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Abstract: In this work, the notion of digital fiber homotopy is defined and its properties are given. We
present some new results on digital fibrations. Moreover, we introduce digital h-fibrations. We prove
some of the properties of these digital h-fibrations. We show that a digital fibration and a digital map
p are fiber homotopic equivalent if and only if p is a digital h-fibration. Finally, we explore a relation
between digital fibrations and digital h-fibrations.
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1. Introduction

Digital topology is interested in the relations among the subsets of Zn, where Z is the
set of all integers. These sets are called digital images and they have some topological
properties. Topological relations (such as digital homotopy, digital homology groups, etc.)
between any two digital images allow us to deduce some information about one of the
digital images by looking at the other one. Therefore, digital topology is used in the area of
digital image processing.

At the beginning, Rosenfeld introduced digital topology [1,2]. In the following years,
Boxer defined some algebraic topological methods on digital topology such as homotopy
and fundamental groups [3–7].

The notion of homotopy theory in digital spaces has been continuously expanded
upon into the current day [8–10]. Arslan et al. [11] defined digital homology groups. Karaca
and Ege expanded on digital homology theory [12]. Karaca and Vergili [13] introduced the
digital fiber bundle, which is another algebraic topological topic [14]. Homology groups in
algebraic topology are used to classify topological spaces up to homeomorphism. Fiber
bundles that are used to compute homology groups are significant tools in topology. Thus,
Ege [15] introduced the concept of digital fibration, which is a generalization of the digital
fiber bundle. This work deals with some of the properties that hold in algebraic topology
but do not necessarily exist in digital topology. Some of the differences arose because
only integers are used in digital topology. Therefore, it is necessary to understand digital
topology in order to understand the relationships between digital images. (For recent
studies on digital images, see [16–19].)

In algebraic topology, fiber homotopy is a homotopy that preserves fibers [20]. Since fi-
brations are not invariant under fiber homotopic equivalence, a map that is fiber homotopic
to a fibration does not have to be a fibration. Thus, the homotopy lifting property (hlp) was
changed and the weak homotopy lifting property was introduced by Dold [21]. By using
the notion of the weak homotopy lifting property, Tajik et al. [22] introduced h-fibration
and presented the relations between fibrations and h-fibrations.

These developments in algebraic topology have led us to investigate whether they are
also valid in digital topology. In this work, we interpret fiber homotopy in terms of digital
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topology. This interpretation allows us to define digital h-fibrations. Moreover, some of the
categorical properties of digital fibrations are presented.

The structure of this paper is organized as follows: In the next section, we provide the
background information regarding digital topology such as adjacency relations, continuity,
homotopy, fiber bundles, and fibrations. In the third section, we present the definitions and
properties about digital fiber homotopy and give some new results on digital fibrations. In
the final section, we introduce digital h-fibrations and prove its properties. We also provide
a relation between digital h-fibrations and digital fibrations.

2. Preliminaries

Some basic definitions related to digital topology will be explained in this section.

Definition 1 ([3]). Let n ∈ Z+ and Zn be a set that equals the n-times product of Z. Supposing
a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn), then ∈ Zn and u ∈ Z with 1 ≤ u ≤ n. If there
exist at most u indices i, such that ai and bi are consecutive integers and are otherwise equal, then
we say a and b are cu-adjacent.

In general, adjacency cu is denoted by q ∈ Z, where q is the number of points that are
adjacent to a given point in Zn. As an example, c1 = 2 in Z. Moreover in Z2, c1 and c2 are
4 and 8, respectively (see Figure 1) [6].

Figure 1. In Z2, we have 4-adjacency and 8-adjacency, respectively.

Consider a set X in Zn with an adjacency relation κ on itself. Then, the pair (X, κ) is
called a digital image.

Definition 2 ([23]). Let xi, yi ∈ (Xi, κi). In X0 × X1, given the two points (x0, x1) and (y0, y1)
are adjacent if and only if any of the statements below holds:

(1) x0 = y0, then x1 and y1 are κ1-adjacent; or
(2) x1 = y1, then x0 and y0 are κ0-adjacent; or
(3) x0 and y0 are κ0-adjacent, and x1 and y1 are κ1-adjacent.

Often, the adjacency of the Cartesian product of digital images is denoted by κ∗.

Definition 3 ([24]). Let (A, λ1), (B, λ2) be digital images and the map(A, B) be a digital map
space that includes digital maps from A to B. For f , g ∈ map(A, B), we say that f and g are
adjacent if f (x1) and g(x2) are λ2-adjacent whenever x1 and x2 are λ1-adjacent.

For m, n ∈ Z, the set [m, n]Z = {z ∈ Z|m ≤ z ≤ n} is said to be a digital interval [3].
Consider an adjacency relation λ on Zn. Then, we say a digital image X, which is a

subset of Zn, is λ-connected if and only if for every distinct points m, n ∈ X, there exists a
set {m0, m1, . . . , mr} ⊂ X such that m0 = m, mr = n and mi and mi+1 are λ-adjacent where
i ∈ [0, r − 1]Z [4].

