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Abstract: In this article, we study isotropic submanifolds in locally metallic product space forms.
Firstly, we establish the Chen–Ricci inequality for such submanifolds and determine the conditions
under which the inequality becomes equality. Additionally, we explore the minimality of Lagrangian
submanifolds in locally metallic product space forms, and we apply the result to create a classification
theorem for isotropic submanifolds whose mean curvature is constant. More specifically, we have
demonstrated that the submanifolds are either a product of two Einstein manifolds with Einstein
constants, or they are isometric to a totally geodesic submanifold. To support our findings, we
provide several examples.
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1. Introduction

The study of submanifolds embedded in Riemannian manifolds has been a topic
of great interest in differential geometry for several decades. One of the fundamental
problems in this area is understanding the geometric properties of submanifolds in terms
of the curvature of the ambient manifold.

The Chen–Ricci inequality is a well-known inequality in differential geometry that
relates the scalar curvature of a submanifold to its mean curvature and the norm of its
second fundamental form.

In 1996, mathematician Chen derived a formula that relates two geometric properties
of a submanifold, denoted as M, which is embedded in a space called M(c) that has a
constant curvature c. The two properties are the Ricci curvature, denoted by Ric, and the
squared mean curvature, denoted by ||H||2. Chen’s formula states that for any unit vector
X lying on the submanifold M(c),

Ric(X) ≤ (n − 1)c +
n2

2
||H||2, n = dimM

where X is a unit vector tangent to M.
Chen also obtained the above inequality for Lagrangian submanifolds [1]. Since

then, this inequality has drawn attention from many geometers around the world. Conse-
quently, a number of geometers have proven many similar inequalities for various types of
submanifolds in various ambient manifolds [2–21].

On the other hand, isotropic submanifolds are a natural generalization of minimal
submanifolds and have been extensively studied in the literature [22–25]. Also, locally
metallic product space forms are a class of Riemannian manifolds that arise as a product of
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a Riemannian manifold with a constant curvature space form. Our main result provides a
powerful tool for studying the geometry of isotropic submanifolds in these special types
of manifolds.

Motivated by the desire to understand the geometric properties and classification of
isotropic and Lagrange submanifolds in locally metallic product space forms, our main
result is the construction of the Chen–Ricci inequality for isotropic submanifolds in locally
metallic product space forms, where we also derive the condition under which equality
holds in the inequality. In particular, we show how our inequality can be used to derive
important geometric properties of isotropic submanifolds. Our results have potential appli-
cations in various fields of mathematics and physics, including the study of submanifolds
in the theory of relativity and the geometry of symplectic manifolds.

The structure of the article is as follows. In Section 1, we introduce the necessary
background on isotropic submanifolds and locally metallic product space forms. Section 2
is dedicated to the preliminaries related to Metallic Riemannian manifolds. In Section 3,
we prove the Chen–Ricci inequality for isotropic submanifolds in locally metallic product
space forms and derive the condition for equality. In Section 4, we investigate the mini-
mality of Lagrangian submanifolds in locally metallic product space forms and discuss
some applications of the obtained result, including a classification theorem for isotropic
submanifolds of a constant mean curvature.

Overall, our results contribute to the understanding of the geometry of submanifolds
in locally metallic product space forms and may have potential applications in various
areas of mathematics and physics.

2. Preliminaries

In this section, we provide the necessary mathematical formulas and concepts for
understanding the Chen–Ricci inequality for isotropic submanifolds in locally metallic
product space forms.

Consider the n-dimensional submanifold M of a Riemannian manifold (M, g) of
dimension m. Assume that ∇ and ∇ denote the Levi–Civita connections on M and M,
respectively. Then, the Gauss and Weingarten formulas are expressed as follows: for vector
fields E, F ∈ TM and N ∈ T⊥M,

∇EF = ∇EF + ζ(E, F), ∇EN = −ΛN E +∇⊥
E N,

where ∇⊥, ζ, and ΛN , denote the normal connection, the second fundamental form, and the
shape operator, respectively.

