means an omission.) The cohomology of this complex Ȟ•(U ; G) := ker(δ•)/Im(δ•−1)
is the Čech cohomology of M defined on an open cover U .

Now, if the group G in the definition above is not abelian, in general, the coboundary
maps δ are not group homomorphisms, neither ker δ nor Imδ form a group, and, if we
apply δ to a cocycle, we do not obtain δ2 = 1. We shall see below what goes on starting
from the lowest degree:

• p = 0: There is no problem. Ȟ0(U ; G) = { f ∈ Č0(U ; G) : δ( f )ij = 0} = Map(M, G).
This is a group under a pointwise group multiplication.

• p = 1: Neither ker δ1 nor Imδ0 form a group. On the set ker δ1, we may impose an
equivalence relation defined by the action of 0-cochains

gij ∼ g′ij if and only if g′ij = f−1
i gij f j.

So, we may define Ȟ1(U ; G) as the pointed set ker δ1/ ∼ with a distinguished ele-
ment of the constant map gij ≡ 1. Notice where set Ȟ1(U ; G) is precisely the set of
isomorphism classes of the principal G-bundles over M defined on the open cover U
(see Remark below). For this reason, principal G-bundles are geometric models of a
degree-one non-abelian cohomology of M with coefficients in a group G.

• p ≥ 2: There is no reasonable way to make sense of Ȟp(U ; G).

Remark 1. We shall closely look into how the set Ȟ1(M; G) classifies the principal G-bundle over
M up to isomorphism. Recall that each principal G-bundle is locally trivial and diffeomorphic to
U × G for some open U ⊂ M. This means that if we are given a family of transition functions on
every double overlap Uij ∈ U = {Uij}i,j∈Λ, that is, {gij : Uij → G : i, j ∈ Λ}, we can rebuild the
principal G-bundle. Since the transition functions satisfy

gij(x) · gjk(x) · gki(x) = 1, for all x ∈ Uijk (1)
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Equation (1) is called the cocycle condition of a principal G-bundle. So, if we have a principal
bundle P over M, we have a family of transition functions {gij}i,j∈Λ satisfying condition (1) and
vice versa (under a mild condition). Likewise, if we have a bundle map f : P→ P′ covering M, we
have a family of functions on open sets in the cover { fi}i∈Λ satisfying that g′ij(x) = f−1

j (x)gij(x)
for all x ∈ Uij, and vice versa (under the same mild condition). Here, the mild condition is that the
open cover U has to be a good cover. A good cover (also known as Leray’s covering) is an open cover
of M if all open sets and their intersections are contractible. Such a covering always exists (see [1]
(Proposition A.1) and references therein). An open cover (V , ı) is a refinement of U if ı : V → U
such that V ⊆ ı(V) for all V ∈ V . A refinement induces a map resV ,U : Ȟ1(U ; G)→ Ȟ1(V ; G),
and it satisfies resW ,U = resW ,V ◦ resV ,U . So, we can define the set Ȟ1(M; G) as a direct limit over
refinements of open cover; that is,

Ȟ1(M; G) = lim−→
U

Ȟ1(U ; G).

If the cover U is good, the restriction map Ȟ1(U ; G)
∼=→ Ȟ1(M; G) is an isomorphism. Therefore,

we conclude that
π0PrinG(U )→ Ȟ1(U ; G)

[P] 7→ (gij).
(2)

If we remove the abelian assumption of groups, the long exact sequence induced by a
short exact sequence of groups cannot go any further than the degree p = 1.

Proposition 1. Let

1 // K i // G̃
j // G // 1 (3)

be a short exact sequence of groups. We have the following long exact sequence of groups and
pointed sets

1 Ȟ0(U ; K) Ȟ0(U ; G̃) Ȟ0(U ; G)

Ȟ1(U ; K) Ȟ1(U ; G̃) Ȟ1(U ; G)

i∗ j∗

i∗ j∗

However, in the special case that the second term in the sequence is an abelian group
whose image is in the center of the third, we can extend the long exact sequence just one
term further. We have the following propositions.

Proposition 2. If the group K in short exact sequence (3) is abelian and i(K) belongs to the center
of G̃, then the long exact sequence in Proposition 1 extends to Ȟ2(U ; K):

1 Ȟ0(U ; K) Ȟ0(U ; G̃) Ȟ0(U ; G)

Ȟ1(U ; K) Ȟ1(U ; G̃) Ȟ1(U ; G)

Ȟ2(U ; K)

i∗ j∗

i∗ j∗

α

Proposition 3 (Dixmier–Douady [18]). If the sheaf G̃M is soft, then

α : Ȟ1(U ; G)→ Ȟ2(U ; K)

is a bijection.

Proof. See Dixmier–Douady [18] (Lemma 22, p. 278) or Brylinski [17] (Proposition 4.1.8,
p. 162).
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In the above, GM is a sheaf such that GM(U) is a group of smooth functions f : U → G
for each open U ⊆ M. A sheaf GM is soft if GM(M) → GM(C) is onto for every closed
C ⊂ M. Here, we can think of GM(C) = limU GM(U) (since M is paracompact), where the
direct limit is taken over all open neighborhoods of C.