Definition 4 ([4]). Let (A, λ0) and (B, λ1) be digital images. For a map p : A → B, if for all
λ0-connected U ⊂ A, p(U) ⊂ B is a λ1-connected, then p is called to be (λ0, λ1)-continuous.
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Definition 5 ([25]). Let (A, λ) be a digital image. α : [0, n]Z → A is called a digital (2, κ)-path if
it is (2, λ)-continuous.

Consider that (A, λ0) and (B, λ2) are digital images. A function p : A → B is
called (λ0, λ1)-isomorphism—and is denoted by A ∼=(λ0,λ1)

B—if p is one to one and
onto (λ0, λ1)-continuous, and p−1 is (λ1, λ0)-continuous [7].

Definition 6 ([4]). Let (A, λ0), (B, λ1) be digital images. Two (λ0, λ1)-continuous map p, q :
A → B are called to be digitally (λ0, λ1)-homotopic in B if there is n ∈ Z+ and there exists a map
K : A × [0, n]Z → B that satisfies each of the statements below:

(1) For all a ∈ A, K(a, 0) = p(a) and K(a, n) = q(a);
(2) For all a ∈ A and every t ∈ [0, n]Z, Ka : [0, n]Z → B is defined by Ka(t) = K(a, t), which is

(2, λ1)-continuous;
(3) For all a ∈ A and every t ∈ [0, n]Z , Kt : A → B is defined by Kt(a) = K(a, t), which is

(λ0, λ1)-continuous.

Also, K is called a digital (λ0, λ1)-homotopy between p and q.

Definition 7 ([13]). Let (E, λ1) and (B, λ2) be digital images where B is a λ2-connected space.
Then, we say (E, p, B) is a digital bundle if the map p : E → B is a (λ1, λ2)-continuous surjection.
B, E and p are called the base set, total set and the digital projection of the bundle, respectively. In
addition, the digital fiber bundle of the bundle over t is defined by p−1(t) for every t ∈ B.

Definition 8 ([13]). Let (E, λ1), (B, λ2) and (F, λ3) be digital images, where B is a connected
space with λ2-adjacency. Consider a surjection and a (λ1, λ2)-continuous map p : E → B. For a
digital fiber set F, if there is a set U ⊂ B that is λ2-connected and p satisfies the statements below,
then ξ = (E, p, B, F) is a digital fiber bundle.

(1) For each t ∈ B, p−1(t) → F is a (λ1, λ3)-isomorphism
(2) For all t ∈ B, there is a (λ1, λ∗)-isomorphism ϕ : p−1(U) → U × F that makes triangles

below commutes:

U × F
projection // U

p−1(U)

p

OO

ϕ

ee

In the following definition, the digital homotopy lifting property is given to define the
digital fibration.

Definition 9 ([15]). Let i be an inclusion map and n ∈ Z+ for any digital homotopy T : X ×
[0, n]Z → B and any digital map g̃ : X → E with p ◦ g̃ = T ◦ i, where (E, λ1), (B, λ2) and
(X, λ3) are digital images. Then, we say p : E → B has the digital hlp with respect to (X, λ3) if
there is a digital (λ∗, λ1)-continuous map T̃ making the following triangles below commute:

X
g̃ //

i
��

E

p
��

X × [0, n]Z T
//

T̃

::

B

Definition 10 ([15]). For a digital map p : (E, λ1) → (B, λ2), p is called a digital fibration if it
has the digital hlp with respect to each space (X, λ3). For t ∈ B, p−1(t), it is called digital fiber.
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3. Digital Fiber Homotopy

Fiber homotopy is an important topic in algebraic topology. In this section, we define
digital fiber homotopy and its properties are proven. In addition, some new results about
digital fibrations are given.

Definition 11. For a digital map q : (A, κ) → (B, λ), if α1 and α2 are two digital paths in A such
that q ◦ α1 = q ◦ α2 and α1(0) = α2(0) implies that α1 = α2, then q has a digital unique path
lifting property (upl).

Definition 12. Let f , g : (A, λ3) → (E, λ1) and q : (E, λ1) → (B, λ2) be three digital maps.
Then, we say that f and g are digital fiber homotopic with respect to q, which is represented by
f ≃q g, if there exists a digital homotopy K : f ≃ g such that

q ◦ K(a, t) = q ◦ f (a) = q ◦ g(a)

for every a ∈ A and every t ∈ [0, n]Z. Here, K is called digital fiber homotopic between f and g.

Example 1. Let q : E → B be a digital map, and let f , g : (X, κ3) → (E, κ1) be two digital maps
that are digital homotopic to each other. If B is a singleton, then f ≃q g.

Example 2. Consider X = {1, 2, 3} ⊂ Z, E = {(0, 0), (0, 1), (1, 0)} ⊂ Z2 and
B = {0, 1} ⊂ Z. Let f , g : (X, κ3) → (E, κ1) be defined by

f (1) = (0, 0), f (2) = (1, 0), f (3) = (0, 1),

g(1) = (0, 0), g(2) = (0, 1), g(3) = (1, 0).