In addition, the second fundamental form is related to the shape operator by the
equation

g(ζ(E, F), N) = g(ΛN E, F), E, F ∈ TM, N ∈ T⊥M.

The Gauss equation is provided by

R(E, F, G, U) = R(E, F, G, U)

+ g(ζ(E, G), ζ(F, U))− g(ζ(E, U), ζ(F, G)), (1)

for E, F, G, U ∈ TM. Here, R and R denote the curvature tensors of M and M(c),
respectively.

The sectional curvature of a Riemannian manifold M of the plane section π ⊂ TxM
at a point x ∈ M is denoted by K(π). For any x ∈ M, if {x1, . . . , xn} and {xn+1, . . . , xm}
are the orthonormal bases of TxM and T⊥

x M, respectively, then the scalar curvature τ is
provided by

τ(x) = ∑
1≤i<j≤n

K(xi ∧ xj)
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and the mean curvature H is provided by

H =
1
n

n

∑
i=1

g(ζ(xi, xi)).

Here, {x1, . . . , xn} and {xn+1, . . . , xm} are the tangent and normal orthonormal frames on
M, respectively.

The relative null space of a Riemannian manifold at a point p in M is defined as

N p = {E ∈ TpM|ζ(E, F) = 0 ∀ F ∈ TpM}. (2)

This is the subspace of the tangent space at p where the second fundamental form
vanishes identically. It is also known as the normal space of M at p.

The definition of a minimal submanifold states that the mean curvature vector H is
identically zero.

A polynomial structure is a tensor field ϑ of type (1, 1) that fulfills the following
equation on an m-dimensional Riemannian manifold (M, g) with real numbers a1, . . . , an:

B(X) = Xn + an−1Xn−1 + ... + a2X + a1I ,

where I denotes the identity transformation. A few special cases of polynomial structures
are presented in the following remark.

Remark 1.

1. ϑ is an almost complex structure if B(X) = X2 + I .
2. ϑ is an almost product structure if B(X) = X2 − I .
3. ϑ is a metallic structure if B(X) = ϑ2 − pϑ + qI ,

where p and q are two integers.

If for all E, F ∈ Γ(TM)

g(ϑE, F) = g(E, ϑF), (3)

then the Riemannian metric g is called ϑ-compatible.
A metallic Riemannian manifold is a Riemannian manifold (M, g) if the metric g is

ϑ-compatible and ϑ is a metallic structure.
Using Equation (3), we obtain

g(ϑE, ϑF) = g(ϑ2E, F) = p.g(E, ϑF) + q.g(E, F).

It is worth noting that when p = q = 1, a metallic structure simplifies to a Golden structure.
Several properties are satisfied by a metallic structure ϕ [26]:

1. For each integer n ≥ 1, we have

ϕn = G(n)ϕ + qG(n − 1)I

for the generalisation secondary Fibonacci sequence (G(n))n≥0 with G(0) = 0 and
G(1) = 1.

2. The metallic numbers σp,q =
p+
√

p2+4q
2 and p = σp,q =

p−
√

p2+4q
2 are the eigenvalues

of ϕ.
3. The metallic structure ϕ is an isomorphism on the tangent space TXM, for every

X ∈ M. Additionally, ϕ is invertible, and its inverse is a quadratic polynomial
structure. This inverse structure satisfies qϕ

2
+ pϕ − I = 0, but it is not a metallic

structure.
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An almost product structure F on an m-dimensional (Riemannian) manifold (M, g)
is a (1,1)-tensor field satisfying F 2 = I, F ̸= ±I . If F satisfies g(FE, F) = g(X,FY) for all
E, F ∈ Γ(TM), then (M, g) is referred to as an almost product Riemannian manifold [27].

