@ axioms @g

Article

The Generalized 3-Connectivity of Exchanged Folded Hypercubes

Wantao Ning »*{ and Hao Li 2

1 School of Mathematics and Statistics, Xidian University, Xi’an 710071, China

Laboratoire Interdisciplinaire des Sciences du Numérique, UMR9015 CNRS-Université Paris-Saclay,
1 Rue Raimond Castaing, 91190 Gif-sur-Yvette, France; li@lri.fr

*  Correspondence: wtning@xidian.edu.cn

Abstract: For S C V(G), kg (S) denotes the maximum number k of edge disjoint trees Ty, Ty, . . ., Ty in
G, such that V(T;) N V(Tj) = S forany i,j € {1,2,...,k} and i # j. For an integer 2 < r < [V(G)],
the generalized r-connectivity of G is defined as #,(G) = min{xs(S)|S C V(G) and |S| = r}. In
fact, x5 (G) is the traditional connectivity of G. Hence, the generalized r-connectivity is an extension
of traditional connectivity. The exchanged folded hypercube EFH (s, t), in which s > 1 and t > 1 are
positive integers, is a variant of the hypercube. In this paper, we find that x3(EFH(s, t)) = s + 1 with
3<s<Ht
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1. Introduction

An interconnection network is usually modeled as a simple graph G = (V(G), E(G)),

in which V(G) represents the set of processors and E(G) represents the set of links. For

v € V(G), N(v) is the neighborhood of v in G. d(v) = |N(v)| is the degree of v in G.

The minimum degree of G is defined as 6(G) = min{d(v)|v € V(G)}. For two graphs

ﬁ*;e;:tfé’sr Gy and Gy, G; = G, means that they are isomorphic. Let S C V(G). The subgraph of

G, whose vertex set is S and whose edge set is the set of those edges of G that have both

ends in S, is called the subgraph of G induced by S and is denoted by G[S|. We say that

G[S] is an induced subgraph of G. G — S means the induced subgraph G[V(G)\S], where

V(G)\S represents the vertex set obtained from V(G) by deleting the vertices in S. Let

V C V(G)\{v}. The (v, V) paths is a family of internally disjoint paths whose starting

vertex is v and terminal vertices are distinct in V, which is called a fan from v to V. For
other terminologies and notations, please refer to [1].
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applied to VLSI [5]. From the definition of generalized k-connectivity, we can see that the
core of generalized k-connectivity is to seek the maximum number of internally edge disjoint
S-Steiner trees. The generalized k-connectivity is an extension of traditional connectivity. It
can more precisely measure the fault tolerance of networks. To decide whether there exist k
internally edge disjoint S-Steiner trees is NP-complete for a graph [6]. The generalized 3-
connectivities of augmented cubes, (1, k)-bubble-sort graphs, and generalized hypercubes
have been obtained in [7-9], respectively. The generalized 4-connectivities of hypercubes,
crossed cubes, exchanged hypercubes, and hierarchical cubic networks have been obtained
in [10-13], respectively. On the whole, the generalized k-connectivity is known for a small
number of graphs and almost all known results are about k = 3 or 4.

The n-dimensional hypercube is denoted by Q;, whose vertices are the ordered n-
tuples of 0’s and 1’s. Two vertices are adjacent if and only if they differ in exactly one
dimension. As variants of hypercubes Qj,, folded hypercubes FQ, and exchanged hyper-
cubes EH(s, t) were proposed in [14,15], respectively. Based on EH(s,t) and FQy, Qi et
al. proposed an interconnection network named exchanged folded hypercube EFH (s, t)
in [16]. In this work, we will prove «3(EFH(s,t)) =s+1for3 <s <t.

2. Definitions and Lemmas

Exchanged hypercubes were defined by Lou et al. [15] as follows. Lets > 1and t > 1
be positive integers. The exchanged hypercubes EH (s, t) are defined as undirected graphs,
whose vertex set V' is

V = {as---aib;---bicla;, bj,c € {0,1} for i € [1,s],] € [1,]}.

For u,v € V, u[0] means the ¢ index of u. u[i : j] is the indexes of # from dimension j
to dimension i. H(u[i : j],v[i : j]) represents the number of different indexes at the same
dimension between u[i : j| and v[i : j].