Example 2. (1) Consider a short exact sequence

1 // SOn
i // On

det // Z2 // 1.

The induced map w1 : Ȟ1(M; On) → Ȟ1(M;Z2) is a correspondence [P] ∈ π0PrinOn(M) 7→
w1([P]), which is the first Stifel–Whitney class. So, w1([P]) = 0 if and only if P comes from an
SOn-bundle; that is, P is orientable. Equivalently, the obstruction for the transition maps of a
Euclidean vector bundle to lift to SOn is given by the first Stifel–Whitney class.

(2) Consider a short exact sequence

1 // Z2 // Spinn
// SOn // 1.

The induced map w2 : Ȟ1(M; SOn)→ Ȟ2(M;Z2) is a correspondence [P] ∈ π0PrinSOn(M) 7→
w2([P]), which is the second Stifel–Whitney class. So, w2([P]) = 0 if and only if P comes from a
Spinn-bundle. Equivalently, the obstruction for the transition maps of an oriented Euclidean vector
bundle to lift to Spinn is given by the second Stifel–Whitney class. Here, one can think of Spinn
as a double cover of SOn, which is also a universal cover. For a construction of Spinn in terms of
Clifford algebras, see [19] (Section 1.2).

Remark 2. The Whitehead tower of On is of particular interest. The Whitehead tower of a space
X is a factorization of the point inclusion pt→ X

pt ≃ limn→∞ Xn // · · · // X2 // X1 // X0 ≃ X

such that each Xn is (n− 1)-connected (that is, all homotopy groups πk vanish for k ≤ n− 1) and
each map Xn → Xn−1 is a fibration, which is an isomorphism on all πk for k ≥ n. For the space
On, we have a Whitehead tower as follows:

pt // · · · // FiveBranen // Stringn
// Spinn

// SOn // On

Here, Stringn is a six-connected cover of Spinn

1 // K(Z, 2) // Stringn
// Spinn

// 1.

and FiveBranen is a seven-connected cover of Stringn

1 // K(Z, 6) // FiveBranen // Stringn
// 1.

It is known that the obstruction to lift a Spinn-bundle to a Stringn-bundle is the first fractional
Pontryagin class 1

2 p1 and to lift a Stringn-bundle to a FiveBranen-bundle is the second fractional
Pontryagin class 1

6 p2, and so on (see [20] for more details).

Example 3. (3) Consider a short exact sequence

1 // Z // R // S1 // 1.

Note thatRM is a soft sheaf (recall the Tietze extension theorem). The induced map c1 : Ȟ1(M; S1)
∼=→

Ȟ2(M;Z) is a correspondence [L] ∈ π0PrinS1(M) 7→ c1([L]), which is the first Chern class. Note
that if group G is abelian, G is a sheaf of locally constant functions in G, Ȟp(M;G), and Hp(M; G),
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then the degree-p singular cohomology with coefficients in G is the same. Since group Z is discrete,
we can identify Ȟp(M;Z) and Hp(M;Z) for any degree p.

Proposition 4 (Dixmier–Douady [18]). LetH be a complex separable Hilbert space. The sheaf
U(H)

M
is soft.

Proof. See Dixmier–Douady [18] (Lemma 4, p. 252) or Brylinski [17] (Cor. 4.1.6, p. 162).

Example 4. (4) Consider a short exact sequence

1 // U1 // U(H) // PU(H) // 1.

Since U(H) is a soft sheaf, the induced map DD : Ȟ1(M; PU(H))
∼=→ Ȟ2(M; S1)

∼=→ H3(M;Z)
is a correspondence [P] ∈ π0PrinPU(H)(M) 7→ DD([P]), which is the Dixmier–Douady class of
a gerbe.

Definition 4. A characteristic class of a principal G-bundle P over M is an assignment

c : π0PrinG(M)→ H•(M; A)

[P] 7→ c(P)

that is natural; that is, f ∗c(P) = c( f
∗
P) for

P′
f //

π′
��

⟳

P

π

��
M′

f // M

Here, A is an abelian group.

Since PrinG(−) : Manop → Sets is representable by BG, by the Yoneda Lemma (see
MacLane [21]), we have the following proposition.

Proposition 5. An assignment

{Characteristic class of principal G-bundles} −→ H•(BG; A)

is one-to-one and onto.

Remark 3. There is an alternative way to define characteristic classes using a “geometric datum”,
that is, a connection ∇ on P ∈ PrinG(M). This is the Chern–Weil theory. For example, given
a line bundle with the connection (L,∇), the first Chern class of ∇ is defined by a Chern–Weil
form i

2π curv(∇). Here, curv(∇) is the curvature two-form of the connection ∇. The Chern–Weil
theorem shows that the cohomology class of a Chern–Weil form does not depend on the choice of
connection. So,

[
i

2π curv(∇)
]
∈ H2(M;R) is a topological invariant of a line bundle. A priori

the class
[

i
2π curv(∇)

]
is a class in H2(M;C), but it can be shown that it is actually a class in

H2(M;R). The realification of the first Chern class, Example 3 above, is equal to the first Chern
class

[
i

2π curv(∇)
]

from the Chern–Weil theory. See Morita [22] (Chapter 5) to learn more about
Chern–Weil theory of characteristic classes.