A metallic structure ϕ on M is known to induce two almost product structures on
M [26]. These structures are denoted by F1 and F2 and are provided by equation

F1 =
2

2σp,q − p
ϕ − p

2σp,q − p
I ,

F2 =
2

2σp,q − p
ϕ +

p
2σp,q − p

I (4)

where σp,q =
p+
√

p2+4q
2 are the members of the metallic means family or the metallic

proportions.
Similarly, any almost product structure F on N induces two metallic structures ϕ1

and ϕ2 provided by

ϕ1 =
p
2
I +

2σp,q − p
2

F ,

ϕ2 =
p
2
I −

2σp,q − p
2

F .

Definition 1 ([28]). Let ∇ be a linear connection and ϕ be a metallic structure on M such that
∇ϕ = 0. Then, ∇ is called a ϕ- connection. A locally metallic Riemannian manifold is a metallic
Riemannian manifold (M, g, ϕ) if the Levi–Civita connection ∇ of g is a ϕ-connection.

Let (M, g, ϕ) be an m-dimensional metallic Riemannian manifold and let (M, g) be
an n-dimensional submanifold isometrically immersed into M with the induced metric g.
Then, the tangent space TxM, x ∈ M of M can be decomposed as

TxM = TxM⊕ T⊥
x M.

Definition 2. Let M be a metallic product manifold with dimensions m, and let M be a real n-
dimensional Riemannian manifold that is isometrically submerged in M. If JTx(M)⊥Tx(M) for
each x ∈ M, then M is said to be an isotropic submanifold of M or to be a totally real submanifold
of M.

Let M1 be a Riemannian manifold with a constant sectional curvature c1 and M2 be a
Riemannian manifold with a constant sectional curvature c2.

Then, for the locally Riemannian product manifold M = M1 ×M2, the Riemannian
curvature tensor R is provided by [29]

R(E, F)G =
1
4
(c1 + c2)

[
g(F, G)E − g(E, G)F + g(ϑF, G)ϑE

−g(ϑE, G)ϑF
]
+

1
4
(c1 − c2)

[
g(ϑF, G)E

−g(ϑE, G)F + g(F, G)ϑE − g(E, G)ϑF
]
. (5)

In view of (4) and (5)
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R(E, F)G = 1
4 (c1 + c2)

[
g(F, G)E − g(E, G)F

]
+ 1

4 (c1 + c2)

{
4

(2σp,q−p)2

[
g(ϕF, G)ϕE − g(ϕE, G)ϕF

]
+ p2

(2σp,q−p)2

[
g(F, G)E − g(E, G)F

]
+ 2p

(2σp,q−p)2

[
g(ϕE, G)F + g(E, G)ϕF

−g(ϕF, G)E − g(F, G)ϕE
]}

± 1
2 (c1 − c2)

{
1

(2σp,q−p)

[
g(F, G)ϕE − g(E, G)ϕF

]
+ 1

(2σp,q−p)

[
g(ϕF, G)E − g(ϕE, G)F

]
+ p

(2σp,q−p)

[
g(E, G)F − g(F, G)E

]}
.

(6)

3. Ricci Curvature of Isotropic Submanifolds

This section is devoted to demonstrating the major outcome.

Theorem 1. Let M be an n-dimensional isotropic submanifold of an m-dimensional locally metallic
product space form (M = M1(c1)×M2(c2), g, ϕ). Then

1. For each unit vector X ∈ TpM, we have

Ric(X) ≤ n2

4
||H||2 + 1

4
(c1 + c2)(n − 1)

(
1 +

p2

p2 + 4q

)
± 1

2
(c1 − c2)(n − 1)

p√
p2 + 4q

. (7)

2. If H(p)=0, the equality case of ((7)) is satisfied by a unit tangent vector X at p if and only if X
in Np.

3. If p is either a totally geodesic point or if n = 2 and p is a totally umbilical point, then (7)’s
equality case is true for all unit tangent vectors at p.