The edge set consists of three disjoint subsets Epj, Er and Ej, where

Ey ={(u,0)|uls+t:1] =v[s+t:1],u[0] # v[0]},
Er ={(w,0)|uls+t:t+1] =wva[s+t:t+ 1], Hu[t:1],0[t:1]) = 1,u[0] = v[0] =1},
Er ={(w,0)|u[t:1] =o[t:1],H(u[s+t:t+1],0[s+t:t+1]) =1,u[0] = v[0] =0},

Figure 1 shows an example of EH(1,2). Based on the concept of EH(s, t), Qi et al. [16]
put in a network called an exchanged folded hypercube EFH(s, t). EFH(s,t) and EH(s, t)
have the same vertex set. The edge set of EFH(s, t) consists of Ey, Eg, E and Ecomp, Where

Ecomp = {(1,0) [H(u[s + £ 1], 0[s + £ 1]) = s + £,u[0] # o[0]}.
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Figure 1. EH(1,2).
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The edges in Ecomp are called complementary edges of EFH (s, t). From the two definitions,
we know that EFH(s, ) can be obtained from EH(s, t) by adding extra 25t edges. Figure 2 is
an example of EFH(1,2). From the definition, we can see that |V (EFH(s, t))|=2°"**1. For each
vertex v € V(EFH(s,t)),d(v) = s+ 2 or t + 2. For simplicity, we always use EFH instead of
EFH(s, t). The following results are useful.
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Figure 2. EFH(1,2)

Lemma 1. ([16]) EFH(t,s) & EFH(s, t).

From the lemma, we always assume s < t from now on. Then, §(EFH(s,t)) = s+ 2.
Lemma 2. ([1]) x(Qn) = n forn > 2.
Lemma 3. ([17]) x3(Qn) =n—1forn > 2.

Lemma 4. ([18]) If there are two adjacent vertices of degree 6(G) in graph G, then
kk(G) < 9(G) —1for3 <k < |V(G)|.

Lemma 5. ([1]) Let G be a k-connected graph, and let u and v be a pair of distinct vertices in G.
Then, there exist k internally disjoint paths in G connecting u and v.

Lemma 6. (Fan lemma [1]) For a k-connected graph G, let u € V(G), and suppose
U C V(G)\{u} and |U| > k. Then, there exists a k-fan in G from u to U, that is, there
exists a family of k internally disjoint (u, U) paths whose terminal vertices are distinct in U.

In this work, we will prove the following result.

Theorem 1. x3(EFH(s,t)) =s+1for3<s <t

3. Proof of Theorem 1

We partition EFH(s, t) into two subgraphs L, R and edges between them, in which for
ueV(L)and v € V(R), u[0] = 0and v[0] = 1.

In V(L), each collection of 2° vertices u, with u[t : 1] being identical, forms Qs via
the edges in E;. We use L; to denote these Qs fori = 1,2,...,2". Similarly, in V(R), each
collection of 2! vertices v, with v[s + ¢ : t + 1] being identical, forms Q; via the edges in Eg.
We use R; to denote these Q¢ forj =1,2,...,2°

Each vertex x € V(L) has two neighbors in V(R). One is x’ with xx” € Ep. It is called
the hypercube neighbor of x. The other is X with x¥ € Ecomp. It is called the complement
neighbor of x. x" and * are called outside neighbors of x. Similarly, for y € V(R), y" and ,
the outside neighbors of y, are called the hypercube neighbor and the complement neighbor
of y, respectively.
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In the following, for each vertex x in a graph, we use x’ and & to denote the hypercube
neighbor and the complement neighbor of x, respectively.

Lemma 7. For Q, and EFH(s,t), the following results hold.
1. Each L; = Q, R; = Qpand |V(L)| = 2%, [V(R)| =2 fori = 1,2,...,2,,j = 1,2,..., 2.

2. There are no edges between any two distinct L; and Ly for i,k € {1,2,...,2'}. Similarly, there
are no edges between any two distinct R; and Ry, for j,h € {1,2,...,2°}.

3. For each vertex x € V(L), x' and % belong to distinct V(R;) and V(Ry,), where j,h €
{1,2,...,2%}. Similarly, for each vertex w € V(R), w' and w belong to distinct V(L;) and V (Ly),

where i,k € {1,2,...,2}.

4. For two distinct vertices x,y € V(L;) withi € {1,2,...,2'}, x" and y' lie in distinct V(R;)
and V(Ry,), where j,h € {1,2,...,2%}, % and  lie in distinct V(R;) and V(Ry), where i,k €
{1,2,...,2°}. Similar results hold for two distinct vertices u,v € V(Ry) fork € {1,2,...,2°}.

5. For two distinct vertices x,y € V(L;) with i € {1,2,...,2'}, if ¥, € V(R;) for some
j€{1,2,...,25}, then %,y € V(Ry) for some k € {1,2,...,2°} with k # j. A similar result
holds for two distinct vertices u,v € V(Ry) fork € {1,2,...,2°}.