Suppose that T : X × [0, 2]Z → E satisfies the conditions below. Clearly, T is a digital homotopy.

T(m, 0) = f (m), T(m, 2) = g(m),

T(1, 1) = (0, 0), T(2, 1) = (1, 0), T(3, 1) = (0, 1).

Let q : (E, κ1) → (B, κ2) be defined by q(e1, e2) = e1 + e2. Therefore, we obtain

q ◦ T(m, t) = q ◦ f (m) = q ◦ g(m)

for every m ∈ X and t ∈ [0, 2]Z. As a result, we obtain f and g, which are fiber homotopic with
respect to q.

Definition 13. Let q1 : (A1, κ1) → (B, κ) and q2 : (A2, κ2) → (B, κ) be digital maps. If
q1 = q2 ◦ p, then p : (A1, κ1) → (A2, κ2) is called the digital fiber preserving map.

A1
q1 //

p   

B

A2

q2

OO

Definition 14. Let q1 : (A1, κ1) → (B, κ) and q2 : (A2, κ2) → (B, κ) be digital maps. If there are
two digital maps p : (A1, κ1) → (A2, κ2) and p

′
: (A2, κ2) → (A1, κ1) that are fiber preserving

such that p
′ ◦ p ≃q1 idA1 and p ◦ p

′ ≃q2 idA2 , then we say q1 and q2 are digital fiber homotopic
equivalent to each other. In addition, p and p

′
are said to be digital fiber homotopic equivalent.
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A1
q1 //

p

  

B

A2

q2

OO

p
′

XX

Proposition 1. Let p1 : (A, κ1) → (B, κ2) be a digital map. If p2 : (A
′
, κ

′
1) → (A, κ1) and

s, s
′

: (Y, κ) → (A′, κ1) are two digital maps such that s ≃p2 s
′
, then s ≃p1◦p2 s

′
.

Proof. Let s ≃p2 s
′
. By assumption, for every y ∈ Y and every t ∈ [0, m]Z, there exists a

homotopy G : s ≃p2 s
′

such that p2 ◦ G(y, t) = p2 ◦ s(y) = p2 ◦ s
′
(y). Therefore,

(p1 ◦ p2) ◦ G(y, t) = p1 ◦ (p2 ◦ G(y, t)) = p1 ◦ (p2 ◦ s(y)) = (p1 ◦ p2) ◦ s(y) (1)

(p1 ◦ p2) ◦ G(y, t) = p1 ◦ (p2 ◦ G(y, t)) = p1 ◦ (p2 ◦ s
′
(y)) = (p1 ◦ p2) ◦ s

′
(y). (2)

As a result, G : s ≃p1◦p2 s
′
.

Proposition 2. Digital fiber homotopy is an equivalence relation.

Proof. Consider the class K = { f | f : (Y, κ1) → (E, κ2)}.

• If we choose G : Y × [0, m]Z → E such that G(a, t) = f (a), we have f ≃q f .
• Thus, the symmetry property is clear.
• Let f ≃q g and g ≃q h. From the hypothesis, for all t ∈ [0, m]Z, there are two digital

homotopies G and H satisfying the following:

q ◦ G(a, t) = q ◦ f (a) = q ◦ g(a),

q ◦ H(a, t) = q ◦ g(a) = q ◦ h(a).

By taking one of G and H as a homotopy, we have f ≃q h.

Proposition 3. Let s : (A, κ1) → (B, κ2) be a digital map. If f1, f2 : (Z, λ) → (A, κ1) and
h : (X, γ) → (Z, λ) are digital maps such that f1 ≃s f2, then f1 ◦ h ≃s f2 ◦ h.

Proof. As an assumption, there is a digital fiber homotopy K : f1 ≃s f2. Hence, we obtained

s ◦ K(z, t) = s ◦ f1(z) = s ◦ f2(z).

Let K
′

: X × [0, m]Z → E be defined by K
′
(a, t) = K(h(a), t). Via the following equations,

K
′
(a, 0) = K(h(a), 0) = f1 ◦ h(a)

K
′
(a, m) = K(h(a), m) = f2 ◦ h(a),

we have K
′

: f1 ◦ h ≃ f2 ◦ h. Thus, we obtain

s ◦ K
′
(a, t) = s ◦ K(h(a), t) = s ◦ f1(h(a)) = s ◦ ( f1 ◦ h)(a)

s ◦ K
′
(a, t) = s ◦ K(h(a), t) = s ◦ f2(h(a)) = s ◦ ( f2 ◦ h)(a).

As a result, f1 ◦ h ≃s f2 ◦ h.
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Proposition 4. Let q1 : (E, κ1) → (B, κ2) be a digital map. The existing digital maps p1, p2 :
(A, λ) → (E

′
, κ

′
1) and q2 : (E

′
, κ

′
1) → (E, κ1) are such that p1 ≃q1◦q2 p2 implies that q2 ◦ p1 ≃q1

q2 ◦ p2.