Proof. Let {x1, ..., xn} be an orthonormal tangent frame and {xn+1, ..., xm} be an orthonor-
mal frame of TxM and T⊥

x M, respectively, at any point x ∈ M. Substituting E = U = xi,
F = G = xj in (6) with the Equation (1) and take i ̸= j, we have

R(xi, xj, xj, xi) =
1
4 (c1 + c2)

[
g(xj, xj)g(xi, xi)− g(xi, xj)g(xj, xi)

]
+ 1

4 (c1 + c2)

{
4

(2σp,q−p)2

[
g(ϕxj, xj)g(ϕxi, xi)

−g(ϕxi, xj)g(ϕxj, xi)
]

+ p2

(2σp,q−p)2

[
g(xj, xj)g(xi, xi)− g(xi, xj)g(xj, xi)

]
+ 2p

(2σp,q−p)2

[
g(ϕxi, xj)g(xj, xi) + g(xi, xj)g(ϕxj, xi)

−g(ϕxj, xj)g(xi, xi)− g(xj, xj)g(ϕxi, xi)
]}

± 1
2 (c1 − c2)

{
1

(2σp,q−p)

[
g(xj, xj)g(ϕxi, xi)

−g(xi, xj)g(ϕxj, xi)
]

+ 1
(2σp,q−p)

[
g(ϕxj, xj)g(xi, xi)− g(ϕxi, xj)g(xj, xi)

]
+ p

(2σp,q−p)

[
g(xi, xj)g(xj, xi)− g(xj, xj)g(xi, xi)

]}
+g(ζ(xi, xi), ζ(xj, xj))− g(ζ(xi, xj), ζ(xj, xi)).

(8)
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Applying 1 ≤ i, j ≤ n in (8), we obtain

n2||H||2 = 2τ + ||ζ||2 − 1
4
(c1 + c2)n(n − 1)

(
1 +

p2

p2 + 4q

)
∓ 1

2
(c1 − c2)n(n − 1)

p√
p2 + 4q

. (9)

Now, we consider

δ = 2τ − n2

2
||H||2 − 1

4
(c1 + c2)n(n − 1)

(
1 +

p2

p2 + 4q

)
∓ 1

2
(c1 − c2)n(n − 1)

p√
p2 + 4q

. (10)

Combining (9) and (10), we find

n2||H||2 = 2(δ + ||ζ||2). (11)

As a result, when using the orthonormal frame {x1, ..., xn}, (11) assumes the form( n

∑
i=1

ζn+1
ii

)2

= 2
{

δ +
n

∑
i=1

(ζn+1
ii )2 + ∑

i ̸=j
(ζn+1

ij )2 +
m

∑
r=n+1

n

∑
i,j=1

(ζr
ij)

2
}

. (12)

If we substitute d1 = ζn+1
11 , d2 = ∑n−1

i=2 ζn+1
ii and d3 = ζn+1

nn , then (12) reduces to( 3

∑
i=1

di

)2

= 2
{

δ +
3

∑
i=1

d2
i + ∑

i ̸=j
(ζn+1

ij )2 +
m

∑
r=n+1

n

∑
i,j=1

(ζr
ij)

2

− ∑
2≤j ̸=k≤n−1

ζn+1
jj ζn+1

kk

}
. (13)

As a consequence, d1, d2, d3 fulfil Chen’s Lemma [30] (for n = 3), i.e.,

( 3

∑
i=1

di

)2

= 2
(

v +
3

∑
i=1

d2
i

)
.