We have seen that, up to isomorphism, complex line bundles are classified by H2(M;Z)
via the first Chern class (Example 3) and principal PU(H)-bundles are classified by
H3(M;Z) via the Dixmier–Douady class (Example 4). We can ask the following ques-
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tion: What classifies (higher) line bundles with a connection? For example, if we consider a
groupoid Bun∇C (M) whose objects are line bundles with the connection (L,∇) and whose
morphisms are a bundle isomorphism preserving the connection, what classifies the iso-
morphism classes of Bun∇C (M)? This question leads us to “differential cohomology”. Up to
isomorphism, line bundles with a connection are classified by the degree-two differential
cohomology Ĥ2(M), gerbes with a connection are classified by Ĥ3(M), two-gerbes with a
connection are classified by Ĥ4(M), and so on.

3. Cheeger–Simons Differential Characters

In this section, we introduce a differential extension of the singular cohomology
theory H∗(−;Z) on the site of smooth manifolds. Among various known models, we shall
introduce the model by Cheeger and Simons [5] which is one of the historical landmarks.
Interested readers are referred to the homotopy theoretic model by Hopkins and Singer [8],
a spark complex model by Harvey, Lawson, and Zweck [23], and a novel construction
using ∞-sheaves of spectra by Bunke, Nikolaus, and Völkl [24].

Notation 2. We shall define some notations that will be used throughout this section. Let M be a
smooth manifold and R be a commutative ring with unity:

• Ck(M; R): smooth singular k-cochains in M with coefficients in R.
• Zk(M; R): smooth singular k-cocycles in M with coefficients in R.
• Ωk(M): differential k-forms on M.
•

∫
: Ωk(M) → Ck(M;R) is a R-linear map ω 7→

∫
ω, where

∫
ω : Ck(M;R) → R is a

pairing of a singular k-chain and a differential k-form.
• Ωk

cl(M)Z: closed differential k-forms with integral periods; that is, ω ∈ Ωk
cl(M)Z if and only

if dω = 0 and
∫

ω
∣∣
Zk(M) ∈ Z.

• ∼ is the natural map R→ R/Z.

A nonvanishing differential form does not take its values in a proper subring Λ ⊂ R.
Hence, we have the following:

Proposition 6. The map ∫
: Ωk(M)→ Ck(M;R/Z)

ω 7→
∫̃

ω

is one-to-one.

Definition 5 (Cheeger and Simons [5]). Let M be a smooth manifold. The group Ĥk(M) of
differential characters of degree k consists of pairs (χ, ω), where χ ∈ HomZ(Zk−1(M),R/Z)
and ω ∈ Ωk(M), satisfying that

χ ◦ ∂D =
∫

D
ω mod Z, for all D ∈ Ck(M;Z),

where the group structure is the componentwise addition.

Remark 4. The degree of the Ĥk(M) in the above definition is different from the one that appears in
Cheeger and Simons [5], which defines the same group as degree k + 1. A consequence of adopting
their convention would be a mismatch of degree in the group of differential characters and real
cohomology, so the forgetful map (see below for a definition) would be I : Ĥk(M)→ Hk+1(M;R).
We stick to our convention for the sake of consistency with the literature from recent years.

The main goal of this section is to understand the following diagram, known as the
differential cohomology hexagon diagram.
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Proposition 7 (Cheeger and Simons [5]). The group of differential characters Ĥk(M) satisfies
the following diagram; that is, all squares and triangles are commutative and the diagonal, upper,
and lower sequences of the arrows are exact sequences.

0

Hk−1(M;R)

Hk−1(M;R/Z)

0

Ωk−1(M)

Ωk−1
cl (M)Z

Ĥk(M)

Hk(M;Z)

0

Ωk
cl(M)Z

Hk(M;R)

0

⟲

⟲

⟳

⟲

!!

∼
==

−B //
� p

e

!!

I
==

==

r

!!

rep !!

==

a
==

d
//

== ==

!!

R

!!
∫
◦dR

==

Proof. We shall divide the proof into several parts and enumerate them.
(1) I and R maps: We begin with some algebra facts:

A1. A subgroup of a free abelian group is free.
A2. An abelian group G is divisible if, for any x ∈ G and any n ∈ Z+, there exists y ∈ G

such that x = ny.
A3. An abelian group G is divisible if and only if the group G is an injective object in the

category of abelian groups; if f : A→ G and A ⊂ B, there exists a map f̃ : B→ G that
satisfies f̃ |A = f .