Proof. Let T : p1 ≃q1◦q2 p2. Hence,

q1 ◦ q2 ◦ T(a, t) = q1 ◦ q2(p1(a)) = q1 ◦ q2(p2(a)).

Let T
′

: A × [0, m]Z → E be defined by T
′
(a, t) = q2 ◦ T(a, t). As such, we have

q1 ◦ T
′
(a, t) = q1 ◦ q2 ◦ T(a, t) = q1 ◦ q2(p1(a)) = q1 ◦ (q2 ◦ p1)(a)

q1 ◦ T
′
(a, t) = q1 ◦ q2 ◦ T(a, t) = q1 ◦ q2(p2(a)) = q1 ◦ (q2 ◦ p2)(a).

This shows that T′ is digital fiber homotopic with respect to q1.

Proposition 5. Let s1 : (E, κ1) → (B, κ2) and s2 : (E
′
, κ

′
1) → (B

′
, κ

′
2) be digital maps. If

f1, g1 : (X, λ) → (E, κ1) and f2, g2 : (X, λ) → (E
′
, κ

′
1) are digital maps such that f1 ≃s1 g1 and

f2 ≃s2 g2, then ( f1, f2) ≃s1×s2 (g1, g2).

Proof. Let H : f1 ≃s1 g1 and K : f2 ≃s2 g2. Then, we have the following:

s1 ◦ H(x, t) = s1 ◦ f1(x) = s1 ◦ g1(x)

s2 ◦ K(x, t) = s2 ◦ f2(x) = s2 ◦ g2(x).

We define T : X × [0, m2]Z → E × E
′

as

T(x, t) =

{
(H(x, t), K(x, t)), t ∈ [0, m1]Z
(H(x, m1), K(x, t)), t ∈ [m1, m2]Z.

It is evident that T is a digital homotopy from ( f1, f2) to (g1, g2). Using the digital fiber
homotopy for H and K, we have the following equations. For t ∈ [0, m1]Z,

(s1 × s2) ◦ T(x, t) = (s1 ◦ H(x, t), s2 ◦ K(x, t))

= (s1 ◦ f1(x), s2 ◦ f2(x))

= (s1 × s2) ◦ ( f1, f2)(x)

(3)

(s1 × s2) ◦ T(x, t) = (s1 ◦ H(x, t), s2 ◦ K(x, t))

= (s1 ◦ g1(x), s2 ◦ g2(x))

= (s1 × s2) ◦ (g1, g2)(x).

(4)

For t ∈ [m1, m2]Z,

(s1 × s2) ◦ T(x, t) = (s1 ◦ H(x, m1), s2 ◦ K(x, t))

= (s1 ◦ f1(x), s2 ◦ f2(x))

= (s1 × s2) ◦ ( f1, f2)(x)

(5)

(s1 × s2) ◦ T(x, t) = (s1 ◦ H(x, m1), s2 ◦ K(x, t))

= (s1 ◦ g1(x), s2 ◦ g2(x))

= (s1 × s2) ◦ (g1, g2)(x).

(6)

As a result, we have ( f1, f2) ≃s1×s2 (g1, g2).
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Definition 15. Let m ∈ Z and (Y, λ) be a digital image. A digital path space is defined as a
set of digital paths that are from [0, m]Z to Y and are denoted by Y[0,m]Z . In addition, for a given
digital map f : (X, κ) → (Y, λ), Pf = {(x, α)| f (x) = α(0)} ⊂ X × Y[0,m]Z is said to be a digital
mapping path space.

Let p0 : (Y[0,m]Z , λ∗) → (Y, λ
′
) be a digital fibration defined by p0(α) = α(0), and let

f : (X, λ) → (Y, λ
′
) be a digital map. Suppose that p : Pf → X is a digital fibration. Then,

p is called a digital mapping path fibration of f , if it is induced from p0 by f . There exists a
section map from X to Pf that is defined by s(x) = (x, α f (x)). Here, α f (x) is a constant path
in Y at f (x). Consider a digital map p1 : Pf → Y that is defined by p1(x, α) = α(m).

Proposition 6. Let f : (X, κ) → (Y, κ
′
) be a digital map. Let p1 and s be defined as before. Then,

there exists a commutative diagram satisfying the following:

X s //

f ��

Pf

p1

��
Y

i. 1Pf ≃p s ◦ p,
ii. p1 is a digital fibration.

Proof. i. Consider T : Pf × [0, m]Z → Pf to be defined by T((x, α), t) = (x, αt), where

αt(s) =

{
α(o), s = 0
α(s), s ̸= 0.

Since (x, α) ∈ Pf , f (x) = α(0), then—via the definition of αt, α(0) = αt(0)—we have
(x, αt) ∈ Pf . Moreover, we also have

• p ◦ T((x, α), t) = p(x, αt) = x,
• p ◦ 1Pf (x, α) = p(x, α) = x,
• p ◦ s ◦ p(x, α) = p ◦ s(x) = p(x, α f (x)) = x.