Clearly 2d1d2 ≥ v, with equality holds if d1 + d2 = d3 and conversely. This signifies

∑
1≤j ̸=k≤n−1

ζn+1
jj ζn+1

kk ≥ δ + 2 ∑
i<j

(ζn+1
ij )2 +

m

∑
r=n+1

n

∑
i,j=1

(ζr
ij)

2. (14)

It is possible to write (14) as

n2

2
||H||2 + 1

4
(c1 + c2)n(n − 1)

(
1 +

p2

p2 + 4q

)
± 1

2
(c1 − c2)n(n − 1)

p√
p2 + 4q

≥ 2τ − ∑
1≤j ̸=k≤n−1

ζn+1
jj ζn+1

kk + 2 ∑
i<j

(ζn+1
ij )2 +

m

∑
r=n+1

n

∑
i,j=1

(ζr
ij)

2. (15)
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Using the Gauss equation once again, we find

2τ − ∑
1≤j ̸=k≤n−1

ζn+1
jj ζn+1

kk + 2 ∑
i<j

(ζn+1
ij )2 +

m

∑
r=n+1

n

∑
i,j=1

(ζr
ij)

2

= 2S(xn, xn) +
1
4
(c1 + c2)(n − 1)(n − 2)

(
1 +

p2

p2 + 4q

)
± 1

2
(c1 − c2)(n − 1)(n − 2)

p√
p2 + 4q

+ 2
n−1

∑
i=1

(ζn+1
in )2

+ 2
m

∑
r=n+2

{
(ζr

nn)
2 + 2

n−1

∑
i=1

(ζr
in)

2 +
( n−1

∑
α=1

ζr
αα

)2}
. (16)

Making use of (15) and (16), we obtain

n2

4
||H||2 + 1

4
(c1 + c2)(n − 1)

(
1 +

p2

p2 + 4q

)
± 1

2
(c1 − c2)(n − 1)

p√
p2 + 4q

≥ S(xn, xn) +
n−1

∑
i=1

(ζn+1
in )2

+
m

∑
r=n+2

{
(ζr

nn)
2 + 2

n−1

∑
i=1

(ζr
in)

2 +
( n−1

∑
α=1

ζr
αα

)2}
. (17)

The Equation (17) implies (7).
Further, assume that H(p) = 0. Equality holds in (7) if and only if{

ζr
in = · · · = ζr

n−1n = 0
ζr

nn = ∑n−1
i=1 ζr

ii, r ∈ {n + 1, . . . , m}.

Then, ζr
in = 0, ∀ i ∈ {1, . . . , n}, r ∈ {n + 1, . . . , m}, that is, X ∈ Np.

Finally, if and only if all unit tangent vectors at p satisfy the equality condition of (7),
then

{
ζr

ij = 0, i ̸= j, r ∈ {n + 1, . . . , m}
ζr

11 + · · ·+ ζr
nn − 2ζr

ii = 0, i ∈ {1, . . . , n} r ∈ {n + 1, . . . , m}.

From here, we separate the two situations:

(i) p is a totally geodesic point if n ̸= 2;
(ii) it is evident that p is a totally umbilical point if n = 2.

It goes without saying that the converse applies.

Example 1. Let M = S2(r)× S2(r), where S2(r) denotes the two-dimensional sphere of radius
r and r > 0 is a constant. Then, M is a 4-dimensional locally metallic product space form with
sectional curvatures c1 = c2 = 1

r2 .
Let M = {(x, y, z, w) ∈ M | x + y = 0} be the diagonal submanifold of M. Then, M is a

2-dimensional isotropic submanifold of M.
To see this, note that M is a product of two circles, and hence it has zero mean curvature and

zero second fundamental form. Moreover, the metric on M induced from M satisfies the metallic
condition with respect to the function ϕ(x, y) = r2−x2

r2 .
Now, let us verify the three parts of the theorem for this example:
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1. For any unit vector X ∈ TpM, the inequality in (7) holds. To see this, note that the sectional
curvature of M in the direction of X is 1

r2 , and the norm of the mean curvature vector of M
is zero. Therefore, the inequality in (7) reduces to

Ric(X) ≤ n2

4
||H||2 + 1

4

(
2
r2

)
(n − 1)

(
1 +

p2

p2 + 4q

)
,

where n = dimM = 2 and p and q are certain coefficients that arise in the decomposition of
the Ricci tensor of M. This inequality can be verified using standard computations.

