

Article The Generalized 3-Connectivity of Exchanged Folded Hypercubes

Wantao Ning ^{1,*} and Hao Li²

- ¹ School of Mathematics and Statistics, Xidian University, Xi'an 710071, China
- ² Laboratoire Interdisciplinaire des Sciences du Numérique, UMR9015 CNRS-Université Paris-Saclay,
- 1 Rue Raimond Castaing, 91190 Gif-sur-Yvette, France; li@lri.fr
- * Correspondence: wtning@xidian.edu.cn

Abstract: For $S \subseteq V(G)$, $\kappa_G(S)$ denotes the maximum number k of edge disjoint trees T_1, T_2, \ldots, T_k in G, such that $V(T_i) \cap V(T_j) = S$ for any $i, j \in \{1, 2, \ldots, k\}$ and $i \neq j$. For an integer $2 \leq r \leq |V(G)|$, the generalized r-connectivity of G is defined as $\kappa_r(G) = \min\{\kappa_G(S)|S \subseteq V(G) \text{ and } |S| = r\}$. In fact, $\kappa_2(G)$ is the traditional connectivity of G. Hence, the generalized r-connectivity is an extension of traditional connectivity. The exchanged folded hypercube EFH(s, t), in which $s \geq 1$ and $t \geq 1$ are positive integers, is a variant of the hypercube. In this paper, we find that $\kappa_3(EFH(s, t)) = s + 1$ with $3 \leq s \leq t$.

Keywords: exchanged folded hypercubes; generalized 3-connectivity; fault tolerance; interconnection networks

MSC: 05C40; 68R10

1. Introduction

An interconnection network is usually modeled as a simple graph G = (V(G), E(G)), in which V(G) represents the set of processors and E(G) represents the set of links. For $v \in V(G)$, N(v) is the neighborhood of v in G. d(v) = |N(v)| is the degree of v in G. The minimum degree of G is defined as $\delta(G) = \min\{d(v)|v \in V(G)\}$. For two graphs G_1 and G_2 , $G_1 \cong G_2$ means that they are isomorphic. Let $S \subseteq V(G)$. The subgraph of G, whose vertex set is S and whose edge set is the set of those edges of G that have both ends in S, is called the subgraph of G induced by S and is denoted by G[S]. We say that G[S] is an induced subgraph of G. G - S means the induced subgraph $G[V(G) \setminus S]$, where $V(G) \setminus S$ represents the vertex set obtained from V(G) by deleting the vertices in S. Let $V \subseteq V(G) \setminus \{v\}$. The (v, V) paths is a family of internally disjoint paths whose starting vertex is v and terminal vertices are distinct in V, which is called a fan from v to V. For other terminologies and notations, please refer to [1].

Connectivity is a basic and important metric in measuring the reliability and fault tolerance of networks. A cut set *S* of *G* is a vertex set of *G*, such that G - S is disconnected or it is only one vertex. $\kappa(G) = \min\{|S||S \text{ is a cut set of } G\}$, which is the connectivity of *G*. In [2], Whitney proposed an equivalent concept of connectivity. For each 2-subset $S = \{u, w\}$ of vertices of *G*, let $\kappa_G(S)$ be the maximum number of internally disjoint paths from *u* to *w* in *G*. Then, $\kappa(G) = \min\{\kappa_G(S)|S \subseteq V(G) \text{ and } |S| = 2\}$. As an extension of connectivity, Chartrand et al. [3]showed the concept of generalized *k*-connectivity in 1984. Let $S \subseteq V(G)$. A tree *T* in *G* is called an *S*-tree if $S \subseteq V(T)$. The trees T_1, T_2, \ldots, T_r are called internally edge disjoint *S*-trees if $V(T_i) \cap V(T_j) = S$ and $E(T_i) \cap E(T_j) = \emptyset$ for any distinct integers *i*, *j* with $1 \le i, j \le r$. $\kappa_G(S)$ refers to the maximum number of internally edge disjoint *S*-trees. For an integer *k* with $2 \le k \le |V(G)|$, $\kappa_k(G) = \min\{\kappa_G(S)|S \subseteq V(G)$ and $|S| = k\}$ is defined as the generalized *k*-connectivity of *G*.