As a result, 1p f ≃p s ◦ p.
ii. Let g : A → Pf and G : A × [0, m]Z → Y be maps such that G(α, t) = p1 ◦ g(α) for

α ∈ A. That is to say that the diagram below is commutative.

A
g //

i
��

Pf

p1

��
A × [0, m]Z G

// Y

There are two digital maps g
′

: A → X and g
′′

: A → Y[0,m]Z such that

g
′′
(α)(0) = f ◦ g

′
(α) and g(α) = (g

′
(α), g

′′
(α)).

Now, we define a lifting function G̃ : A × [0, n]Z → Pf by G̃(α, t) = (g
′
(α), g(α, t)), where

g(α, t) ∈ Y[0,n]Z is defined by

g(α, t)(t
′
) =

{
g
′′
(α)(t), t

′ ∈ [0, m]Z
G(α, t), t

′ ∈ [m, n]Z.
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A
g //

i
��

Pf

p1

��
A × [0, m]Z G

//

G̃
::

Y

For t
′ ∈ [0, m]Z,

p1 ◦ G̃(α, t) = p1(g
′
(α), g(α, t)) = g(α, t)(m) = g

′′
(α)(m) = p1 ◦ g(α) = G(α, t).

For t
′ ∈ [m, n]Z,

p1 ◦ G̃(α, t) = G(α, t).

Thus, we have p1 ◦ G̃ = G.
For fiber homotopy, if t

′ ∈ [0, m]Z, then

G̃ ◦ i(α) = G̃(α, t)

= (g
′
(α), g(α, t))

= g(α).

(7)

If t
′ ∈ [m, n]Z, then

G̃ ◦ i(α) = G̃(α, t)

= (g
′
(α), g(α, t))

= (g
′
(α), G(α, t))

= (g
′
(α), p1 ◦ g(α))

= (g
′
(α), g

′′
(α)(m))

= g(α).

(8)

Hence, G̃ ◦ i = g, and we thus conclude that p1 is a digital fibration.

Definition 16. Let f : (B
′
, λ

′
) → (B, λ) and p : (E, κ) → (B, λ) be digital maps. The digital

fiber product of B
′

and E is known as E
′
, and it is defined by

E
′
= {(b′

, e)| f (b
′
) = p(e)} ⊂ B

′ × E.

It should be noted there exist two digital maps f
′

: (E
′
, κ∗) → (E, κ) and p

′
: (E

′
, κ∗) → (B

′
, λ

′
)

that are defined by f
′
(b

′
, e) = e and p

′
(b

′
, e) = b

′
, respectively.

In category theory, E
′
, f

′
and p

′
are characterized as the digital product of f and p. Here,

continuous maps with a range B are objects of category, and they are also morphisms of the below
category commute triangle:

X1
h //

g1 !!

X2

g2

��
B

As such, we have the following properties.

Proposition 7. Consider the above definition.

i. If p is injective (or surjective), then p
′

is injective (or surjective).
ii. Then, a digital trivial fibration from B

′ × F to B
′

and p
′

: E
′ → B are digital fiber homotopic

equivalent to each other, if p : B × F → B is a digital trivial fibration.
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iii. If p is a digital fibration (wupl), then so is p
′
.

iv. Suppose p is a digital fibration, then p
′

has a section if and only if f can be lifted to E.

Proof. i. Let X1 = E and X2 = B
′
. Suppose that p is injective. Let (b

′
1, e1), (b

′
2, e2) ∈ E

′
. By

the definition of E
′
, f (b

′
1) = p(e1), f (b

′
2) = p(e2). If p

′
(b

′
1, e1) = p

′
(b

′
2, e2), then b

′
1 = b

′
2.

Therefore, we have p(e1) = f (b
′
1) = f (b

′
2) = p(e2). From the fact that p is injective,

we obtain e1 = e2. As a result, p
′

is injective. Assume that p is surjective, then we have

E h //

p
��

B
′

f
��

B

From f ◦ h = p, we can conclude that f is surjective. For all b ∈ B, there exists (b
′
, e) ∈

B
′ × E such that f (b

′
) = b = p(e). Therefore,

E
′
= {(b′

, e)| f (b
′
) = b = p(e)} ⊂ B

′ × E

and E
′
= B

′ × E. Then,
p
′
(E

′
) = p

′
(B

′ × E) = B
′

p
′

is surjective.
ii. Let f : B

′ → B and p : B × F → B be defined by p(b, n) = b. In this case, we have

E
′
= {(b′

, b, n)| f (b
′
) = p(b, n) = b} ⊂ B

′ × B × F

and p
′
(b

′
, b, n) = b

′
. Let s and s

′
be digital maps defined by s(b

′
, b, n) = (b

′
, n) and

s
′
(b

′
, n) = (b

′
, f (b

′
), n). Our aim is then to show that the following diagram is commutative:

E
′ p

′
//

s

!!