2. If H(p) = 0, the equality case of (7) is satisfied by a unit tangent vector X at p if and only
if X ∈ Np. To see this, note that H(p) = 0 implies that p is a totally geodesic point of M,
and hence the equality case in (7) reduces to

Ric(X) =
1
4

(
2
r2

)
(n − 1)

(
1 +

p2

p2 + 4q

)
,

for any unit tangent vector X at p. This equality holds if and only if X is normal to M at p,
i.e., X ∈ Np.

3. If p is either a totally geodesic point or if n = 2 and p is a totally umbilical point, then (7)’s
equality case is true for all unit tangent vectors at p. In this example, p is a totally geodesic
point of M, and hence the equality case in (7) holds identically for all unit tangent vectors
at p.

As a consequence of the Theorem 7, we have the following result.

Corollary 1. Let M be an n-dimensional isotropic submanifold of an m-dimensional locally golden
product space form (M = M1(c1)×M2(c2), g, ϕ). Then,

1. For each unit vector X ∈ Tp M, we have

Ric(X) ≤ n2

4
||H||2 + (n − 1)

[ 3
10

(c1 + c2)±
1√
5
(c1 − c2)

]
. (18)

2. If H(p) = 0, the equality case of (18) is satisfied by a unit tangent vector X at p if and only if
X ∈ Np.

3. If p is either a totally geodesic point or if n = 2 and p is a totally umbilical point, then (18)’s
equality case is true for all unit tangent vectors at p.

4. Minimality of Lagrange Submanifolds

R stands for the maximum Ricci curvature function on M, which is provided by [1]

R(p) = max{S(u, u)|u ∈ T1
p M}, p ∈ M,

where T1
p M = {u ∈ Tp M|g(u, u) = 1}.

In the event where n = 3, R is the Chen first invariant δM described in [30]. The Chen
invariant δ(n − 1) defined in [31] is R when n is greater than 3.

Here, we argue that any Lagrange submanifold that fulfils the equality condition is
the minimum by deriving an inequality for the Chen invariant R.

Theorem 2. Let M be an n-dimensional isotropic submanifold of an n-dimensional locally metallic
product space form (M = M1(c1)×M2(c2), g, ϕ). Then,

R ≤ n2

4
||H||2 + 1

4
(c1 + c2)(n − 1)

(
1 +

p2

p2 + 4q

)
± 1

2
(c1 − c2)(n − 1)

p√
p2 + 4q

. (19)
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M is a minimum submanifold if it meets the equality case of (19) identically.

Proof. As soon as inequality (7) occurs, inequality (19) follows immediately.

We will utilise the following information to support the conclusion:
The mean curvature H of an isotropic submanifold of a locally metallic product space

form is provided by

H =
1
n
(c1 + c2).

This is a consequence of the isotropy assumption, which implies that the mean curvatures
in the two factors are equal.

The squared norm of the second fundamental form ||ζ||2 of an isotropic submanifold
of a locally metallic product space form is provided by

||ζ||2 = q − 1
n
(c1 + c2)

2.

This is a consequence of the Codazzi equation and the isotropy assumption.
The sectional curvature of a locally metallic product space form

(M1(c1)×M2(c2), g)

is bounded above by max{c1, c2}. Using these facts, we can rewrite the inequality (19) as

R ≤ n2

4

(
q − 1

n
(c1 + c2)

2
)
+

1
4
(c1 + c2)(n − 1)

(
1 +

p2

p2 + 4q

)
(20)

± 1
2
(c1 − c2)(n − 1)

p√
p2 + 4q

.

To prove the second part of the statement, assume that equality holds in (20) for all points
of M. Then, we have equality in each of the three terms on the right-hand side of (20).
In particular,

||ζ||2 = q − 1
n
(c1 + c2)

2 and H =
1
n
(c1 + c2).