Proof. The first and second results are obvious. For two distinct vertices x,y € V(L;)
with i € {1,2,...,2'}, there exists at least one index m for which x and y differ. Let
X = sy -mby-- 010,y = al---ay---ajbs--- b0 in same V(L;) with some m €
{1,2,...,s}. Then, ' =ag---ay---arby---byl,x =as---ap...a1bt--- b1,y = al---ay
---a’lbt--'bll. y= a_’s-..am~~-d’15t~'l§11,where a =1 —ai,d’i = 1—&1;,5]' = 1—b]'
(Figure 3).

x" and % belong to distinct V(R;) and V(R;,) where j,h € {1,2,...,2°} since a; #
fori =1,2,...,s. Similarly, we can prove that, for any vertex w € V(R), w’ and @ belong
to distinct V(L;) and V(Ly), where i,k € {1,2,...,2"}. Hence, the third result holds.

Since a,, # any for some m € {1,2,...,s}, ¥ and y’ lie in different V(R;) and
V(Ry), where j,h € {1,2,...,25}, ¥ and 7 lie in different V(R;) and V(Ry), where i,k €
{1,2,...,2°}. We can prove that similar results for any distinct vertices u,v € V(Ry) for
ke {1,2,...,2°}. Hence, the fourth result holds.

If x', € V(R;) for some j € {1,2,...,2°}, then a; = a_’]- forj =1,....,m—1,
m+1,...,s. Hence, a; = a;- forj=1,...,m—1,m+1,...,s. This implies that ¥, ' € V(Ry)
for some k € {1,2,...,2°} with k # j. We can prove that a similar result for any distinct
vertices u,v € V(Ry) fork € {1,2,...,2°}. Hence, the fifth result holds. [
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Figure 3. A partitioned sketch of EFH (s, t).
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Proof of Theorem 1. By Lemma 7, for any vertex u € V(Ly),d(u) = s+2. Since s(EFH (s, t))

=s5+2,k3(EFH(s,t)) < s+ 1by Lemma 4. In the following, we will prove x3(EFH(s, t)) >
s + 1. Take any three distinct vertices x,y, and z in EFH and let S = {x, y,z}. If we can prove
that there are s + 1 internally edge disjoint S-trees in EFH, we are done.

Casel1. x,y,z € V(L;) forsomei € {1,2,...,2}.

Without loss of generality, let x,y,z € V(L;). By Lemma 3, there exist s — 1 in-
ternally edge disjoint S-trees 17, 1>, ..., T;_1 in L1. Without loss of generality, suppose
x' € V(Ry1),y' € V(Ry),and 2’ € V(R3) by Lemma 7(4).

If{x,7,2} N(V(R1) UV(R2) UV(R3)) = @, wecanassume X € V(Ry),7 € V(R5),Z €
V(Rg). By Lemma 7(4), EFH[V(R1) U V(R) U V(R3) U V(Lp)] is connected. Hence, there
exists a tree Ts containing x/,3’, and z’ in EFH[V(R1) U V(Ry) U V(R3) U V(L,)]. Take
Ts = Ts Uxx' Uyy' Uzz'. Since EFH[V(R4) U V(Rs) U V(Rg) U V(L3)] is connected, there
exists a tree Ty, 1 containing %, 7, and z in EFH[V(R4) U V(R5) U V(Re) U V(L3)]. Take
Toi1 = Tsyg Uxx UygUzz. Then, Ty, Ty, . .., Ts1q are s + 1 internally edge disjoint S-trees.
Thus, x3(EFH) > s+ 1.

If {x,7,2} N (V(R1) UV(Rp) UV(R3)) # @, without loss of generality, noting that
% ¢ V(Ry) by Lemma7(3),let ¥ € V(Ry). By Lemma 7(5), 7 € V(R;). By Lemma 7(3)(4), we
can let z € V(Ry). Since EFH[V(R1) U V(R3) U V(L;)] is connected, there exists a tree T
containing x’, ,and z’ in EFH[V (R1) UV (R3) UV(Ly)]. Take Ty = Ts Uxx’ UyjUzz'. Since
EFH[V(R2) UV(R4) U V(L3)] is connected, there exists a tree T, containing %,’, and Z
in EFH[V(Rz) U V(R4) U V(L3)] Take Tg41 = Ts+l Uxx U yy/ Uzz. Then, Ty, T, . .., Ts41
are s + 1 internally edge disjoint S-trees. Thus, x3(EFH) > s + 1.

By symmetry and t > s,if x,y,z € V(Rj) forsomej € {1,2,...,2°}, we can also obtain
k3(EFH) > s+ 1.

