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Abstract: For S ⊆ V(G), κG(S) denotes the maximum number k of edge disjoint trees T1, T2, . . . , Tk in
G, such that V(Ti) ∩ V(Tj) = S for any i, j ∈ {1, 2, . . . , k} and i ̸= j. For an integer 2 ≤ r ≤ |V(G)|,
the generalized r-connectivity of G is defined as κr(G) = min{κG(S)|S ⊆ V(G) and |S| = r}. In
fact, κ2(G) is the traditional connectivity of G. Hence, the generalized r-connectivity is an extension
of traditional connectivity. The exchanged folded hypercube EFH(s, t), in which s ≥ 1 and t ≥ 1 are
positive integers, is a variant of the hypercube. In this paper, we find that κ3(EFH(s, t)) = s + 1 with
3 ≤ s ≤ t.
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1. Introduction

An interconnection network is usually modeled as a simple graph G = (V(G), E(G)),
in which V(G) represents the set of processors and E(G) represents the set of links. For
v ∈ V(G), N(v) is the neighborhood of v in G. d(v) = |N(v)| is the degree of v in G.
The minimum degree of G is defined as δ(G) = min{d(v)|v ∈ V(G)}. For two graphs
G1 and G2, G1

∼= G2 means that they are isomorphic. Let S ⊆ V(G). The subgraph of
G, whose vertex set is S and whose edge set is the set of those edges of G that have both
ends in S, is called the subgraph of G induced by S and is denoted by G[S]. We say that
G[S] is an induced subgraph of G. G − S means the induced subgraph G[V(G)\S], where
V(G)\S represents the vertex set obtained from V(G) by deleting the vertices in S. Let
V ⊆ V(G)\{v}. The (v, V) paths is a family of internally disjoint paths whose starting
vertex is v and terminal vertices are distinct in V, which is called a fan from v to V. For
other terminologies and notations, please refer to [1].

Connectivity is a basic and important metric in measuring the reliability and fault
tolerance of networks. A cut set S of G is a vertex set of G, such that G − S is disconnected
or it is only one vertex. κ(G) = min{|S||S is a cut set of G}, which is the connectivity
of G. In [2], Whitney proposed an equivalent concept of connectivity. For each 2-subset
S = {u, w} of vertices of G, let κG(S) be the maximum number of internally disjoint paths
from u to w in G. Then, κ(G) = min{κG(S)|S ⊆ V(G) and |S| = 2}. As an extension of
connectivity, Chartrand et al. [3]showed the concept of generalized k-connectivity in 1984.
Let S ⊆ V(G). A tree T in G is called an S-tree if S ⊆ V(T). The trees T1, T2, . . . , Tr are
called internally edge disjoint S-trees if V(Ti) ∩ V(Tj) = S and E(Ti) ∩ E(Tj) = ∅ for any
distinct integers i, j with 1 ≤ i, j ≤ r. κG(S) refers to the maximum number of internally
edge disjoint S-trees. For an integer k with 2 ≤ k ≤ |V(G)|, κk(G) = min{κG(S)|S ⊆
V(G) and |S| = k} is defined as the generalized k-connectivity of G.

In a graph G, an S-tree is also called an S-Steiner tree. Steiner trees have significant
applications in computer networks [4]. Internally edge disjoint S-Steiner trees have been
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applied to VLSI [5]. From the definition of generalized k-connectivity, we can see that the
core of generalized k-connectivity is to seek the maximum number of internally edge disjoint
S-Steiner trees. The generalized k-connectivity is an extension of traditional connectivity. It
can more precisely measure the fault tolerance of networks. To decide whether there exist k
internally edge disjoint S-Steiner trees is NP-complete for a graph [6]. The generalized 3-
connectivities of augmented cubes, (n, k)-bubble-sort graphs, and generalized hypercubes
have been obtained in [7–9], respectively. The generalized 4-connectivities of hypercubes,
crossed cubes, exchanged hypercubes, and hierarchical cubic networks have been obtained
in [10–13], respectively. On the whole, the generalized k-connectivity is known for a small
number of graphs and almost all known results are about k = 3 or 4.

The n-dimensional hypercube is denoted by Qn, whose vertices are the ordered n-
tuples of 0’s and 1’s. Two vertices are adjacent if and only if they differ in exactly one
dimension. As variants of hypercubes Qn, folded hypercubes FQn and exchanged hyper-
cubes EH(s, t) were proposed in [14,15], respectively. Based on EH(s, t) and FQn, Qi et
al. proposed an interconnection network named exchanged folded hypercube EFH(s, t)
in [16]. In this work, we will prove κ3(EFH(s, t)) = s + 1 for 3 ≤ s ≤ t.

2. Definitions and Lemmas

Exchanged hypercubes were defined by Lou et al. [15] as follows. Let s ≥ 1 and t ≥ 1
be positive integers. The exchanged hypercubes EH(s, t) are defined as undirected graphs,
whose vertex set V is

V = {as · · · a1bt · · · b1c|ai, bj, c ∈ {0, 1} for i ∈ [1, s], j ∈ [1, t]}.

For u, v ∈ V, u[0] means the c index of u. u[i : j] is the indexes of u from dimension j
to dimension i. H(u[i : j], v[i : j]) represents the number of different indexes at the same
dimension between u[i : j] and v[i : j].