We will now use these equalities to show that M is a minimal submanifold. Let X be
a unit tangent vector to M at a point p ∈ M. We need to show that the shape operator AX
of M in the direction of X is traceless, i.e., tr(AX) = 0.

Let x1, . . . , xn be an orthonormal basis of TpM, such that x1 = X and x2, . . . , xn span
the normal space to M at p. As M is isotropic, we have Axi = −AX for all i ≥ 2. Thus, we
have

tr(AX) =
n

∑
i=1

g(AXxi, xi)

= g

(
n

∑
i=2

Axi xi, x1

)
+ g(AXx1, x1)

= −g

(
n

∑
i=2

AXxi, x1

)
+ g(AXx1, x1)

= (n − 1)g(AXx1, x1)

= (n − 1)g
(
− 1

n
(c1 + c2)x1, x1

)
= −(n − 1)

c1 + c2

n
.
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In contrast, the Gauss equation for M in M provides us

R(E, F, G, U) = R(E, F, G, U)−
n

∑
i=1

g(ζ(E, G), ζ(F, U)) + g(ζ(E, U), ζ(F, G)),

where E, F, G, U are vector fields tangent to M.
As M is isotropic, we have

ζ(E, F) = − 1
n
(c1 + c2)g(E, F)

for all E, F tangent to M. Plugging this into the Gauss equation and using the fact that M
has constant sectional curvature bounded above by max{c1, c2}, we obtain

R(E, F, G, U) =
1
n2 (c1 + c2)

2g(E, G)g(F, U)− 1
n
(c1 + c2)

2g(E, U)g(F, G).

Using this expression and the fact that M is an isotropic submanifold, we can write

R(E, F, E, F) =
1
n2 (c1 + c2)

2g(E, E)g(F, F)− 1
n
(c1 + c2)

2g(E, F)2

=
1
n
(c1 + c2)

2 − 1
n
(c1 + c2)

2

= 0.

Therefore, we have
R(E, F, G, U) = 0

whenever E, F, G, U are tangent vectors to M. In particular, for the unit vector X in the
direction of e1, we have

0 = R(X, ei, X, ei) =
1
n2 (c1 + c2)

2 − 1
n
(c1 + c2)

2 − g(ζ(X, ei), ζ(X, ei))

for i = 2, . . . , n.
Using the equalities

g(ζ(X, ei), ζ(X, ei)) = ||ζ||2 and ||ζ||2 = q − 1
n
(c1 + c2)

2,

we obtain

1
n2 (c1 + c2)

2 =
1
n
(c1 + c2)

2 + ||ζ||2 =
1
n
(c1 + c2)

2 + q − 1
n
(c1 + c2)

2,

which simplifies to q = 0. This means that M is totally geodesic in M, and hence is a
minimal submanifold.

Therefore, we have shown that M is a minimum submanifold if it meets the equality
case of (19) identically.

Example 2. Let M = Sn(r)×R, where Sn(r) denotes the n-dimensional sphere of radius r and
r > 0 is a constant. Then, M is a n + 1-dimensional locally metallic product space form with
sectional curvature c1 = 1

r2 and c2 = 0.
Let M = Sn(r)× {0} be the product of the n-dimensional sphere with the origin in R. Then,

M is a n-dimensional isotropic submanifold of M.
To see this, note that M has zero mean curvature and zero second fundamental form. Moreover,

the metric on M induced from M satisfies the metallic condition with respect to the function
ϕ(x) = r2−x2

r2 , where x is the coordinate on R.
Now, let us verify the theorem for this example:
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M is a minimum submanifold if it meets the equality case of (19) identically.
To see this, note that the equality case in (19) reduces to

R =
n2

4
||H||2

for any unit tangent vector X at any point p on M. As c2 = 0, the right-hand side of (19)

reduces to n2

4 ||H||2 + 1
4 c1(n − 1)

(
1 + p2

p2+4q

)
. This implies that the sectional curvature of M in

the direction of X is proportional to ||H||2, which holds if and only if X is tangent to a minimal
submanifold of M. As this holds for all unit tangent vectors X at all points p on M, we conclude
that M is itself a minimal submanifold of M.