B
′

B
′×F

φ : trivial

OO

s
′

YY

s ◦ s
′
(b

′
, n) = s(b

′
, f (b

′
), n) = (b

′
, n),

s
′ ◦ s(b

′
, b, n) = s

′
(b

′
, n) = (b

′
, f (b

′
), n) = (b

′
, b, n),

φ ◦ s(b
′
, b, n) = φ(b

′
, n) = b

′
= p

′
(b

′
, b, n),

p
′ ◦ s

′
(b

′
, n) = p

′
(b

′
, f (b

′
), n) = p

′
(b

′
, b, n) = b

′
= φ(b

′
, n).

As a result, p
′

and φ are fiber homotopic equivalent.
iii. Let p be a digital fibration with a unique path lifting property. For the given

digital paths α, α
′

: [0, m]Z → E, p ◦ α = p ◦ α
′

and α(0) = α
′
(0), it implies that α = α

′
. Let

β : [0, m]Z → E
′

and β
′

: [0, m]Z → E
′

be defined by β(t) = (b
′
, α(t)) and β

′
(t) = (b

′
, α

′
(t)),

where b
′ ∈ B

′
is chosen arbitrarily.

Let p
′ ◦ β = p

′ ◦ β
′

and β(0) = β
′
(0), then we have

β(0) = β
′
(0) ⇒ (b

′
, α(0)) = (b

′
, α

′
(0)) ⇒ α(0) = α

′
(0) ⇒ α = α

′
.

Thus, β = β
′
.

iv. Assume that f can be lifted to E, then we have p ◦ f̃ = f .
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E

p
��

B
′

f
//

f̃
??

B

If (b
′
, e) ∈ E

′
, then f (b

′
) = p(e). Since f̃ is lifting, p ◦ f̃ (b

′
) = p(e). Consider the

digital map s : B
′ → E

′
, which is defined by s(b

′
) = (b

′
, f̃ (b

′
)). For (b

′
, f̃ (b

′
)) ∈ E

′
, we

have
s ◦ p

′
(b

′
, f̃ (b

′
) = s(b

′
) = (b

′
, f̃ (b

′
)) = 1E′ (b

′
, f̃ (b

′
)).

Conversely, assume that s : B
′ → E

′
is a section of p

′
: E

′ → B
′
. Let f̃ : B

′ → E be defined
by f̃ (b

′
) = f

′ ◦ s(b
′
). For all b

′ ∈ B
′
, we have

p ◦ f̃ (b
′
) = p( f

′
(s(b

′
))) = p ◦ f

′
(b

′
, e) = p(e) = f (b

′
).

Therefore, we can conclude that f can be lifted.

4. h-Fibrations

It is known that the homotopy lifting property is not an invariant under a fiber
homotopic equivalence. Even if a digital map is digital fiber homotopic to a digital fibration,
it does not have to be a digital fibration. Hence, we defined digital h-fibrations and provide
its relation to fiber homotopic equivalence.

Definition 17. Let n ∈ Z+ and i be an inclusion map for every digital map g̃ : X → E and digital
homotopy T : X × [0, n]Z → B with p ◦ g̃ = T ◦ i, where (E, λ1), (B, λ2) and (X, λ3) are digital
images. Then, we say p : E → B has a digital weak hlp with respect to (X, λ3) if there is a digital
(λ∗, λ1)-continuous map T̃ that satisfies p ◦ T̃ = T and T̃ ◦ i ≃p g̃.

X
g̃ //

i
��

E

p
��

X × [0, n]Z T
//

T̃

::

B

Definition 18. If p has a weak hlp with respect to every space (X, κ3), then it is called a digital
h-fibration.

Example 3. Let B be a singleton digital image. For any digital map p : E → B, we would like to
show that there exists a digital continuous map T̃ that satisfies the definition of an h-fibration.

X
g̃ //

i
��

E

p
��

X × [0, n]Z T
//

T̃

::

B

If we choose T̃(a, t) = g̃(a), then we obtain p ◦ T̃ = T as follows:

p ◦ T̃(a, t) = p ◦ g̃(a) = T ◦ i(a) = T(a, t).

By using Example 1, we have T̃ ◦ i ≃p g̃. Thus, p is a digital h-fibration.

Proposition 8. Let p and q be two digital h-fibrations. Then, q ◦ p is a digital h-fibration.
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Proof. Via the assumption, for every digital homotopy K : A × [0, m1]Z → B and every
digital map k̃ : A → E, there exists a digital homotopy K̃ : A × [0, m1]Z → E such that

p ◦ K̃ = K and K̃ ◦ i ≃p k̃.

Similarly, for every digital homotopy H : A × [0, m2]Z → B
′

and every digital map
h̃ : A → B, there is a digital homotopy H̃ : A × [0, m2]Z → B such that

q ◦ H̃ = H and H̃ ◦ i ≃q h̃.

We take K = H̃. Thus, we have m1 = m2 and the following diagram.