The edge set consists of three disjoint subsets EH , ER and EL, where

EH = {(u, v)|u[s + t : 1] = v[s + t : 1], u[0] ̸= v[0]},

ER = {(u, v)|u[s + t : t + 1] = v2[s + t : t + 1], H(u[t : 1], v[t : 1]) = 1, u[0] = v[0] = 1},

EL = {(u, v)|u[t : 1] = v[t : 1], H(u[s + t : t + 1], v[s + t : t + 1]) = 1, u[0] = v[0] = 0},

Figure 1 shows an example of EH(1, 2). Based on the concept of EH(s, t), Qi et al. [16]
put in a network called an exchanged folded hypercube EFH(s, t). EFH(s, t) and EH(s, t)
have the same vertex set. The edge set of EFH(s, t) consists of EH , ER, EL and Ecomp, where

Ecomp = {(u, v)|H(u[s + t : 1], v[s + t : 1]) = s + t, u[0] ̸= v[0]}.

Figure 1. EH(1, 2).
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The edges in Ecomp are called complementary edges of EFH(s, t). From the two definitions,
we know that EFH(s, t) can be obtained from EH(s, t) by adding extra 2s+t edges. Figure 2 is
an example of EFH(1, 2). From the definition, we can see that |V(EFH(s, t))|=2s+t+1. For each
vertex v ∈ V(EFH(s, t)), d(v) = s + 2 or t + 2. For simplicity, we always use EFH instead of
EFH(s, t). The following results are useful.

Figure 2. EFH(1, 2)

Lemma 1. ([16]) EFH(t, s) ∼= EFH(s, t).

From the lemma, we always assume s ≤ t from now on. Then, δ(EFH(s, t)) = s + 2.

Lemma 2. ([1]) κ(Qn) = n for n ≥ 2.

Lemma 3. ([17]) κ3(Qn) = n − 1 for n ≥ 2.

Lemma 4. ([18]) If there are two adjacent vertices of degree δ(G) in graph G, then
κk(G) ≤ δ(G)− 1 for 3 ≤ k ≤ |V(G)|.

Lemma 5. ( [1]) Let G be a k-connected graph, and let u and v be a pair of distinct vertices in G.
Then, there exist k internally disjoint paths in G connecting u and v.

Lemma 6. (Fan lemma [1]) For a k-connected graph G, let u ∈ V(G), and suppose
U ⊆ V(G)\{u} and |U| ≥ k. Then, there exists a k-fan in G from u to U, that is, there
exists a family of k internally disjoint (u, U) paths whose terminal vertices are distinct in U.

In this work, we will prove the following result.

Theorem 1. κ3(EFH(s, t)) = s + 1 for 3 ≤ s ≤ t.

3. Proof of Theorem 1

We partition EFH(s, t) into two subgraphs L, R and edges between them, in which for
u ∈ V(L) and v ∈ V(R), u[0] = 0 and v[0] = 1.

In V(L), each collection of 2s vertices u, with u[t : 1] being identical, forms Qs via
the edges in EL. We use Li to denote these Qs for i = 1, 2, . . . , 2t. Similarly, in V(R), each
collection of 2t vertices v, with v[s + t : t + 1] being identical, forms Qt via the edges in ER.
We use Rj to denote these Qt for j = 1, 2, . . . , 2s.

Each vertex x ∈ V(L) has two neighbors in V(R). One is x′ with xx′ ∈ EH . It is called
the hypercube neighbor of x. The other is x̄ with xx̄ ∈ Ecomp. It is called the complement
neighbor of x. x′ and x̄ are called outside neighbors of x. Similarly, for y ∈ V(R), y′ and ȳ,
the outside neighbors of y, are called the hypercube neighbor and the complement neighbor
of y, respectively.
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In the following, for each vertex x in a graph, we use x′ and x̄ to denote the hypercube
neighbor and the complement neighbor of x, respectively.

Lemma 7. For Qn and EFH(s, t), the following results hold.

1. Each Li
∼= Qs, Rj

∼= Qt and |V(Li)| = 2s, |V(Rj)| = 2t for i = 1, 2, . . . , 2t, j = 1, 2, . . . , 2s.

2. There are no edges between any two distinct Li and Lk for i, k ∈ {1, 2, . . . , 2t}. Similarly, there
are no edges between any two distinct Rj and Rh for j, h ∈ {1, 2, . . . , 2s}.

3. For each vertex x ∈ V(L), x′ and x̄ belong to distinct V(Rj) and V(Rh), where j, h ∈
{1, 2, . . . , 2s}. Similarly, for each vertex w ∈ V(R), w′ and w̄ belong to distinct V(Li) and V(Lk),
where i, k ∈ {1, 2, . . . , 2t}.

4. For two distinct vertices x, y ∈ V(Li) with i ∈ {1, 2, . . . , 2t}, x′ and y′ lie in distinct V(Rj)
and V(Rh), where j, h ∈ {1, 2, . . . , 2s}, x̄ and ȳ lie in distinct V(Ri) and V(Rk), where i, k ∈
{1, 2, . . . , 2s}. Similar results hold for two distinct vertices u, v ∈ V(Rk) for k ∈ {1, 2, . . . , 2s}.

5. For two distinct vertices x, y ∈ V(Li) with i ∈ {1, 2, . . . , 2t}, if x′, ȳ ∈ V(Rj) for some
j ∈ {1, 2, . . . , 2s}, then x̄, y′ ∈ V(Rk) for some k ∈ {1, 2, . . . , 2s} with k ̸= j. A similar result
holds for two distinct vertices u, v ∈ V(Rk) for k ∈ {1, 2, . . . , 2s}.