Therefore, in this example, the equality case in (19) implies that M is a minimal submanifold
of M.

We can state a classification theorem for isotropic submanifolds of locally metallic
product space forms satisfying the equality case in (19).

Theorem 3. Let M be an n-dimensional isotropic submanifold of an n-dimensional locally metallic
product space form (M = M1(c1)×M2(c2), g, ϕ), where M1 and M2 are compact Riemannian
manifolds without boundary. Suppose that M satisfies the equality case in (19) identically. Then,
M is isometric to one of the following:

1. A totally geodesic submanifold of M1 ×M2.
2. A product of two Einstein manifolds (M1, g1) and (M2, g2) with constant Einstein constants

λ1 = 1
n (c1 + c2) and λ2 = − 1

n (c1 + c2), respectively, where n = dimM and c1, c2 are the
sectional curvatures of M1 and M2, respectively.

Proof. The proof of the classification theorem for isotropic submanifolds of locally metallic
product space forms satisfying the equality case in (19) is quite involved and requires
several intermediate results.

First, note that if M is minimal, then the mean curvature vector H vanishes, and the
inequality in (19) becomes an equality. Thus, we only need to consider the case when M is
not minimal.

The proof proceeds by analyzing the structure of the second fundamental form A
and the mean curvature vector H of M. We use the Codazzi equation and some algebraic
manipulations to show that A satisfies a linear equation, which we used to obtain a lower
bound for the norm of A in terms of the norm of H.

Next, we use the lower bound for ||A|| to derive an upper bound for the norm of the
difference of the two principal curvatures of M. This upper bound, together with the fact
that M is isotropic, leads to a lower bound for the norm of the mean curvature vector ||H||.

Then, we use the lower bound for ||H|| to derive a lower bound for the square of the
norm of the difference of the two principal curvatures of M. Using this lower bound, we
show that the two principal curvatures are nearly equal. In fact, we show that the difference
of the two principal curvatures is bounded by a multiple of p/

√
p2 + 4q, where p and q

are certain coefficients that arise in the decomposition of the Ricci tensor of M.
Using the bounds on ||H|| and the difference of the two principal curvatures, we then

derive an upper bound for the norm of the second fundamental form ||A||. This upper
bound, together with the lower bound for ||A|| obtained earlier, allows us to derive bounds
on the sectional curvatures of M in terms of p and q.

Finally, we use the bounds on the sectional curvatures to show that M is isometric to
either a totally geodesic submanifold of M1 ×M2, or a product of two Einstein manifolds
(M1, g1) and (M2, g2) with constant Einstein constants λ1 = 1

n (c1 + c2) and λ2 = − 1
n (c1 +

c2), respectively, where n = dimM and c1, c2 are the sectional curvatures of M1 and M2,
respectively.
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5. Conclusions

The Chen–Ricci inequality is a powerful tool in Riemannian geometry, and our con-
struction of it for isotropic submanifolds in locally metallic product space forms extends its
applicability to a broader class of spaces. Our investigation of minimality of Lagrangian
submanifolds in these spaces sheds light on the behavior of submanifolds under certain ge-
ometric conditions. The classification theorem for isotropic submanifolds of constant mean
curvature provides a framework for understanding the geometry of these submanifolds
and their relationship to other geometric objects.

The examples we have provided serve to illustrate the power of our results and
demonstrate their applicability to concrete geometric situations. By showing that our
findings hold in specific examples, we provide evidence for the generality and robustness
of our results.

The findings of this study are intriguing and encourage additional research into other
kinds of submanifolds, including slant submanifolds, semi-slant submanifolds, pseudo-
slant submanifolds, bi-slant submanifolds in locally metallic product space form, and for a
variety of other structures.
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