A k̃ //

i
��

E

q◦p
��

A × [0, m]Z H
//

T

::

B
′

Now, we define T(a, t) = K̃(a, t). Via Proposition 1, we have K̃ ◦ i ≃q◦p k̃. Moreover,

q ◦ p ◦ T(a, t) = q ◦ p ◦ K̃(a, t) = q ◦ K(a, t) = q ◦ H̃(a, t) = H(a, t).

Therefore, we obtain q ◦ p ◦ T = H.

Proposition 9. Let p1 and p2 be two digital h-fibrations. Then, p1 × p2 is a digital h-fibration.

Proof. For the given assumption, the following hold.

A
f //

i
��

E1

p1

��
A × [0, m1]Z F

//

F̃
99

B1

p1 ◦ F̃ = F and F̃ ◦ i ≃p1 , f

A
g //

i
��

E2

p2

��
A × [0, m2]Z G

//

G̃
99

B2

p2 ◦ G̃ = G and G̃ ◦ i ≃p2 g.

Consider the digital continuous map

K̃(a, t) =

{
(F̃(a, t), G̃(a, t)), t ∈ [0, m1]Z
(F̃(a, m1), G̃(a, t)), t ∈ [m1, m2]Z.

Let m = max{m1, m2}. Thus, we obtain a commutative diagram.

A
( f ,g) //

i
��

E1 × E2

p1×p2

��
A × [0, m]Z K=(F,G)

//

K̃
77

B1 × B2
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For t ∈ [0, m1], we obtain

(p1 × p2) ◦ K̃(a, t) = (p1 × p2) ◦ (F̃(a, t), G̃(a, t))

= (p1 ◦ F̃, p2 ◦ G̃)(a, t)

= (F, G)(a, t)

= K(a, t).

(9)

For t ∈ [m1, m2], we conclude that

(p1 × p2) ◦ K̃(a, t) = (p1 × p2) ◦ (F̃(a, m1), G̃(a, t))

= (p1 ◦ F̃, p2 ◦ G̃)(a, t)

= (F, G)(a, t)

= K(a, t).

(10)

Therefore, we have (p1 × p2) ◦ K̃ = K. From Proposition 5, we know

K̃ ◦ i ≃p1×p2 ( f , g).

Thus, p1 × p2 is a digital h-fibration.

Theorem 1. Let p be a digital map. Then, the following are equivalent.

i. A digital fibration and p are fiber homotopic equivalent.
ii. p is a digital h-fibration.

Proof. Let p : (A, κ) → (B, λ), and let p
′

: (A
′
, κ

′
) → (B, λ) be a digital fibration. From

the assumption, there exists φ : A → A
′

and φ
′

: A
′ → A such that φ ◦ φ

′ ≃p′ 1A′ and

φ
′ ◦ φ ≃p 1A, as well as p

′ ◦ φ = p and p ◦ φ
′
= p

′
.

A
p //

φ

��

B

A
′

p
′

OO

φ
′

WW

Consider a digital map ϕ : (Z, µ) → (A, κ). Since p
′

is digital fibration, there is a
digital map F̃ : Z × [0, n]Z → A

′
such that p

′ ◦ F̃ = F and F̃ ◦ i = φ ◦ ϕ.

Z
φ◦ϕ //

i
��

A
′

p
′

��
Z × [0, n]Z F

//

F̃
::

B

If we choose ϕ and F such that p ◦ ϕ = F ◦ i, then we have p
′ ◦ φ ◦ ϕ = F ◦ i.

We took G̃ = φ
′ ◦ F̃. Thus,

p ◦ G̃ = p ◦ φ
′ ◦ F = p

′ ◦ F̃ = F,

G̃ ◦ i = φ
′ ◦ F̃ ◦ i = φ

′ ◦ φ ◦ ϕ ≃p 1X ◦ ϕ = ϕ.

Z
ϕ //

i
��

A

p
��

Z × [0, n]Z F
//

G̃
::

B
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As a consequence, p is a digital h-fibration.
Conversely, let p be a digital h-fibration. Via Proposition 6, we know p1 : Pp → B is a

digital fibration that is defined by p1(a, β) = β(n), where

Pp = {(a, β) ∈ A × B[0,m]Z |p(a) = β(0)}.

Let q : Pp → A be a projection map and γ : Pp × [0, n]Z → B be defined by γ(a, β, t) = β(t).
Then,

p ◦ q(a, β) = p(a) = β(0) = γ(a, β, 0) = γ ◦ i.

Pp
q //

i
��

A

p

��
Pp × [0, n]Z γ

//

γ̃

::

B

Via the hypothesis, p is a digital h-fibration, then p ◦ γ̃ = γ and γ̃ ◦ i ≃p q. Note that
T : γ̃ ◦ i ≃p q. Consider two maps q : Pp → A and h : A → Pp, which are defined by
q(a, β) = γ̃(a, β, n) and h(a) = (a, Cp(a)). Therefore,

p1 ◦ h(a) = p1(a, C(p(a))) = p(a) and p ◦ q(a, β) = p ◦ γ̃(a, β, n) = γ(a, β, n) = β(n).