Proof. The first and second results are obvious. For two distinct vertices x, y ∈ V(Li)
with i ∈ {1, 2, . . . , 2t}, there exists at least one index m for which x and y differ. Let
x = as · · · am · · · a1bt · · · b10, y = a′s · · · ām · · · a′1bt · · · b10 in same V(Li) with some m ∈
{1, 2, . . . , s}. Then, x′ = as · · · am · · · a1bt · · · b11, x̄ = ās · · · ām . . . ā1b̄t · · · b̄11, y′ = a′s · · · ām
· · · a′1bt · · · b11. ȳ = ā′s · · · am · · · ā′1b̄t · · · b̄11, where āi = 1 − ai, ā′ i = 1 − a′i, b̄j = 1 − bj
(Figure 3).

x′ and x̄ belong to distinct V(Rj) and V(Rh) where j, h ∈ {1, 2, . . . , 2s} since ai ̸= āi
for i = 1, 2, . . . , s. Similarly, we can prove that, for any vertex w ∈ V(R), w′ and w̄ belong
to distinct V(Li) and V(Lk), where i, k ∈ {1, 2, . . . , 2t}. Hence, the third result holds.

Since am ̸= ām for some m ∈ {1, 2, . . . , s}, x′ and y′ lie in different V(Rj) and
V(Rh), where j, h ∈ {1, 2, . . . , 2s}, x̄ and ȳ lie in different V(Ri) and V(Rk), where i, k ∈
{1, 2, . . . , 2s}. We can prove that similar results for any distinct vertices u, v ∈ V(Rk) for
k ∈ {1, 2, . . . , 2s}. Hence, the fourth result holds.

If x′, ȳ ∈ V(Rj) for some j ∈ {1, 2, . . . , 2s}, then aj = ā′ j for j = 1, . . . , m − 1,
m + 1,. . . , s. Hence, āj = a′j for j = 1, . . . , m − 1, m + 1, . . . , s. This implies that x̄, y′ ∈ V(Rk)

for some k ∈ {1, 2, . . . , 2s} with k ̸= j. We can prove that a similar result for any distinct
vertices u, v ∈ V(Rk) for k ∈ {1, 2, . . . , 2s}. Hence, the fifth result holds.

Figure 3. A partitioned sketch of EFH(s, t).
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Proof of Theorem 1. By Lemma 7, for any vertex u ∈ V(L1), d(u) = s+2. Since δ(EFH(s, t))
= s + 2, κ3(EFH(s, t)) ≤ s + 1 by Lemma 4. In the following, we will prove κ3(EFH(s, t)) ≥

s + 1. Take any three distinct vertices x, y, and z in EFH and let S = {x, y, z}. If we can prove
that there are s + 1 internally edge disjoint S-trees in EFH, we are done.

Case 1. x, y, z ∈ V(Li) for some i ∈ {1, 2, . . . , 2t}.

Without loss of generality, let x, y, z ∈ V(L1). By Lemma 3, there exist s − 1 in-
ternally edge disjoint S-trees T1, T2, . . . , Ts−1 in L1. Without loss of generality, suppose
x′ ∈ V(R1), y′ ∈ V(R2), and z′ ∈ V(R3) by Lemma 7(4).

If {x̄, ȳ, z̄}∩ (V(R1)∪V(R2)∪V(R3)) = ∅, we can assume x̄ ∈ V(R4), ȳ ∈ V(R5), z̄ ∈
V(R6). By Lemma 7(4), EFH[V(R1) ∪ V(R2) ∪ V(R3) ∪ V(L2)] is connected. Hence, there
exists a tree Ts containing x′, y′, and z′ in EFH[V(R1) ∪ V(R2) ∪ V(R3) ∪ V(L2)]. Take
Ts = Ts ∪ xx′ ∪ yy′ ∪ zz′. Since EFH[V(R4) ∪ V(R5) ∪ V(R6) ∪ V(L3)] is connected, there
exists a tree Ts+1 containing x̄, ȳ, and z̄ in EFH[V(R4) ∪ V(R5) ∪ V(R6) ∪ V(L3)]. Take
Ts+1 = Ts+1 ∪ xx̄ ∪ yȳ ∪ zz̄. Then, T1, T2, . . . , Ts+1 are s + 1 internally edge disjoint S-trees.
Thus, κ3(EFH) ≥ s + 1.

If {x̄, ȳ, z̄} ∩ (V(R1) ∪ V(R2) ∪ V(R3)) ̸= ∅, without loss of generality, noting that
x̄ /∈ V(R1) by Lemma 7(3), let x̄ ∈ V(R2). By Lemma 7(5), ȳ ∈ V(R1). By Lemma 7(3)(4), we
can let z̄ ∈ V(R4). Since EFH[V(R1) ∪ V(R3) ∪ V(L2)] is connected, there exists a tree Ts
containing x′, ȳ, and z′ in EFH[V(R1)∪V(R3)∪V(L2)]. Take Ts = Ts ∪ xx′ ∪ yȳ∪ zz′. Since
EFH[V(R2) ∪ V(R4) ∪ V(L3)] is connected, there exists a tree Ts+1 containing x̄, y′, and z̄
in EFH[V(R2) ∪ V(R4) ∪ V(L3)]. Take Ts+1 = Ts+1 ∪ xx̄ ∪ yy′ ∪ zz̄. Then, T1, T2, . . . , Ts+1
are s + 1 internally edge disjoint S-trees. Thus, κ3(EFH) ≥ s + 1.

By symmetry and t ≥ s, if x, y, z ∈ V(Rj) for some j ∈ {1, 2, . . . , 2s}, we can also obtain
κ3(EFH) ≥ s + 1.

Case 2. x, y ∈ V(Li) for some i ∈ {1, 2, . . . , 2t}. z ∈ V(Lj) for some j ∈ {1, 2, . . . , 2t} and
i ̸= j or z ∈ V(Rk) for some k ∈ {1, 2, . . . , 2s}.