Take (χ, ω) ∈ Ĥk(M) and consider χ : Zk−1(M)→ R/Z. Since Zk−1(M) is a subgroup
of a free abelian group Ck−1(M;Z), it is free (A1) and, hence, projective. We have the
following commutative diagram:

⟳

R

��
Zk−1(M)

χ //

χ

99

R/Z

��
0

Now, since R is divisible (A2), it is injective (A3). Hence, χ : Zk−1(M)→ R lifts to the map
T satisfying the following commutative diagram:

0

��
Zk−1(M)

⟳

� _

��

χ // R

Ck−1(M)

T

;;
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So, ˜T|Zk−1(M) = χ. It follows that δ̃T = δT̃ = T̃ ◦ ∂ =
∫

ω mod Z. Here, the first equality
is simply ∼ ◦(T ◦ ∂k) = (∼ ◦T) ◦ ∂k. Thus, there exists c ∈ Ck(M;Z) such that

δT =
∫

ω− c. (4)

Note that 0 = δ2 =
∫

dω− δc, so
∫

dω = δc. Since a real differential form cannot take its
value in a proper subring of R, this means dω ≡ 0 = δc. It is readily seen that ω has an
integral period. We define the maps I and R as follows:

I : Ĥk(M)→ Hk(M;R) R : Ĥk(M)→ Ωk
cl(M)Z

(χ, ω) 7→ [c] (χ, ω) 7→ ω

Let us verify that these maps are well defined. Since the choice of lifts is not unique, we
have to verify that the above definition does not depend on the choices we made. Suppose

T′ is another lift satisfying δT′ =
∫

ω′ − c′. Then, ˜T′ − T|Zk−1(M) = 0, so T′ = T + δs + d
for some d ∈ Ck−1(M;Z) and s ∈ Ck−2(M;R). So, δT′ = δT + 0 + δd if and only if∫

ω′ − c′ =
∫

ω − c + δd if and only if
∫
(ω′ − ω) = c′ − c + δd. Again, since the real

differential form cannot take its value in a proper subring of R, this means ω ≡ ω′ and
[c′] = [c].

We show that R is surjective. Let r : Hk(M;Z) → Hk(M;R) be the realification map
(which is from the universal coefficient theorem for cohomology; see [25] (Section 3.1)).
Notice that, given ω ∈ Ωk

cl(M)Z, there exists a u ∈ Hk(M;Z) such that r(u) = [
∫

ω]. Since
ω has integral periods, δ

∫
ω =

∫
ω ◦ ∂ ∈ Z is an integral cochain, and, since ω is closed,

δ
∫

ω =
∫

dω = 0 (Stokes’ theorem). Now, let u = [c] for some c ∈ Ck(M;Z). Then,∫
ω− c = δλ for some λ ∈ Ck+1(M;R). Define χ := ˜λ|Zk−1(M). So, R is surjective.

The map I is also surjective. Given any [c] ∈ Hk(M;Z), δc = 0 as real cochains.
By the de Rham theorem, there exists a ω ∈ Ωk

cl(M) such that
∫

ω − c = δµ for some

µ ∈ Ck−1(M;R). Define χ := ˜µ|Zk−1(M). So, the map I is surjective.
(2) The e map: We define the e map as follows:

e : Hk−1(M;R/Z)→ Ĥk(M)

[x] 7→ (x|Zk−1(M), 0)

The map e is well defined. If we take a different representative x + δy, the restriction of
δy to Zk−1(M) vanishes. The map e is one-to-one: Let Λ ⊂ R a proper subring. From
the universal coefficient theorem, we have Hk(X;R/Λ) ∼= HomZ(Hk(X),R/Λ), since
Ext(Hn−1(X),R/Λ) = 0, from n(R/Λ) = (nR)/Λ = R/Λ, for any n ∈ Z. Since Bk →
Zk → Hk → 0 is exact if and only if B∗k ← Z∗k ← H∗k ← 0 is exact, HomZ(Hk(X),R/Λ) ↪→
HomZ(Zk(X),R/Λ) is an injection.

(3) The a map: We define the a map as follows:

a :
Ωk−1(M)

Ωk−1
cl (M)Z

→ Ĥk(M)

[α] 7→ (
˜∫
α|Zk−1(M), dα)

It is obvious that the a map is well defined, and the subgroup Ωk−1
cl (M)Z is the kernel of

the map Ωk−1(M)→ Ĥk(M), α 7→ ( ˜∫
α|Zk−1(M), dα).

(4) Diagonals are exact: First, Ime = ker R. The inclusion ⊆ is clear. To see ⊇, take

(χ, ω) such that ω = 0. Then, χ = ˜T|Zk−1(M) satisfying that δT = c, so T is a R/Z-valued
cocycle, representing a class in Hk−1(M;R/Z), and T|Zk−1(M;R/Z) = χ.
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Now, Ima = ker I. Again, the inclusion ⊆ is clear. To see ⊇, take (χ, ω) such that

χ = ˜T|Zk−1(M) satisfying δT =
∫

ω − c. By assumption, c = δd for some d ∈ Ck−1(M;Z).
From

∫
ω = δ(T + d), we have ω = dα for some α ∈ Ωk−1(M), and

∫
α = T + d + δ f

for some f ∈ Ck−2(M;R). Then, δ f vanishes when we restrict it to Zk−1(M), and d also

vanishes modulo Z. Thus, the preimage of I is ( ˜∫
α|Zk−1(M), dα).