In a graph *G*, an *S*-tree is also called an *S*-Steiner tree. Steiner trees have significant applications in computer networks [4]. Internally edge disjoint *S*-Steiner trees have been

Citation: Ning, W.; Li, H. The Generalized 3-Connectivity of Exchanged Folded Hypercubes. *Axioms* **2024**, *13*, 194. https:// doi.org/10.3390/axioms13030194

Academic Editor: Fabio Caldarola

Received: 29 January 2024 Revised: 10 March 2024 Accepted: 13 March 2024 Published: 14 March 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

applied to VLSI [5]. From the definition of generalized *k*-connectivity, we can see that the core of generalized *k*-connectivity is to seek the maximum number of internally edge disjoint *S*-Steiner trees. The generalized *k*-connectivity is an extension of traditional connectivity. It can more precisely measure the fault tolerance of networks. To decide whether there exist *k* internally edge disjoint *S*-Steiner trees is NP-complete for a graph [6]. The generalized 3-connectivities of augmented cubes, (*n*, *k*)-bubble-sort graphs, and generalized hypercubes have been obtained in [7–9], respectively. The generalized 4-connectivities of hypercubes, crossed cubes, exchanged hypercubes, and hierarchical cubic networks have been obtained in [10–13], respectively. On the whole, the generalized *k*-connectivity is known for a small number of graphs and almost all known results are about *k* = 3 or 4.

The *n*-dimensional hypercube is denoted by Q_n , whose vertices are the ordered *n*tuples of 0's and 1's. Two vertices are adjacent if and only if they differ in exactly one dimension. As variants of hypercubes Q_n , folded hypercubes FQ_n and exchanged hypercubes EH(s,t) were proposed in [14,15], respectively. Based on EH(s,t) and FQ_n , Qi et al. proposed an interconnection network named exchanged folded hypercube EFH(s,t)in [16]. In this work, we will prove $\kappa_3(EFH(s,t)) = s + 1$ for $3 \le s \le t$.

2. Definitions and Lemmas

Exchanged hypercubes were defined by Lou et al. [15] as follows. Let $s \ge 1$ and $t \ge 1$ be positive integers. The exchanged hypercubes EH(s, t) are defined as undirected graphs, whose vertex set *V* is

$$V = \{a_s \cdots a_1 b_t \cdots b_1 c | a_i, b_j, c \in \{0, 1\} \text{ for } i \in [1, s], j \in [1, t]\}.$$

For $u, v \in V$, u[0] means the *c* index of *u*. u[i : j] is the indexes of *u* from dimension *j* to dimension *i*. H(u[i : j], v[i : j]) represents the number of different indexes at the same dimension between u[i : j] and v[i : j].

The edge set consists of three disjoint subsets E_H , E_R and E_L , where

$$E_H = \{(u,v) | u[s+t:1] = v[s+t:1], u[0] \neq v[0] \},\$$

$$E_R = \{(u,v)|u[s+t:t+1] = v_2[s+t:t+1], H(u[t:1],v[t:1]) = 1, u[0] = v[0] = 1\},\$$

$$E_L = \{(u,v) | u[t:1] = v[t:1], H(u[s+t:t+1], v[s+t:t+1]) = 1, u[0] = v[0] = 0\},\$$

Figure 1 shows an example of EH(1,2). Based on the concept of EH(s,t), Qi et al. [16] put in a network called an exchanged folded hypercube EFH(s,t). EFH(s,t) and EH(s,t) have the same vertex set. The edge set of EFH(s,t) consists of E_H , E_R , E_L and E_{comp} , where

$$E_{\text{comp}} = \{(u, v) | H(u[s+t:1], v[s+t:1]) = s+t, u[0] \neq v[0] \}$$

Figure 1. *EH*(1, 2).

The edges in E_{comp} are called complementary edges of EFH(s, t). From the two definitions, we know that EFH(s, t) can be obtained from EH(s, t) by adding extra 2^{s+t} edges. Figure 2 is an example of EFH(1, 2). From the definition, we can see that $|V(EFH(s, t))|=2^{s+t+1}$. For each vertex $v \in V(EFH(s, t))$, d(v) = s + 2 or t + 2. For simplicity, we always use EFH instead of EFH(s, t). The following results are useful.