Without loss of generality, we let x, y ∈ V(L1). By Lemmas 2 and 5, there exist s inter-
nally disjoint paths P1, P2, . . . , Ps from x to y in L1. Let xi ∈ V(Pi), such that xxi ∈ E(Pi) for
i = 1, 2, . . . , s. In the following, we will show that for any two distinct vertices xi and xj with
i, j ∈ {1, 2, . . . , s}, x′, x′i , x′j, x̄, x̄i, x̄j lie in distinct V(Rk) for k ∈ {1, 2, . . . , 2s}. Without loss of
generality, let x = as · · · a2a1bt · · · b10, xi = as · · · a2 ā1bt · · · b10, and xj = as · · · ā2a1bt · · · b10.
Then, x′ = as · · · a2a1bt · · · b11, x̄ = ās · · · ā2 ā1b̄t · · · b̄11,
x′i = as · · · a2 ā1bt · · · b11, x̄i = ās · · · ā2a1b̄t · · · b̄11, x′j = as · · · ā2a1bt

· · · b11, x̄j = ās · · · a2 ā1b̄t · · · b̄11. By s ≥ 3 and the definition of Rk, we can show that
x′, x′i , x′j, x̄, x̄i, x̄j lie in different V(Rk) for k ∈ {1, 2, . . . , 2s}, where i, j ∈ {1, 2, . . . , s}
and i ̸= j. This implies that x′, x′1, x′2, . . . , x′s, x̄, x̄1, x̄2, . . . , x̄s lie in distinct V(Rk) for k ∈
{1, 2, . . . , 2s}.

Subcase 2.1. z ∈ V(Rk) for some k ∈ {1, 2, . . . , 2s}.

Let z ∈ V(R1). We know that {x′, x′1, x′2, . . . , x′s} ∩ V(R1) = ∅ or {x̄, x̄1, x̄2, . . . , x̄s} ∩
V(R1) = ∅. Without loss of generality, let {x̄, x̄1, x̄2, . . . , x̄s} ∩ V(R1) = ∅. Suppose
x̄ ∈ V(R4) and x̄i ∈ V(Ri+4) for i = 1, 2, . . . , s.

Subcase 2.1.1. y = xi for some i ∈ {1, 2, . . . , s}.

Without loss of generality, let y = xs. Then, y′ /∈ V(Ri+4) for i = 0, 1, 2, . . . , s by the
above discussion. We can let y′ ∈ V(R1) or y′ ∈ V(R2).

First, we consider y′ ∈ V(R2) (Figure 4). By Lemma 7(3), z′ /∈ V(L1) or z̄ /∈ V(L1).
Without loss of generality, let z̄ /∈ V(L1). Suppose z̄ ∈ V(L2). Take s vertices z1, z2, . . . , zs
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in V(R1), such that z̄i ∈ V(Li+4) for i = 1, 2, . . . , s. Let Z = {z1, z2, . . . , zs}. By Lemma 6,
there exist s internally disjoint paths M1, M2, . . . , Ms from z to Z in R1. Let Mi be the
path from z to zi for i = 1, 2, . . . , s. Since EFH[V(Li+4) ∪ V(Ri+4)] is connected, there
exists a tree Ti containing x̄i and z̄i in EFH[V(Li+4) ∪ V(Ri+4)] for i = 1, 2, . . . , s. Take
Ti = Ti ∪ Pi ∪ Mi ∪ xi x̄i ∪ zi z̄i for i = 1, 2, . . . , s. Since EFH[V(L2) ∪ V(R2) ∪ V(R4)] is
connected, there exists a tree Ts+1 containing z̄, y′, and x̄ in EFH[V(L2) ∪ V(R2) ∪ V(R4)].
Take Ts+1 = Ts+1 ∪ xx̄ ∪ zz̄ ∪ yy′. Then, T1, T2, . . . , Ts+1 are s + 1 internally edge disjoint
S-trees. Thus, κ3(EFH) ≥ s + 1.

Now, we consider y′ ∈ V(R1).
If y′ = z, then z̄ /∈ V(L1). Let z̄ ∈ V(L2). Taking T1, T2, . . . , Ts to be the same as

above, since EFH[V(L2) ∪ V(R4)] is connected, there exists a tree Ts+1 containing z̄ and
x̄ in EFH[V(L2) ∪ V(R4)]. Take Ts+1 = Ts+1 ∪ xx̄ ∪ yzz̄. Then, T1, T2, . . . , Ts+1 are s + 1
internally edge disjoint S-trees. Thus, κ3(EFH) ≥ s + 1.

Let y′ ̸= z (Figure 5). By Lemma 7(4), z′ /∈ V(L1). Suppose z′ ∈ V(L2). Take
s − 1 vertices z1, z2, . . . , zs−1 in V(R1), such that z̄i ∈ V(Li+4) for i = 1, 2, . . . , s − 1. Let
Z = {z1, z2, . . . , zs−1, y′}. By Lemma 6, there exist s internally disjoint paths M1, M2, . . . , Ms
from z to Z in R1. Let Mi be the path from z to zi for i = 1, 2, . . . , s − 1 and Ms be
the path from z to y′. Since EFH[V(Li+4) ∪ V(Ri+4)] is connected, there exists a tree
Ti containing x̄i and z̄i in EFH[V(Li+4) ∪ V(Ri+4)] for i = 1, 2, . . . , s − 1. Take
Ti = Ti ∪ Pi ∪ Mi ∪ xi x̄i ∪ zi z̄i for i = 1, 2, . . . , s − 1. Noting that y = xs, then ȳ ∈ V(Rs+4).
Since EFH[V(L2)∪V(Rs+4)∪V(R4)] is connected, there exists a tree Ts containing z′, ȳ and
x̄ in EFH[V(L2)∪V(Rs+4)∪V(R4)]. Take Ts = Ts ∪ zz′ ∪ yȳ∪ xx̄ and Ts+1 = Ps ∪ yy′ ∪ Ms.
Then, T1, T2, . . . , Ts+1 are s + 1 internally edge disjoint S-trees. Thus, κ3(EFH) ≥ s + 1.