(5) Squares commute: The map rep is defined as follows.

rep : Hk−1(M;R)→ Ωk−1(M)

Ωk−1
cl (M)Z

[β] 7→ β + Ωk−1
cl (M)Z

which does not depend on the choice of representatives since all exact forms are closed
forms with integral periods. From this, it is clear that the square on the left is commutative.
Notice that Equation (4) shows the commutativity of the square on the right.

(6) Triangles commute: Two triangle diagrams below commute.

Hk−1(M;R/Z)

⟲

−B //
� t

e

''

Hk(M;Z)

Ĥk(M)

I
99

R

$$
Ωk−1(M)

Ωk−1
cl (M)Z

a

88

d //

⟳

Ωk
cl(M)Z

The commutativity of the lower triangle is obvious. Take a R/Z-valued cocycle x and
consider (x|Zk−1(M), 0) ∈ Ĥk(M). There exists T ∈ Ck−1(M;R) such that x|Zk−1(M) =

˜T|Zk−1(M) satisfying δT = −c for some c ∈ Ck(M;Z), so I(x|Zk−1(M), 0) = c = −δT =
−B([x]).

(7) Upper and lower sequences are exact: It is readily seen that the following are
exact sequences.

Hk−1(M;R) ∼−→ Hk−1(M;R/Z) −B−→ Hk(M;Z) r−→ Hk(M;R)

Hk−1(M;R)
rep−→ Ωk−1(M)

Ωk−1
cl (M)Z

d−→ Ωk
cl(M)Z

∫
◦dR
−→ Hk(M;R)

Immediately from the definition, Ĥ0(M) = 0 and Ĥ1(M) = C∞(M,R/Z). Moreover,
note that Ĥk(M) = 0 if k > dim(M). When k = 2, we have the following proposition:

Proposition 8 (Cheeger and Simons [5]). The following assignment is a one-to-
one correspondence:

π0PrinS1,∇(M) −→ Ĥ2(M)

[(P, θ)] 7→ (χ,
1

2π
dθ)

where, for any loop γ in M, χ is defined by the holonomy of the loop γ; that is,

χ(γ) := Hol(γ)
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and, for any D ∈ C2(M;Z) bounding γ,

χ(∂D) =
1

2π

∫
D

dθ mod Z

which is extended to all Z1(M) by setting χ(x) = χ(γ) + 1
2π

∫
dθ(y) for any x = γ + ∂y.

Given dθ ∈ Ω2
cl(M)Z, as we have seen in the surjectivity of R, there exists [c] ∈

H2(M;Z) such that [
∫

dθ] = r([c]). The class [c] is the characteristic class that classifies P;
that is, the first Chern class.

The above proposition addresses the question at the end of Section 2 at least for degree
two. What is a higher analog of Proposition 8? How can one define a map? In the following
section, we shall see that the isomorphism classes of gerbes with a connection are in one-to-
one correspondence with Ĥ3(M), and, to establish the correspondence, one has to construct
χ; that is, a holonomy of gerbe.

Remark 5. Although we do not go into detail, the differential cohomology group Ĥ•(M) has a ring
structure (see Cheeger and Simons [5] (p. 56, Theorem 1.11)).

In differential cohomology, the hexagon diagram plays an important role. One uses the hexagon
diagram in Proposition 7 to compute differential cohomology groups. Furthermore, it is known that
the hexagon diagram uniquely characterizes the differential cohomology. Phrased slightly differently,
if there are two Ĥk(M) fitting into the middle of the hexagon diagram, then they are naturally
isomorphic. This is a theorem of Simons and Sullivan [26] that has been generalized by Bunke and
Schick [27] and Stimpson [28] to the uniqueness of the differential extension of all exotic cohomology
theories under some mild assumptions.

4. S1-Banded Gerbes with Connection

Throughout this section, M is a smooth manifold. In Section 2, we have seen that
elements of H2(M;Z) are represented by complex line bundles, and, in Section 3, differ-
ential cohomology classes in Ĥ2(M;Z) are represented by complex line bundles with a
connection. What are the corresponding geometric objects representing Hn(M;Z) and
Ĥn(M;Z)? The answer is (n− 2)-gerbes with a connection.

Remark 6. For a generalized cohomology theory E• and its differential extension Ê•, investigating
geometric cocycles representing (differential) cohomology classes is a very interesting research
topic that is not fully understood yet. For example, elements of even complex K-group K0(M) are
represented by vector bundles over M and odd complex K-group K−1(M) by Ω-vector bundles, but
in other interesting generalized cohomology theories, such as elliptic cohomology and topological
modular forms, it is largely unknown which geometric objects in the space M represent cohomology
classes. Moreover, note that this question is closely related to the Stolz–Teichner program [29]
wherein they have conjectured a hypothetical equivalence between the totality of supersymmetric field
theories of degree n over M modulo concordance and the group En(M). There are differential and
twisted refinements of this conjecture as well (see, for example, Stoffel [30,31] and references therein).