Case 2. x,y € V(L;) forsomei € {1,2,...,2'}. z € V(L;) for some j € {1,2,...,2'} and
i#jorz € V(Rg) forsomek € {1,2,...,2°}.

Without loss of generality, we let x,iy € V(L;). By Lemmas 2 and 5, there exist s inter-
nally disjoint paths Py, P, ..., Ps from x to y in L;. Let x; € V(P;), such that xx; € E(P;) for
i=1,2,...,s. Inthe following, we will show that for any two distinct vertices x; and X with
i,je{1,2,...,s},x,x, x;, X, %;, X lie in distinct V(Ry) for k € {1,2,...,2°}. Without loss of
generality,let x = a5 - - - apa1by - - - b10, x; = a5 - - - apd1 by - - - b10, and Xj=ds-- ~a‘2a1§)t - -?10.
Then, x' = as---axab - - b1, X = Ag -+ -dpdpby -+ b1,
Xl/- = ag---apdq by -+ -1, % = ﬁs"'ﬁzﬂll;t'-'l;11, X]/- = ag - - - dpa1by
-ob11, ¥ = @---adybs---b1l. By s > 3 and the definition of Ry, we can show that
x’,xf,x;,f,fi,fj lie in different V(Ry) for k € {1,2,...,2°}, where i,j € {1,2,...,s}
and i # j. This implies that x’,x},x5,...,x{, %, %1, X2,..., % lie in distinct V(Ry) for k €

(1,2,...,2°}.
Subcase 2.1. z € V(Ry) forsome k € {1,2,...,2°}.

Letz € V(Ry). We know that {x/,x},x},...,x{} NV(Ry) = D or {X,%1, %, ..., %} N
V(Ry) = @. Without loss of generality, let {%, %1, %2,...,%} N V(Ry) = @. Suppose
¥ €V(Ry)and ; € V(Rj 4) fori=1,2,...,s.

Subcase 2.1.1. y = x; forsomei € {1,2,...,s}.

Without loss of generality, let y = x;. Then, v’ ¢ V(R;y4) fori =0,1,2,...,s by the
above discussion. We canlety’ € V(Ry) ory’ € V(Ry).

First, we consider y’ € V(Ry) (Figure 4). By Lemma 7(3), 2’ ¢ V(L) orz ¢ V(Ly).
Without loss of generality, let Z ¢ V(L1). Suppose z € V(L,). Take s vertices 21,2y, . .., Zs
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in V(Ry), such thatz; € V(L;,4) fori =1,2,...,s. Let Z = {z1,2p,...,2s}. By Lemma 6,
there exist s internally disjoint paths Mj, My, ..., M; from z to Z in Ry. Let M; be the
path from z to z; fori = 1,2,...,s. Since EFH[V(L;;4) U V(R;4)] is connected, there
exists a tree T; containing %; and z; in EFH[V(L;,4) U V(R;14)] fori = 1,2,...,s. Take
T, = Ti UPUM; Ux;%;Uzz; fori = 1,2,...,s. Since EFH[V(Lz) U V(Rz) U V(R4)} is
connected, there exists a tree T, 1 containing z,3/, and ¥ in EFH[V(Ly) U V(Ry) U V(Ry)].
Take Ty 41 = Tsy1 Uxx¥UzzUyy'. Then, Ty, Ty, ..., Ts41 are s + 1 internally edge disjoint
S-trees. Thus, k3(EFH) > s + 1.

Now, we consider iy’ € V(Ry).

Ify =z thenz ¢ V(L1). Letz € V(L). Taking Ty, Ty, ..., Ts to be the same as
above, since EFH[V(L;) U V(Ry4)] is connected, there exists a tree T, containing z and
%in EFH[V(Ly) U V(Ry)]. Take Tsyq = Tsyq UxxUyzz. Then, Ty, Ty, ..., Tsyq are s + 1
internally edge disjoint S-trees. Thus, x3(EFH) > s + 1.

Let v # z (Figure 5). By Lemma 7(4), 2’ ¢ V(L1). Suppose z/ € V(L,). Take
s — 1 vertices z1,23,...,2s_1 in V(Ry), such that z; € V(L;y4) fori =1,2,...,5s — 1. Let
Z ={z1,22,...,25-1,Y'}. By Lemma 6, there exist s internally disjoint paths My, My, ..., M;
from z to Z in Ry. Let M; be the path from z to z; fori = 1,2,...,5s — 1 and M; be
the path from z to y’. Since EFH[V(L;y4) U V(R;14)] is connected, there exists a tree
T; containing %; and z; in EFH[V(L;y4) U V(R;44)] for i = 1,2,...,5s — 1. Take
T, = Ti UPUM;Ux;x;Uzzifori =1,2,...,5 — 1. Noting thaty = x;, then § € V(Rsi4).
Since EFH[V (L) UV (Rs14) UV(Ry)] is connected, there exists a tree Ts containing z/, § and
Fin EFH[V(Ly) UV (Rs14) UV (Ry)]. Take Ts = TsUzz' UygUxxand Ty 1 = Ps Uyy' U M.
Then, Ty, Ty, . .., Ts11 are s + 1 internally edge disjoint S-trees. Thus, k3(EFH) > s+ 1.