Figure 4. The illustration of Subcase 2.1.1 (I).

Figure 5. The illustration of Subcase 2.1.1 (II).
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Subcase 2.1.2. y ̸= xi for each i = 1, 2, . . . , s.

By Lemma 7(4), we can show ȳ /∈ V(Ri+4) for i = 0, 1, . . . , s. Without loss of generality,
let ȳ ∈ V(R1) ∪ V(R2).

First, we let ȳ ∈ V(R2). By Lemma 7(3), z′ /∈ V(L1) or z̄ /∈ V(L1). Without loss of
generality, let z̄ /∈ V(L1). Suppose z̄ ∈ V(L2). Take s vertices z1, z2, . . . , zs in V(R1), such
that z̄i ∈ V(Li+4) for i = 1, 2, . . . , s. Let Z = {z1, z2, . . . , zs}. By Lemma 6, there exist s
internally disjoint paths M1, M2, . . . , Ms from z to Z in R1. Let Mi be the path from z to zi for
i = 1, 2, . . . , s. Since EFH[V(Li+4) ∪ V(Ri+4)] is connected, there exists a tree Ti containing
x̄i and z̄i in EFH[V(Li+4) ∪ V(Ri+4)] for i = 1, 2, . . . , s. Take Ti = Ti ∪ Pi ∪ Mi ∪ xi x̄i ∪ zi z̄i
for i = 1, 2, . . . , s. Since EFH[V(L2) ∪ V(R2) ∪ V(R4)] is connected, there exists a tree Ts+1
containing z̄, ȳ and x̄ in EFH[V(L2) ∪ V(R2) ∪ V(R4)]. Take Ts+1 = Ts+1 ∪ xx̄ ∪ zz̄ ∪ yȳ.
Then, T1, T2, . . . , Ts+1 are s + 1 internally edge disjoint S-trees. Thus, κ3(EFH) ≥ s + 1.

Now, we let ȳ ∈ V(R1).
If ȳ = z, then z′ /∈ V(L1). We can let z′ ∈ V(L2). Taking T1, T2, . . . , Ts to be the same

as above, since EFH[V(L2) ∪ V(R4)] is connected, there exists a tree Ts+1 containing x̄ and
z′ in EFH[V(L2) ∪ V(R4)]. Take Ts+1 = Ts+1 ∪ xx̄ ∪ yzz′. Then, T1, T2, . . . , Ts+1 are s + 1
internally edge disjoint S-trees. Thus, κ3(EFH) ≥ s + 1.

If ȳ ̸= z. By Lemma 7(3), suppose ȳ′ ∈ V(L2), where ȳ′ is the hypercube neighbor
of ȳ. By Lemma 7(4), z̄ /∈ V(L1). Without loss of generality, let z̄ ∈ V(L2) ∪ V(L3). Take
s − 1 vertices z1, z2, . . . , zs−1 in V(R1), such that z̄i ∈ V(Li+4) for i = 1, 2, . . . , s − 1. Let
Z = {z1, z2, . . . , zs−1, ȳ}. By Lemma 6, there exist s internally disjoint paths M1, M2, . . . , Ms
from z to Z in R1. Let Mi be the path from z to zi for i = 1, 2, . . . , s − 1
and Ms be the path from z to ȳ. Since EFH[V(Li+4) ∪ V(Ri+4)] is connected, there
exists a tree Ti containing x̄i and z̄i in EFH[V(Li+4) ∪ V(Ri+4)] for i = 1, 2, . . . , s − 1.
Take Ti = Ti ∪ Pi ∪ Mi ∪ xi x̄i ∪ zi z̄i for i = 1, 2, . . . , s − 1. If z̄ ∈ V(L3) (Figure 6), noting that
x̄s ∈ V(Rs+4), since EFH[V(L3) ∪ V(Rs+4)] is connected, there exists a tree Ts containing z̄
and x̄s in EFH[V(L3)∪V(Rs+4)]. Take Ts = Ts ∪ Ps ∪ xs x̄s ∪ zz̄. Since EFH[V(L2)∪V(R4)]
is connected, there exists a tree Ts+1 containing x̄ and ȳ′ in EFH[V(L2) ∪ V(R4)]. Take
Ts+1 = Ts+1 ∪ xx̄ ∪ yȳȳ′ ∪ Ms. Then, T1, T2, . . . , Ts+1 are s + 1 internally edge disjoint S-
trees. If z̄ ∈ V(L2) (Figure 7), since ȳ ̸= z, then ȳ′ ̸= z̄ by Lemma 7(3). Since L2 ∼= Qs, we can
partition L2 into L21 and L22, such that L21