By the fact that p1(a, β) = β(n), we find p ◦ q(a, β) = p1(a, β). Thus, the following diagram
commutes.

A
p //

h

��

B

Pp

p1

OO

q

WW

We want to see q ◦ h ≃p 1A and h ◦ q ≃p1 1Pp . For q ◦ h ≃p 1A, let K : A × [0, n]Z→ A
be defined by K(a, t) = γ̃(a, Cp(a), t). Since K0 ≃ Kn,

• p ◦ K(a, t) = p ◦ γ̃(a, Cp(a), t) = γ(a, Cp(a), t) = Cp(a)(t) = p(a),
• p ◦ K0(x) = p ◦ Kn(a) = p(a),
• Kn(a) = K(a, n) = γ̃(a, Cp(a), n) = q(a, Cp(a)) = q ◦ h(a).

Then, we obtain p ◦ (q ◦ h) = p. Thus,

p ◦ K(a, t) = p(a) = p ◦ K0(a) = p ◦ (q ◦ h)(a).

From the definition of digital fiber homotopy, K0 ≃p q ◦ h.
Define T

′
: A × [0, n]Z → A such that T

′
(a, t) = T(a, Cp(a), t).

T
′
(a, 0) = T(a, Cp(a), 0) = γ̃ ◦ i(a, Cp(a)) = γ̃(a, Cp(a), 0) = K(a, 0) = K0(a),

T
′
(a, n) = T(a, Cp(a), n) = p(a, Cp(a)) = a = 1A(a).

Hence, T
′

: K0 ≃ 1A. In addition, we have

p ◦ T
′
(a, t) = p ◦ T(a, Cp(a), t) = p ◦ γ̃ ◦ i(a, Cp(a)) = p ◦ γ̃(a, Cp(a), 0) = p ◦ K0(a),

p ◦ T
′
(a, t) = p ◦ T(a, Cp(a), t) = p ◦ q(a, Cp(a)) = p1(a, Cp(a)) = p(a) = p ◦ 1A(a).

The above equalities imply that K0 ≃p 1A. Since K0 ≃p q ◦ h and K0 ≃p 1A, we have
q ◦ h ≃p 1A.
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Now, it is enough to see h ◦ q ≃p1 1Pp . Let H : Pp × [0, n]Z → Pp be a digital homotopy
defined by H(a, β, s) = (γ̃(a, β, s), βs), where for every s, t ∈ [0, n]Z, we have

βs(t) =

{
β(s), t = 0
β(t), t ̸= 0.

H0 ≃ Hn because H is a digital homotopy. Furthermore,

p1 ◦ H(a, β, s) = p1(γ̃(a, β, s), βs) = βs(n) = β(n),

p1 ◦ H0(a, β) = p1 ◦ H(a, β, 0) = p1(γ̃(a, β, 0), β0) = β0(n) = β(n),

p1 ◦ H0(a, β) = p1 ◦ H(a, β, 0) = p1(γ̃(a, β, n), βn) = βn(n) = β(n).

Therefore, H0 ≃p1 Hn. On the other hand,

h ◦ q(a, β) = h(γ̃(a, β, n))

= (γ̃(a, β, n), Cγ(a,β,n))

= (γ̃(a, β, n), Cβ(n))

= (γ̃(a, β, n), βn)

= H(a, β, n)

= Hn(a, β).

Thus, we have H0 ≃p1 h ◦ q. Finally, we can consider that T
′′

: Pp × [0, n]Z → Pp is defined
by T

′′
(a, β, s) = (T(a, β, s), β). Since p ◦ T(a, β, s) = p ◦ q(a, β) = p(a) = β(0), we obtained

(T(a, β, s), β) ∈ Pp. Additionally, we obtained the following:

T
′′
(a, β, 0) = (T(a, β, 0), β) = (γ̃(a, β, 0), β) = H0(a, β),

T
′′
(a, β, n) = (T(a, β, n), β) = (q(a, β), β) = (a, β) = 1Pp(a, β),

p1 ◦ T
′′
(a, β, s) = p1(T(a, β, s), β)) = β(n),

p1 ◦ H0(a, β) = p1(H(a, β, 0)) = p1(γ̃(a, β, 0), β) = β(n),

p1 ◦ 1Pp(a, β) = p1(a, β) = β(n).

By the above equations, we found that H0 ≃p1 1Pp . Since H0 ≃p1 h ◦ q and H0 ≃p1 1Pp , we
obtained h ◦ q ≃p1 1Pp .

As a result, p is digital fiber homotopic equivalent to a digital fibration.

5. Conclusions

The goal of this study was to introduce digital h-fibrations using the notion of fiber
homotopy, as well as to expand the concept of digital fibrations. In this work, it was shown
that if a digital map is digital fiber homotopic to a digital fibration, then it need not be a
digital fibration but it certainly must be a digital h-fibration. In the future, new relations
between digital fibrations and digital h-fibrations will be obtained. Moreover, some of the
new results of digital h-fibrations and digital homology groups could also be investigated.
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