Figure 5. The illustration of Subcase 2.1.1 (II).
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Subcase 2.1.2. y # x; foreachi =1,2,...,s.

By Lemma 7(4), we can show 7 ¢ V(R;.4) fori =0,1,...,s. Without loss of generality,
lety € V(R1) UV(Ryp).

First, we let 7 € V(Ry). By Lemma 7(3), 2/ ¢ V(L1) or z ¢ V(L1). Without loss of
generality, let Z ¢ V(L1). Suppose z € V(L;). Take s vertices z1, 2y, ...,2s in V(Ry), such
thatz; € V(Lj4) fori =1,2,...,s. Let Z = {z1,22,...,2s}. By Lemma 6, there exist s
internally disjoint paths My, My, ..., Ms from z to Z in Ry. Let M; be the path from z to z; for
i=1,2,...,s Since EFH[V(L;;4) U V(R;4)] is connected, there exists a tree T; containing
%;and z; in EFH[V (L 4) UV (R;y4)] fori =1,2,...,s. Take T; = T; U P; U M; U x;%; U z;Z;
fori =1,2,...,s. Since EFH[V (L) UV (Ry) U V(Ry)] is connected, there exists a tree Ts 1
containing z,7 and % in EFH[V(L,) U V(Ry) U V(Ry)]. Take Ty1 = Tsyq Uxx UzZ Uy
Then, Ty, Ty, . .., Ts11 are s + 1 internally edge disjoint S-trees. Thus, k3(EFH) > s + 1.

Now, welet 7 € V(Ry).

If =z thenz ¢ V(L). We canletz’ € V(L;). Taking Ty, Ty, ..., Ts to be the same
as above, since EFH[V (L) U V(Ry)] is connected, there exists a tree T, 1 containing ¥ and
Z/in EFH[V(Ly) U V(Ry)]. Take Ty, 1 = Tsy1 Uxx Uyzz'. Then, Ty, Ty, ..., Ty q are s + 1
internally edge disjoint S-trees. Thus, x3(EFH) > s+ 1.

If 7 # z. By Lemma 7(3), suppose i € V(L,), where 7' is the hypercube neighbor
of . By Lemma 7(4), Z ¢ V(L1). Without loss of generality, let z € V(L) U V(L3). Take
s — 1 vertices z1,25,...,2s_1 in V(Ry), such that z; € V(L;;4) fori=1,2,...,s —1. Let
Z ={z1,23,...,25-1,7}. By Lemma 6, there exist s internally disjoint paths My, My, ..., M
from z to Z in Ry. Let M; be the path from z to z; for i = 1,2,...,5 —1
and M; be the path from z to §. Since EFH[V(L;;4) U V(R;;4)] is connected, there
exists a tree T; containing %; and z; in EFH[V(L;y4) UV(R;44)] fori = 1,2,...,s — 1.
Take T; = T; U P;U M; U x;%; Uz;Z; fori = 1,2,...,5 — 1. If z € V(L3) (Figure 6), noting that
%s € V(Rs44), since EFH[V(L3) U V(R4 4)] is connected, there exists a tree T containing z
and %, in EFH[V(L3) UV (Ry4)]. Take Ty = T, U Py U x,%s UzZ. Since EFH[V (L) UV (Ry)]
is connected, there exists a tree T,y containing % and 7' in EFH[V(Ly) U V(R4)]. Take
Ter1 = Tsp1 Uxx Uyyy U Ms. Then, Ty, Ty, ..., Ts11 are s + 1 internally edge disjoint S-
trees. If z € V(L,) (Figure 7), since j # z, then 7’ # z by Lemma 7(3). Since L, = Q,, we can
partition Ly into Lyg and Ly, such that Ly; = Qg_1, Ly = Qs_1and }7’ € V(L21), zZe V(Lzz).
In Lyy, there exists a spanning tree Ty containing . Since |V (Ty)| = |V (Ly)| = 2571 >
s+ 1 for s > 3, there exists a vertex u € V(Ly1), such that u’ ¢ V(Ry) UV(R;,4) for
i=1,...,sby Lemma 7(4). Let ' € V(Ry) U V(Ry4). Similarly, there exists a spanning tree
Ty, containing Z in Ly,. Since |V (Tx)| = |V(Lyp)| = 2°7! > s+ 1 for s > 3, there exists
a vertex v € V(Ly), such that v ¢ V(Ry) UV(Rp) UV(Rjy4) fori =0,1,...,5s —1by
Lemma 7(4). Let v’ € V(R3) U V(R4,4). Since EFH[V(Ry) U V(R4) U V(L3)] is connected,
there exists a tree T containing #’ and *. Take Ts = Ts U xx¥ U Tp1 U uu’ Uy’ U M. Since
EFH[V(R3) U V(Rs44) U V(Lyg)] is connected, there exists a tree T, 1 containing v and
%s. Take Ty 1 = Tsyq Uv0' UTa UzZU Ps U xs%s. Then, Ty, T, ..., Tsyq are s + 1 internally
edge disjoint S-trees. Thus, x3(EFH) > s+ 1.