∼= Qs−1, L22 ∼= Qs−1 and ȳ′ ∈ V(L21), z̄ ∈ V(L22).
In L21, there exists a spanning tree T21 containing ȳ′. Since |V(T21)| = |V(L21)| = 2s−1 ≥
s + 1 for s ≥ 3, there exists a vertex u ∈ V(L21), such that u′ /∈ V(R1) ∪ V(Ri+4) for
i = 1, . . . , s by Lemma 7(4). Let u′ ∈ V(R2) ∪ V(R4). Similarly, there exists a spanning tree
T22 containing z̄ in L22. Since |V(T22)| = |V(L22)| = 2s−1 ≥ s + 1 for s ≥ 3, there exists
a vertex v ∈ V(L22), such that v′ /∈ V(R1) ∪ V(R2) ∪ V(Ri+4) for i = 0, 1, . . . , s − 1 by
Lemma 7(4). Let v′ ∈ V(R3) ∪ V(Rs+4). Since EFH[V(R2) ∪ V(R4) ∪ V(L3)] is connected,
there exists a tree Ts containing u′ and x̄. Take Ts = Ts ∪ xx̄ ∪ T21 ∪ uu′ ∪ yȳȳ′ ∪ Ms. Since
EFH[V(R3) ∪ V(Rs+4) ∪ V(L4)] is connected, there exists a tree Ts+1 containing v′ and
x̄s. Take Ts+1 = Ts+1 ∪ vv′ ∪ T22 ∪ zz̄ ∪ Ps ∪ xs x̄s. Then, T1, T2, . . . , Ts+1 are s + 1 internally
edge disjoint S-trees. Thus, κ3(EFH) ≥ s + 1.

By symmetry and t ≥ s, if x, y ∈ V(Ri), z ∈ V(Lj) for some i ∈ {1, 2, . . . , 2s} and some
j ∈ {1, 2, . . . , 2t}, we can also obtain κ3(EFH) ≥ s + 1.

Subcase 2.2. z ∈ V(Lj) for some j ∈ {2, . . . , 2t}.

Without loss of generality, we let z ∈ V(L2) (Figure 8), and suppose x̄ ∈ V(R3), x̄i ∈
V(Ri+3), x′ ∈ V(Rs+4), x′i ∈ V(Rs+i+4) for i = 1, 2, . . . , s. Then, z′ /∈ V(Ri+3) or z̄ /∈
V(Ri+3) or z′ /∈ V(Rs+i+4) or z̄ /∈ V(Rs+i+4) for i = 0, 1, . . . , s. Without loss of gen-
erality, let z̄ /∈ V(Ri+3) for i = 0, 1, . . . , s. Suppose z̄ ∈ V(R2). If y = xi for some
i ∈ {1, 2, . . . , s}, then ȳ = x̄i for some i ∈ {1, 2, . . . , s}. Then, y′ /∈ V(Ri+3) for i = 0, 1, . . . , s.
If y ̸= xi for each i = 1, 2, . . . , s, then ȳ /∈ V(Ri+3) for i = 0, 1, . . . , s by Lemma 7(4). With-
out loss of generality, let ȳ /∈ V(Ri+3) for i = 0, 1, . . . , s. Suppose ȳ ∈ V(R1) ∪ V(R2).
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Choose s vertices z1, z2, . . . , zs in V(L2), such that z̄i ∈ V(Ri+3) for i = 1, 2, . . . , s. Denote
Z = {z1, z2, . . . , zs}. By Lemma 6, there exist s internally disjoint paths M1, M2, . . . , Ms
from z to Z in L2. Let Mi be the path from z to zi for i = 1, 2, . . . , s. Since Ri+3 is connected,
there exists a tree Ti containing x̄i and z̄i in Ri+3 for i = 1, 2, . . . , s. Take Ti = Ti ∪ Pi ∪ Mi ∪
xi x̄i ∪ zi z̄i for i = 1, 2, . . . , s. Since EFH[V(R1) ∪ V(R2) ∪ V(R3) ∪ V(L3)] is connected,
there exists a tree Ts+1 containing x̄, ȳ and z̄ in EFH[V(R1) ∪ V(R2) ∪ V(R3) ∪ V(L3)].
Take Ts+1 = Ts+1 ∪ xx̄ ∪ yȳ ∪ zz̄. Then, T1, T2, . . . , Ts+1 are s + 1 internally edge disjoint
S-trees. Thus, κ3(EFH) ≥ s + 1.

By symmetry and t ≥ s, if x, y ∈ V(Ri), z ∈ V(Rj) for some i, j ∈ {1, 2, . . . , 2s} and
i ̸= j, we can also obtain κ3(EFH) ≥ s + 1.

Figure 6. The illustration of Subcase 2.1.2 (I).

Figure 7. The illustration of Subcase 2.1.2 (II).
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Figure 8. The illustration of Subcase 2.2.

Case 3. x ∈ V(Li), y ∈ V(Lj), and z ∈ V(Rk) for some i, j ∈ {1, 2, . . . , 2t} with i ̸= j and
some k ∈ {1, 2, . . . , 2s}.

Without loss of generality, let x ∈ V(L1), y ∈ V(L2), z ∈ V(R1).

Subcase 3.1. z′, z̄ ∈ V(L1) ∪ V(L2).