Let us observe how a gerbe arises. Consider the short exact sequence of groups

1 // U1 // G̃ // G // 1.

In Example 4 above, we considered the map DD : Ȟ1(U ; G) → Ȟ2(U ; U1) when
G = PU(H). In the proposition below, we shall closely look at how this map is defined.

Proposition 9. A principal G-bundle P over M lifts to a principal G̃-bundle if and only if the
cocycle representing DD(P) is trivializable.



Axioms 2024, 13, 60 12 of 17

Proof. We look at how the map DD : Ȟ1(U ; G) → Ȟ2(U ; U1) is defined. Choose a good
cover U on M. Over each Uij, consider the transition map gij : Uij → G of P. Since U is
a good cover, Uij is contractible. Hence, there is a homotopy between the map gij and a

constant map, which lifts by the homotopy-lifting property, since the map G̃ r→ G is a
fibration. Let g̃ : Uij → G̃ be a lift of gij. The cocycle condition gijgjkgki = λijk · 1G̃, for some
λijk ∈ Č2(U ; U1). It is an easy exercise to verify that λ = {λijk}Λ is a degree-two Čech
cocycle on U and the class [λ] does not depend on the choice of lifting g̃ij. So, the map DD
is a correspondence [P] 7→ [λ], and, using the isomorphism (due to the softness of R), it is
valued in H3(M;Z).

There are several models representing gerbes. The degree-two U1-valued Čech cocycle
λ considered above as an obstruction to lifting a principal G-bundle to a G̃-bundle is one
model, and there are other ways to represent it as a stack. We refer the reader to Giraud [9],
Brylinski [17], Behrend and Xu [32], and Moerdijk [33]. In this section, we will specialize in
a model called a bundle gerbe by Murray [11], which is presumably the most widely used
model in the literature.

Let π : Y → M be a surjective submersion. The p-fold fiber product of π : Y → M is

Y[p] := {(y1, · · · , yn) ∈ Yp : π(y1) = · · · = π(yp) for yi ∈ Y}.

The projection of Y[p] onto the (i1, · · · , ik)
th copy of Y[k] is πi1···ik : Y[p] → Y[k]. For example,

let U = {Ui}i∈Λ be an open cover of M. Then consider

YU := {(x, i) ∈ M×Λ : x ∈ Ui} ⊂ M×Λ.

The map π : YU → M is a surjective submersion, which is an open cover.

Remark 7. Recall that a fiber product X ×M Y of X
ϕ→ M π← Y is, in general, not a smooth

manifold. If ϕ, π are submersions, then the fiber product is a smooth manifold. So, a surjective
submersion is not only a generalization of an open cover; it also lets us stay within the category of
smooth manifolds.

Definition 6 (Murray [11]). A bundle gerbe is a triple L = (L, π, µ) where:

(1) π : Y → M is a surjective submersion.
(2) L ∈ PrinS1(Y[2]).
(3) µ : π∗12L⊗ π∗23L→ π∗13L is an S1-bundle isomorphism.
(4) µ is associative over Y[4]: that is,

π∗12L⊗ π∗23L⊗ π∗34L
π∗123µ⊗1

//

1⊗π∗234µ

��
⟲

π∗13L⊗ π∗34L

π∗134µ

��
π∗12L⊗ π∗24L

π∗124µ
// π∗14L

Let us construct the Dixmier–Douady class, the characteristic class of a bundle gerbe.
Let L = (L, π, µ) be a bundle gerbe over M. Take a good open cover (cf. Remark 1)
U = {Ui}i∈Λ of M. Then, local sections on each open set σi : Ui → Y and on each double
intersection (σi, σj) : Uij → Y[2] can be defined. We consider the pullback of L→ Y[2] along
(σi, σj) : Uij → Y[2].

(σi, σj)
∗L //

��

L

��
Uij

(σi ,σj) //

sij

;;

sij

EE

Y[2]
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Take a section sij : Uij → (σi, σj)
∗L, or, equivalently, a map µ : sij : Uij → L. Over triple

intersections, we have

sij(x)⊗ sjk(x) 7→ λijk(x)sik(x), x ∈ Uijk.

Here, the associativity of µ implies that λijk is a degree-two Čech cocycle in M defined
on U .

Definition 7. Let L = (L, π, µ) be a bundle gerbe over M. The Dixmier–Douady class DD(L)
is the cohomology class [λ] ∈ Ȟ2(U ; U1).

It is not difficult to verify that DD(L) does not depend on the choices we have made.
Let us recall connections and curvatures on a principal G-bundle. A connection θ on a

principal G-bundle π : P→ M is a differential one-form on P valued in g satisfying that:

(1) θ(X∗) = X where X ∈ g and X∗x := d
dt

∣∣t=0x · etX for each x ∈ P.
(2) R∗gθ = Adg−1 ◦ θ.

The curvature of (P.θ) is a g-valued two-form Curv(θ) := dθ + 1
2 [θ, θ] on P.

Now, we define the connection and curving of a bundle gerbe.