By symmetry and t > s, if x,y € V(R;),z € V(L;) for somei € {1,2,...,2°} and some
je{1,2,...,2"}, we can also obtain x3(EFH) > s + 1.

Subcase 2.2. z € V(L;) for some j € {2,...,2'}.

Without loss of generality, we let z € V(L) (Figure 8), and suppose ¥ € V(R3), %; €
V(Ri+3), X" € V(Rsia),x, € V(Rsyipa) fori = 1,2,...,s. Then, 2/ ¢ V(R;y3) or z ¢
V(Rjy3) or 2 & V(Rgyjyq) or z ¢ V(Rgyjyq) fori = 0,1,...,s. Without loss of gen-
erality, let z ¢ V(R;y3) fori = 0,1,...,s. Suppose z € V(Ry). If y = x; for some
ie{1,2,...,s},theny =% forsomei € {1,2,...,s}. Then,y’ ¢ V(R;;3) fori =0,1,...,s.
If y # x;foreachi =1,2,...,s, theny ¢ V(R;;3) fori =0,1,...,s by Lemma 7(4). With-
out loss of generality, let 7 ¢ V(R;y3) fori = 0,1,...,s. Suppose 7 € V(R1) UV(Ryp).
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Choose s vertices z1,2p, ...,z in V(L;), such that z; € V(R;,3) fori =1,2,...,s. Denote
Z = {z1,22,...,2s}. By Lemma 6, there exist s internally disjoint paths My, My, ..., M;
from z to Z in Ly. Let M; be the path from zto z; fori = 1,2, ...,s. Since R;; 3 is connected,
there exists a tree T; containing &; and z; in R; 3 fori = 1,2,...,s. Take T; = T; U P; U M; U
xi%; Uziz; fori = 1,2,...,s. Since EFH[V(R1) UV(Ry) UV(R3) U V(L3)] is connected,
there exists a tree Tg,1 containing %,7 and z in EFH[V(Ry) U V(Ry) U V(R3) U V(L3)].
Take Ty = Tsy1 Uxx¥ UyjUzZ. Then, Ty, Ty, ..., Tsyq are s + 1 internally edge disjoint
S-trees. Thus, k3(EFH) > s + 1.

By symmetry and t > s, if x,y € V(R;),z € V(R;) for some i,j € {1,2,...,2°} and
i # j, we can also obtain k3(EFH) > s + 1.

Figure 7. The illustration of Subcase 2.1.2 (II).
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i+3

Figure 8. The illustration of Subcase 2.2.

Case3. x € V(L;),y € V(Lj), and z € V(Ry) for some i,j € {1,2,...,2'} with i # jand
somek € {1,2,...,2°}.

Without loss of generality, let x € V(L1),y € V(Lp),z € V(Ry).
Subcase 3.1. 2/, z € V(L) U V(Lp).

By Lemma 7(3), without loss of generality, letz € V(Ly), 2’ € V(Ly).