By Lemma 7(3), without loss of generality, let z̄ ∈ V(L1), z′ ∈ V(L2).
We first consider z̄ = x or z′ = y. Without loss of generality, let z̄ = x. By Lemma 7(3),

we can let x′ ∈ V(R2) and y′ /∈ V(R1) or ȳ /∈ V(R1). Suppose ȳ /∈ V(R1). Then, put
ȳ ∈ V(R2) ∪ V(R3). Choose x1, x2, . . . , xs in V(L1) \ {x}, such that x̄i ∈ V(Ri+3) for
i = 1, 2, . . . , s. Denote X = {x1, x2, . . . , xs}. Choose y1, y2, . . . , ys in V(L2) \ {y}, such
that ȳi ∈ V(Ri+3) for i = 1, 2, . . . , s. Denote Y = {y1, y2, . . . , ys}. Choose z1, z2, . . . , zs in
V(R1) \ {z}, such that z̄i ∈ V(Li+3) for i = 1, 2, . . . , s. Denote Z = {z1, z2, . . . , zs}. By
Lemma 6, there exist s paths P1, P2, . . . , Ps from x to X in L1, s paths N1, N2, . . . , Ns from y
to Y in L2, s paths M1, M2, . . . , Ms from z to Z in R1. Let Pi, Ni, Mi be the paths from x to xi,
from y to yi, and from z to zi, respectively, for i = 1, 2, . . . , s. Since EFH[V(Li+3)∪V(Ri+3)]
is connected, there exists a tree Ti containing x̄i, ȳi, and z̄i in EFH[V(Li+3) ∪ V(Ri+3)] for
i = 1, 2, . . . , s. Take Ti = Ti ∪ Pi ∪ Ni ∪ Mi ∪ xi x̄i ∪ yi ȳi ∪ zi z̄i for i = 1, 2, . . . , s. Since
EFH[V(R2) ∪ V(R3) ∪ V(L3)] is connected, there exists a tree Ts+1 containing x′, ȳ in
EFH[V(R2)∪ V(R3)∪ V(L3)]. Take Ts+1 = Ts+1 ∪ yȳ ∪ xx′ ∪ xz. Then, T1, T2, . . . , Ts+1 are
s + 1 internally edge disjoint S-trees. Thus, κ3(EFH) ≥ s + 1.

Now, we consider z̄ ̸= x and z′ ̸= y (Figure 9). Since L1
∼= Qs and L2 ∼= Qs, we

can partition L1 into L11 and L12, such that L11
∼= Qs−1, L12

∼= Qs−1 and z̄ ∈ V(L11),
x ∈ V(L12). Similarly, we partition L2 into L21 and L22, such that L21

∼= Qs−1, L22 ∼= Qs−1
and z′ ∈ V(L21), y ∈ V(L22). By Lemma 7(4), we can let x̄ ∈ V(R2) and y′ ∈ V(R2) ∪
V(R3). Choose x1, x2, . . . , xs−1 in V(L12) \ {x} such that x̄i /∈ V(R1) ∪ V(R2) ∪ V(R3) for
i = 1, 2, . . . , s− 1. This can be performed since 2s−1 − 1 ≥ 3 with s ≥ 3. Let x̄i ∈ V(Ri+3) for
i = 1, 2, . . . , s − 1. Denote X = {x1, x2, . . . , xs−1}. Choose y1, y2, . . . , ys−1 in V(L22) \ {y},
such that y′i /∈ V(R1) ∪ V(R2) ∪ V(R3) for i = 1, 2, . . . , s − 1. Without loss of generality, for
simplicity of description, we can let y′1 ∈ V(R4) and y′i ∈ V(Rs+i+1) for i = 2, . . . , s − 1.
Note that x̄1 ∈ V(R4) and x̄i ∈ V(Ri+3) for i = 2, . . . , s − 1. Denote Y = {y1, y2, . . . , ys−1}.
Choose z1, z2, . . . , zs ∈ V(R1) \ {z} such that z̄i ∈ V(Li+3) for i = 1, 2, . . . , s. Denote
Z = {z1, z2, . . . , zs}. By Lemma 6 and κ(L12) = κ(L22) = s − 1, κ(R1) = s, there exist
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s − 1 paths P1, P2, . . . , Ps−1 from x to X in L12, s − 1 paths N1, N2, . . . , Ns−1 from y to Y
in L22, s paths M1, M2, . . . , Ms from z to Z in R1. Let Pi, Ni, Mi be the paths from x to xi,
from y to yi, and from z to zi, respectively, for i = 1, 2, . . . , s − 1 and Ms be the path from
z to zs. Since EFH[V(R4) ∪ V(L4)] is connected, there exists a tree T1 containing x̄1, y′1
and z̄1 in EFH[V(R4) ∪ V(L4)]. Take T1 = T1 ∪ P1 ∪ N1 ∪ M1 ∪ x1 x̄1 ∪ y1y′1 ∪ z1z̄1. Since
EFH[V(Ri+3) ∪ V(Rs+i+1) ∪ V(Li+3)] is connected for i = 2, 3, . . . , s − 1, there exists a tree
Ti containing x̄i, y′i and z̄i in EFH[V(Ri+3) ∪ V(Rs+i+1) ∪ V(Li+3)] for i = 2, 3, . . . , s − 1.
Take Ti = Ti ∪ Pi ∪ Ni ∪ Mi ∪ xi x̄i ∪ yiy′i ∪ zi z̄i for i = 2, 3, . . . , s − 1. Since EFH[V(R2) ∪
V(R3)∪V(Ls+3)] is connected, there exists a tree Ts containing x̄, y′ and z̄s in EFH[V(R2)∪
V(R3)∪V(Ls+3)]. Take Ts = Ts ∪ Ms ∪ xx̄ ∪ yy′ ∪ zs z̄s. Let u be the neighbor of x in V(L11)
and v be the neighbor of y in V(L21). Suppose that T11 is a spanning tree of L11 and T21 is
a spanning tree of L21. Take Ts = T11 ∪ T21 ∪ ux ∪ vy ∪ zz̄ ∪ zz′. Then, T1, T2, . . . , Ts+1 are
s + 1 internally edge disjoint S-trees. Thus, κ3(EFH) ≥ s + 1.

Figure 9. The illustration of Subcase 3.1.

Subcase 3.2. z′ /∈ V(L1) ∪ V(L2) or z̄ /∈ V(L1) ∪ V(L2).