Definition 8. A connection on L = (L, π, µ) is a connection ∇ on L compatible with µ; that is,
π∗12(L,∇)⊗ π∗23(L,∇) µ→ π∗13(L,∇) is a connection preserving isomorphism.

So, a connection on L has to be an R-valued differential one-form on Y[2].

Definition 9. A curving B of a bundle gerbe with a connection (L, π, µ,∇) is a differential
two-form on Y satisfying Curv(∇) = π2B− π1B.

A connection and a curving on a bundle gerbe are called the connective structure. By a
bundle gerbe with a connection, we mean a bundle gerbe with a connective structure.

To work with curvatures and curvings, we need the following proposition.

Proposition 10 (Murray [11]). Let π : Y → M be a surjective submersion. The following sequence
is a long exact sequence

0 // Ωk(M)
π∗ // Ωk(Y) δ // Ωk(Y[2])

δ // · · ·

where δ = ∑
p
k=1(−1)k−1π∗

i1···îk ···ip

Proof. See Murray [11] (Section 8). Compare Bott and Tu [34] (Proposition 8.5).

Note that 0 = dCurv(∇) = dδB = δdB so there exists a unique H ∈ Ω3(M;R) such
that π∗H = dB. The differential form H is closed, so it represents a degree-three real
cohomology class in M. Proposition 10 shows that the cohomology class of M does not
depend on the choices involved.

Definition 10. Let L̂ = (L, π, µ,∇, B) be a bundle gerbe with connection. The three-curvature
(also known as the three-form flux or the Dixmier–Douady form) of L̂ is a real differential three-form
on M satisfying that π∗H = dB.

Remark 8. In the literature, H is defined as a real-valued differential form in some places and
iR-valued differential form in some other places. Recall that, in Definitions 8 and 9, connection
forms and curving forms are R-valued, as the Lie algebra of the Lie group S1 is R. If we consider the
Lie group U1, its Lie algebra is iR (here i =

√
−1), and we consider differential forms valued in iR.
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It turns out the three-curvature of a gerbe represents the corresponding de Rham
cohomology class of the Dixmier–Douady class above.

Proposition 11 (Murray [11]). Let L̂ = (L, π, µ,∇, B) be a bundle gerbe with a connection.
The de Rham cohomology class of its three-curvature form H is equal to the realification of its
Dixmier–Douady class DD(L); that is, r(DD(L)) = [H]dR, where r is the realification map
r : H3(M;Z)→ H3(M;R) considered in the proof of Proposition 7.

Proof. See Murray [11] (Section 11).

Example 5. Consider the short exact sequence of groups

1 // U1 // G̃ // G // 1.

Let π : Y → M be a principal G-bundle. There is a natural map g : Y[2] → G̃ coming from the
transitivity of the right G-action. Pull back the fibration G̃ → G to obtain a U1-bundle L over
Y[2]. Note that the fiber of (y1, y2) ∈ Y[2] is the coset U1g(y1, y2) in G̃. So, the multiplication
map µ : π∗12L⊗ π∗23L→ π∗13L is defined by the coset multiplication U1g(y1, y2) ·U1g(y2, y3) =
U1g(y1, y3) and is readily seen to be associative. So, L = (L, π, µ) is a bundle gerbe over M
called the lifting bundle gerbe of the principal G-bundle π : Y → M. The Dixmier–Douady
class DD(L) is precisely the obstruction for the lifting of the G-valued cocycle to G̃ considered in
Proposition 9.

Definition 11. Let U = {Ui}i∈Λ be a good cover of M. The Deligne complex is the double
complex Č•(U ; Ω•) endowed with total differential D = d + (−1)qδ on Čp(U ; Ωq) where the
Čech differential is δ and the exterior derivative is d; that is,

...
...

...

Č2(U ; U1)

δ

OO

d log // Č2(U ; Ω1)

−δ

OO

d // Č2(U ; Ω2)

δ

OO

d // · · ·

Č1(U ; U1)

δ

OO

d log // Č1(U ; Ω1)

−δ

OO

d // Č1(U ; Ω2)

δ

OO

d // · · ·

Č0(U ; U1)

δ

OO

d log // Č0(U ; Ω1)

−δ

OO

d // Č0(U ; Ω2)

δ

OO

d // · · ·

The cohomology of the total complex with the total degree n is the degree n Deligne cohomology
group Ȟn

D(U ) of M defined on U .

Proposition 12 (Murray [11]). A bundle gerbe with connection L̂ = (L, π, µ,∇, B) determines a
total degree 2 cocycle in the Deligne complex.

Proof. Recall notations in the paragraph between Definitions 6 and 7. In it, we have
obtained a Čech 2-cocycle {λijk}. Let us take Aij = σ∗ij∇ and Bi = σ∗i B. It is readily seen

that the triple λ̂ := (λijk, Aij, Bi) satisfies Dλ̂ = 0 and its cohomology class [λ̂]D ∈ H2
D(M)

is independent of the choice of local sections σi.