We first consider z = x or z’ = y. Without loss of generality, let Z = x. By Lemma 7(3),
we can let ¥’ € V(Rp) andy’ ¢ V(Ry) or j ¢ V(Ry). Suppose 7 ¢ V(Ry). Then, put
7 € V(R2) UV(R3). Choose x1,x2,...,xs in V(L) \ {x}, such that X; € V(R;,3) for
i =1,2,...,s. Denote X = {x1,x2,...,%s}. Choose y1,¥2,...,ys in V(L) \ {y}, such
that 7; € V(R;;3) fori = 1,2,...,s. Denote Y = {y1,¥2,...,¥s}. Choose z1,z,...,2zs in
V(R1) \ {z}, such that z; € V(L;;3) fori = 1,2,...,s. Denote Z = {z1,25,...,25}. By
Lemma 6, there exist s paths P;, P, ..., Ps from x to X in Ly, s paths N1, Np, ..., N; from y
to Yin Ly, s paths My, My, ..., Ms from z to Z in Ry. Let P;, N;, M; be the paths from x to x;,
from y to y;, and from z to z;, respectively, fori = 1,2,...,s. Since EFH[V(L;y3) UV (R;3)]
is connected, there exists a tree T; containing %;, 7;, and z; in EFH[V (L;;3) U V(R;,3)] for
i=1,2,...,5 Take T; = T; UP;UN; UM; Ux;x; Uy;j; Uz;z; fori = 1,2,...,s. Since
EFH[V(Ry) U V(R3) U V(L3)] is connected, there exists a tree Ts 1 containing x’,7 in
EFH[V(RZ) U V(Rg) U V(L3)]. Take Ts11 = Ts+1 Uyyu xx'Uxz. Then, Ty, Ty, . . ., Tsy1 are
s + 1 internally edge disjoint S-trees. Thus, x3(EFH) > s+ 1.

Now, we consider z # x and z’ # y (Figure 9). Since L; = Qs and L, & Q,, we
can partition Ly into Ly; and Lip, such that L1 = Qg—1, L1» = Qs—q and z € V(Lyy),
x € V(Ljp). Similarly, we partition L into Ly; and Ly, such that Ly; = Qs_1, Loy = Qs
and z’ € V(Ly1),y € V(Ly). By Lemma 7(4), we can let ¥ € V(Ry) and iy’ € V(Ry) U
V(R3). Choose xq,x3,...,%s_11in V(Lz) \ {x} such that &; ¢ V(R;) U V(Ry) U V(R3) for
i=1,2,...,5—1. This can be performed since 2571 _1 > 3 withs > 3. Let%; € V(R;y3) for
i=1,2,...,5s—1. Denote X = {x1,x2,...,%5_1}. Choose y1,V2,...,Yys—1 in V(L) \ {y},
such that y; ¢ V(R;) UV(R2) UV(R3) fori =1,2,...,s — 1. Without loss of generality, for
simplicity of description, we canlet y} € V(Ry) and y; € V(Rgyi4q) fori =2,...,5 — 1.
Note that ¥; € V(R4) and %; € V(R;43) fori=2,...,s — 1. Denote Y = {y1,y2,...,Ys—1}
Choose z1,2p,...,2zs € V(Ry) \ {z} such that z; € V(L;;3) fori = 1,2,...,s. Denote
Z = {z1,22,...,2s}. By Lemma 6 and «(L12) = x(Ly) = s —1,k(Ry) = s, there exist
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s — 1 paths Py, P, ..., Ps_q from x to X in L1y, s — 1 paths N1, Nj,...,N;_1 from y to Y
in Ly, s paths My, My, ..., M; from z to Z in R;. Let P;, N;, M; be the paths from x to x;,
from y to y;, and from z to z;, respectively, fori = 1,2,...,s — 1 and M; be the path from
z to zs. Since EFH[V(R4) U V(Ly)] is connected, there exists a tree Ty containing %1, ¥}
and z; in EFH[V(R4) U V(L4)] Take T7 = Tl UP;UNy UM Ux3% U]/1]//1 U z1Z7. Since
EFH[V(Rj43) UV(Rs4i+1) UV(Lit3)] is connected fori = 2,3,...,s — 1, there exists a tree
T; containing %, y} and z; in EFH[V(R;13) U V(Rsyi+1) U V(Liss)] fori =2,3,...,5s — 1.
Take T; = T; U P;UN; UM; Ux;x; Uyy; Uzz fori =2,3,...,5 — 1. Since EFH[V(R;) U
V(R3) U V(Ls43)] is connected, there exists a tree T containing ¥, and s in EFH[V (Ry) U
V(R3) UV(Lgy3)]. Take Ts = Ts U M; U xx Uyy’ UzsZs. Let u be the neighbor of x in V(L1;)
and v be the neighbor of y in V(L1 ). Suppose that Ty; is a spanning tree of L1 and Ty is
a spanning tree of Lp;. Take Ts = Ty1 U Ty Uux Uoy Uzz U zz'. Then, Ty, Ty, ..., Tsyq are
s + 1 internally edge disjoint S-trees. Thus, x3(EFH) > s+ 1.

Figure 9. The illustration of Subcase 3.1.

Subcase 3.2. 2 ¢ V(L1) UV (Ly) orz ¢ V(Ly) UV(Ly).