Without loss of generality, let z′ /∈ V(L1)∪V(L2). Suppose z′ ∈ V(L3). By Lemma 7(3),
x′ /∈ V(R1) or x̄ /∈ V(R1), y′ /∈ V(R1) or ȳ /∈ V(R1). Without loss of generality, we
can let x̄ ∈ V(R2), y′ ∈ V(R2) ∪ V(R3). Choose x1, x2, . . . , xs ∈ V(L1) \ {x}, such that
x̄i /∈ V(R1) ∪ V(R2) ∪ V(R3) for i = 1, 2, . . . , s. Suppose x̄i ∈ V(Ri+3) for i = 1, 2, . . . , s.
Denote X = {x1, x2, . . . , xs}. Choose y1, y2, . . . , ys ∈ V(L2), such that ȳi ∈ V(Ri+3)
for i = 1, 2, . . . , s. Denote Y = {y1, y2, . . . , ys}. Choose z1, z2, . . . , zs ∈ V(R1) \ {z},
such that z′i ∈ V(Li+3) for i = 1, 2, . . . , s. Denote Z = {z1, z2, . . . , zs}. By Lemma 6,
there exist s paths P1, P2, . . . , Ps from x to X in L1, s paths N1, N2, . . . , Ns from y to Y in
L2, s paths M1, M2, . . . , Ms from z to Z in R1. Let Pi, Ni, Mi be the paths from x to xi,
from y to yi, and from z to zi, respectively, for i = 1, 2, . . . , s. Note that if y = yi for
some i ∈ {1, 2, . . . , s}, we regard Ni as the vertex y. Since EFH[V(Li+3) ∪ V(Ri+3)] is
connected, there exists a tree Ti containing x̄i, ȳi and z′i in EFH[V(Li+3) ∪ V(Ri+3)] for
i = 1, 2, . . . , s. Take Ti = Ti ∪ Pi ∪ Ni ∪ Mi ∪ xi x̄i ∪ yi ȳi ∪ ziz′i for i = 1, 2, . . . , s. Since
EFH[V(R2) ∪ V(R3) ∪ V(L3)] is connected, there exists a tree Ts+1 containing z′, x̄, y′ in
EFH[V(R2)∪V(R3)∪V(L3)]. Take Ts+1 = Ts+1 ∪ xx̄ ∪ yy′ ∪ zz′. Then, T1, T2, . . . , Ts+1 are
s + 1 internally edge disjoint S-trees. Thus, κ3(EFH) ≥ s + 1.

By symmetry and t ≥ s, if x ∈ V(Ri), y ∈ V(Rj), z ∈ V(Lk) for some i, j ∈ {1, 2, . . . , 2s}
with i ̸= j and some k ∈ {1, 2, . . . , 2t}, we can also obtain κ3(EFH) ≥ s + 1.
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Case 4. x ∈ V(Li), y ∈ V(Lj), and z ∈ V(Lk) for some i, j, k ∈ {1, 2, . . . , 2t} with i ̸= j ̸= k.

Let x ∈ V(L1), y ∈ V(L2), and z ∈ V(L3) (Figure 10). Without loss of generality,
suppose x̄, ȳ, z̄ ∈ V(R1) ∪ V(R2) ∪ V(R3). Choose xi ∈ V(L1) \ {x}, yi ∈ V(L2) \ {y}, zi ∈
V(L3) \ {z}, such that x̄i, ȳi, z̄i ∈ V(Ri+3) for i = 1, 2, . . . , s. Let X = {x1, x2, . . . , xs},
Y = {y1, y2, . . . , ys} and Z = {z1, z2, . . . , zs}. By Lemma 6, there exist s paths P1, P2, . . . , Ps
from x to X in L1, s paths N1, N2, . . . , Ns from y to Y in L2, s paths M1, M2, . . . , Ms from z to
Z in L3. Let Pi, Ni, Mi be the paths from x to xi, from y to yi, and from z to zi, respectively,
for i = 1, 2, . . . , s. Since EFH[V(Ri+3)] is connected, there exists a tree Ti containing x̄i, ȳi
and z̄i in EFH[V(Ri+3)] for i = 1, 2, . . . , s. Take Ti = Ti ∪ Pi ∪ Ni ∪ Mi ∪ xi x̄i ∪ yi ȳi ∪
zi z̄i for i = 1, 2, . . . , s. Since EFH[V(R1) ∪ V(R2) ∪ V(R3) ∪ V(L4)] is connected, there
exists a tree Ts+1 containing x̄, ȳ and z̄ in EFH[V(R1) ∪ V(R2) ∪ V(R3) ∪ V(L4)]. Take
Ts+1 = Ts+1 ∪ xx̄ ∪ yȳ ∪ zz̄. Then, T1, T2, . . . , Ts+1 are s + 1 internally edge disjoint S-trees.
Thus, κ3(EFH) ≥ s + 1.

By symmetry and t ≥ s, if x ∈ V(Ri), y ∈ V(R j), z ∈ V(Rk) for some
i, j, k ∈ {1, 2, . . . , 2s} with i ̸= j ̸= k, we can also obtain κ3(EFH) ≥ s + 1.

Figure 10. The illustration of Case 4.

We have completed the proof.

4. Conclusions

The exchanged folded hypercube is a variant of the hypercube and denoted by
EFH(s, t). It has many attractive properties to design interconnection networks. The
generalized k-connectivity is an extension of the traditional connectivity. In this paper, we
computed the generalized 3-connectivity of the exchanged folded hypercube. The study of
the generalized k-connectivity of the exchanged folded hypercube for k ≥ 4 is a meaningful
and challenging problem.
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