It is natural to ask if the isomorphic bundle gerbes with connection have Deligne-
cohomologous cocycles in the Deligne complex. The answer is yes, but there is a subtlety
in isomorphisms of bundle gerbes. One might guess that it is a U1-bundle isomorphism
compatible with the bundle gerbe structure µ, but this is not a notion we want. We
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will then get non-isomorphic bundle gerbes having the same Dixmier–Douady class.
Stevenson [35] and Murray and Stevenson [12] have found that the correct notion of
bundle gerbe isomorphism is the “stable isomorphism”. We will introduce a version that
Waldorf [36] came up with.

Definition 12 (Waldorf [36]). For L̂i = (Li, πi, µi,∇i, Bi), an isomorphism L̂1
K̂−→ L̂2 is a

quadruple (ζ, K,∇K, α) consists of the following.

(1) A surjective submersion ζ : Z → Y1 ×M Y2

(2) (K,∇K) ∈ Prin∇S1(Z) such that Curv(∇K) = ζ∗(B2 − B1) ∈ Ω2(Z).
(3) An isomorphism α : (L1,∇1) ⊗ ζ∗2(K,∇K) → ζ∗1(K,∇K) ⊗ (L2,∇2) of S1-bundles with

connection over Z×M Z compatible with µ1 and µ2.

Remark 9. When ζ = 1, we recover the stable isomorphism of Murray and Stevenson [12].

Proposition 13 (Waldorf [36]). There is an equivalence of groupoids between the 1-groupoid of
1-morphisms of Grb(M) and the 1-groupoid of stable isomorphisms of Grbst(M).

Definition 13 (Waldorf [36]). A transformation Ĵ : K̂1 ⇒ K̂2, which is an isomorphism be-
tween isomorphisms from L̂1 to L̂2 (that is, a two-morphism), is an equivalence class of triples
(W, ω, βW) consisting of the following:

(1) A surjective submersion ω : W → Z1 ×Y1×MY2 Z2.
(2) An isomorphism βW : (K1,∇1)→ (K2,∇2) over W compatible with α1 and α2.

L1 ⊗ω∗2 K1
α1 //

1⊗ω∗2 βW

��

ω∗1 K1 ⊗ L2

ω∗1 βW⊗1
��

L1 ⊗ω∗2 K2
α2 // ω∗1 K2 ⊗ L2

(W, ω, βW) ∼ (W ′, ω′, βW ′) if there is a smooth manifold X with surjective submersions to W and
W ′ such that the following diagram commutes

X //

��

W

ω

��
W ′ ω′ // Z1 ×Y1×MY2 Z2

and βW and βW ′ coincides if pulled back to X.

Proposition 14 (Stevenson [35]). The category Grb∇(M) consisting of bundle gerbes with the
connection L̂ as objects, morphisms as defined in Definition 12, and two-morphisms as defined
in Definition 13 is a two-groupoid (that is, a category whose morphisms are invertible and whose
morphism between morphisms are invertible).

Now, we go back to our discussion on Deligne cohomology. Since the cover U of
M is good, we can define the Deligne cohomology group Hk

D(M) as a direct limit over
refinements, which is isomorphic to the one defined on U . We have the following result.

Proposition 15 (Murray and Stevenson [12]). Let L̂i ∈ Grb∇(M). L̂1 and L̂2 are stably
isomorphic if and only if they define the same Deligne cohomology class in Ȟ2

D(M).

Proof. See Murray and Stevenson [12] (Theorem 4.1).
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Proposition 16 (Esnault [37]). Let M be a smooth manifold. The following correspondence is
an isomorphism:

Hk
D(M)→ Ĥk+1(M)

Proof. See Brylinski [17] (Proposition 1.5.7) and references therein.

Corollary 1. Let M be a smooth manifold. The following are isomorphic as groups

π0Grb∇(M) ∼= Ĥ3(M).

5. Discussion

In this article, we have given an overview of differential cohomology and gerbes.
We began with an introduction to characteristic classes and the classification of integral
cohomology groups using geometric objects. We then saw differential cohomology and
the classification of complex line bundles with connection. Finally, we have seen what a
gerbe is and its two-groupoid structure, as well as how gerbes and their higher analogs
correspond to cocycles in the Deligne complex.

There are numerous future directions for research based on what we have considered
in this paper. We will give three possible directions. First, the G-equivariant differential
cohomology has been considered by Redden [2] and Kübel and Thom [38] when the Lie
group G is compact. Applications of these constructions have to be developed. Additionally,
Redden and the author [39] have established that isomorphism classes of G-equivariant
bundle gerbes with a connection are naturally isomorphic to the degree-three differential
cohomology of the differential quotient stack. One can expect to establish analogous results
for higher gerbes. As a different route, there is an interesting relationship between the arith-
metic Chow group of a complex projective variety and its differential cohomology group [6].
One has to cast a light on this result to generalize it as a result over the Deligne–Mumford
stacks. Finally, along the vein of the work of Freed and Moore [40] and Gawȩdzki [15], the
theory of differential cohomology and gerbes should be further developed to investigate
the topology of matters.
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