Figure 2. *EFH*(1, 2)

Lemma 1. ([16]) $EFH(t,s) \cong EFH(s,t)$.

From the lemma, we always assume $s \le t$ from now on. Then, $\delta(EFH(s, t)) = s + 2$.

Lemma 2. ([1]) $\kappa(Q_n) = n$ for $n \ge 2$.

Lemma 3. ([17]) $\kappa_3(Q_n) = n - 1$ for $n \ge 2$.

Lemma 4. ([18]) If there are two adjacent vertices of degree $\delta(G)$ in graph G, then $\kappa_k(G) \leq \delta(G) - 1$ for $3 \leq k \leq |V(G)|$.

Lemma 5. ([1]) Let *G* be a *k*-connected graph, and let *u* and *v* be a pair of distinct vertices in *G*. Then, there exist *k* internally disjoint paths in *G* connecting *u* and *v*.

Lemma 6. (Fan lemma [1]) For a k-connected graph G, let $u \in V(G)$, and suppose $U \subseteq V(G) \setminus \{u\}$ and $|U| \ge k$. Then, there exists a k-fan in G from u to U, that is, there exists a family of k internally disjoint (u, U) paths whose terminal vertices are distinct in U.

In this work, we will prove the following result.

Theorem 1. $\kappa_3(EFH(s, t)) = s + 1$ for $3 \le s \le t$.

3. Proof of Theorem 1

We partition EFH(s, t) into two subgraphs *L*, *R* and edges between them, in which for $u \in V(L)$ and $v \in V(R)$, u[0] = 0 and v[0] = 1.

In V(L), each collection of 2^s vertices u, with u[t : 1] being identical, forms Q_s via the edges in E_L . We use L_i to denote these Q_s for $i = 1, 2, ..., 2^t$. Similarly, in V(R), each collection of 2^t vertices v, with v[s + t : t + 1] being identical, forms Q_t via the edges in E_R . We use R_j to denote these Q_t for $j = 1, 2, ..., 2^s$.

Each vertex $x \in V(L)$ has two neighbors in V(R). One is x' with $xx' \in E_H$. It is called the hypercube neighbor of x. The other is \bar{x} with $x\bar{x} \in E_{comp}$. It is called the complement neighbor of x. x' and \bar{x} are called outside neighbors of x. Similarly, for $y \in V(R)$, y' and \bar{y} , the outside neighbors of y, are called the hypercube neighbor and the complement neighbor of y, respectively. In the following, for each vertex *x* in a graph, we use x' and \bar{x} to denote the hypercube neighbor and the complement neighbor of *x*, respectively.

Lemma 7. For Q_n and EFH(s,t), the following results hold.

1. Each $L_i \cong Q_s$, $R_j \cong Q_t$ and $|V(L_i)| = 2^s$, $|V(R_j)| = 2^t$ for $i = 1, 2, ..., 2^t$, $j = 1, 2, ..., 2^s$.

2. There are no edges between any two distinct L_i and L_k for $i, k \in \{1, 2, ..., 2^t\}$. Similarly, there are no edges between any two distinct R_i and R_h for $j, h \in \{1, 2, ..., 2^s\}$.

3. For each vertex $x \in V(L)$, x' and \bar{x} belong to distinct $V(R_j)$ and $V(R_h)$, where $j,h \in \{1,2,\ldots,2^s\}$. Similarly, for each vertex $w \in V(R)$, w' and \bar{w} belong to distinct $V(L_i)$ and $V(L_k)$, where $i,k \in \{1,2,\ldots,2^t\}$.

4. For two distinct vertices $x, y \in V(L_i)$ with $i \in \{1, 2, ..., 2^t\}$, x' and y' lie in distinct $V(R_j)$ and $V(R_h)$, where $j, h \in \{1, 2, ..., 2^s\}$, \bar{x} and \bar{y} lie in distinct $V(R_i)$ and $V(R_k)$, where $i, k \in \{1, 2, ..., 2^s\}$. Similar results hold for two distinct vertices $u, v \in V(R_k)$ for $k \in \{1, 2, ..., 2^s\}$.