Without loss of generality, letz’ ¢ V(L) UV(L;). Supposez’ € V(L3). By Lemma 7(3),
x' ¢ V(Ry)or® ¢ V(Ry),y ¢ V(Ry) orj ¢ V(Ry). Without loss of generality, we
canlet ¥ € V(Ry), ¥y € V(Rp) UV(R3). Choose x1,x,...,%s € V(L1) \ {x}, such that
% ¢ V(R1)UV(Rp) UV(R3) fori =1,2,...,s. Suppose &; € V(R;y3) fori =1,2,...,s.
Denote X = {x1,x2,...,xs}. Choose y1,Y2,...,¥s € V(Lp), such that 7; € V(R;3)
fori = 1,2,...,s. Denote Y = {y1,y2,...,ys}. Choose z1,23,...,2s € V(Ry)\ {z},
such that z; € V(Ljy3) fori = 1,2,...,s. Denote Z = {z1,2,...,2s}. By Lemma 6,
there exist s paths P;, P, ..., Ps from x to X in Ly, s paths Nj, Np,..., Ns from y to Y in
Ly, s paths My, My, ..., M, from z to Z in R;. Let P;, N;, M; be the paths from x to x;,
from y to y;, and from z to z;, respectively, for i = 1,2,...,5. Note that if y = y; for
somei € {1,2,...,s}, we regard N; as the vertex y. Since EFH[V(L;;3) U V(R;;3)] is
connected, there exists a tree T; containing ¥;, 7; and z! in EFH[V(L;;3) U V(R;43)] for
i=12,...,s. Take T; = Ti U P UN; UM; Ux;x; Uy U zizf fori = 1,2,...,s. Since
EFH[V(Ry) UV(R3) U V(L3)| is connected, there exists a tree T containing z/, ¥,y in
EFH[V(R2) UV(R3) UV/(L3)]. Take Tsyq = Tsyq UxxUyy' Uzz'. Then, Ty, Ty, ..., Ts,1 are
s + 1 internally edge disjoint S-trees. Thus, x3(EFH) > s+ 1.

By symmetryand t > s,if x € V(R;),y € V(R}),z € V(L) forsomei,j € {1,2,...,2°}
with i # jand some k € {1,2,...,2'}, we can also obtain x3(EFH) > s + 1.
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Case4.x € V(L;),y € V(L;),and z € V(L) for some i, j,k € {1,2,...,2'} withi # j # k.

Let x € V(L1),y € V(Ly), and z € V(L3) (Figure 10). Without loss of generality,
suppose %,7,zZ € V(R1) UV(Ry) UV(R3). Choose x; € V(Ly) \ {x},y;i € V(L) \ {y},zi €
V(L) \ {z}, such that %;,7;,z; € V(Rjy3) fori = 1,2,...,s. Let X = {x1,x2,...,%s},
Y ={y1,y2,-..,ys} and Z = {zq,25,...,25}. By Lemma 6, there exist s paths Py, P, ..., Ps
from x to X in Ly, s paths N1, Ny, ..., N; from y to Y in L, s paths My, My, ..., Ms from z to
Zin L3. Let P;, N;, M; be the paths from x to x;, from y to y;, and from z to z;, respectively,
fori=1,2,...,s. Since EFH[V(R;,3)] is connected, there exists a tree T; containing &;, 7;
and z; in EFH[V(R;,3)] fori = 1,2,...,s. Take T; = T; UP; UN; U M; U x;%; U y;ij; U
z;izi fori = 1,2,...,s. Since EFH[V(R1) U V(Ry) U V(R3) U V(Ly)| is connected, there
exists a tree Ts 1 containing %, and Z in EFH[V(R;) U V(Ry) U V(R3) U V(Ly)]. Take
Toi1 = Toyg UxxUygUzz. Then, Ty, Ty, . .., Ts4q are s + 1 internally edge disjoint S-trees.
Thus, k3(EFH) > s+ 1.

By symmetry and t > s, if x € V(R;),y € V(Rj),z € V(R;) for some
i,jke{1,2,...,2°} withi # j # k, we can also obtain k3(EFH) > s + 1.

. @\ a R

&,

Figure 10. The illustration of Case 4.
We have completed the proof. O

4. Conclusions

The exchanged folded hypercube is a variant of the hypercube and denoted by
EFH(s,t). It has many attractive properties to design interconnection networks. The
generalized k-connectivity is an extension of the traditional connectivity. In this paper, we
computed the generalized 3-connectivity of the exchanged folded hypercube. The study of
the generalized k-connectivity of the exchanged folded hypercube for k > 4 is a meaningful
and challenging problem.
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