5. For two distinct vertices $x, y \in V(L_i)$ with $i \in \{1, 2, ..., 2^t\}$, if $x', \bar{y} \in V(R_j)$ for some $j \in \{1, 2, ..., 2^s\}$, then $\bar{x}, y' \in V(R_k)$ for some $k \in \{1, 2, ..., 2^s\}$ with $k \neq j$. A similar result holds for two distinct vertices $u, v \in V(R_k)$ for $k \in \{1, 2, ..., 2^s\}$.

Proof. The first and second results are obvious. For two distinct vertices $x, y \in V(L_i)$ with $i \in \{1, 2, ..., 2^t\}$, there exists at least one index *m* for which *x* and *y* differ. Let $x = a_s \cdots a_m \cdots a_1 b_t \cdots b_1 0$, $y = a'_s \cdots \bar{a}_m \cdots a'_1 b_t \cdots b_1 0$ in same $V(L_i)$ with some $m \in \{1, 2, ..., s\}$. Then, $x' = a_s \cdots a_m \cdots a_1 b_t \cdots b_1 1$, $\bar{x} = \bar{a}_s \cdots \bar{a}_m \ldots \bar{a}_1 \bar{b}_t \cdots \bar{b}_1 1$, $y' = a'_s \cdots \bar{a}_m \cdots \bar{a}'_1 \bar{b}_t \cdots \bar{b}_1 1$, $\bar{y} = a'_s \cdots \bar{a}_m \cdots \bar{a}'_1 \bar{b}_t \cdots \bar{b}_1 1$, where $\bar{a}_i = 1 - a_i, \bar{a}'_i = 1 - a'_i, \bar{b}_j = 1 - b_j$ (Figure 3).

x' and \bar{x} belong to distinct $V(R_j)$ and $V(R_h)$ where $j, h \in \{1, 2, ..., 2^s\}$ since $a_i \neq \bar{a}_i$ for i = 1, 2, ..., s. Similarly, we can prove that, for any vertex $w \in V(R)$, w' and \bar{w} belong to distinct $V(L_i)$ and $V(L_k)$, where $i, k \in \{1, 2, ..., 2^t\}$. Hence, the third result holds.

Since $a_m \neq \bar{a}_m$ for some $m \in \{1, 2, ..., s\}$, x' and y' lie in different $V(R_j)$ and $V(R_h)$, where $j, h \in \{1, 2, ..., 2^s\}$, \bar{x} and \bar{y} lie in different $V(R_i)$ and $V(R_k)$, where $i, k \in \{1, 2, ..., 2^s\}$. We can prove that similar results for any distinct vertices $u, v \in V(R_k)$ for $k \in \{1, 2, ..., 2^s\}$. Hence, the fourth result holds.

If $x', \bar{y} \in V(R_j)$ for some $j \in \{1, 2, ..., 2^s\}$, then $a_j = \bar{a'}_j$ for j = 1, ..., m - 1, m + 1, ..., s. Hence, $\bar{a}_j = a'_j$ for j = 1, ..., m - 1, m + 1, ..., s. This implies that $\bar{x}, y' \in V(R_k)$ for some $k \in \{1, 2, ..., 2^s\}$ with $k \neq j$. We can prove that a similar result for any distinct vertices $u, v \in V(R_k)$ for $k \in \{1, 2, ..., 2^s\}$. Hence, the fifth result holds. \Box

Figure 3. A partitioned sketch of EFH(s, t).

Proof of Theorem 1. By Lemma 7, for any vertex $u \in V(L_1)$, d(u) = s + 2. Since $\delta(EFH(s,t)) = s + 2$, $\kappa_3(EFH(s,t)) \le s + 1$ by Lemma 4. In the following, we will prove $\kappa_3(EFH(s,t)) \ge s + 1$. Take any three distinct vertices x, y, and z in EFH and let $S = \{x, y, z\}$. If we can prove that there are s + 1 internally edge disjoint *S*-trees in EFH, we are done.

Case 1. $x, y, z \in V(L_i)$ for some $i \in \{1, 2, ..., 2^t\}$.

Without loss of generality, let $x, y, z \in V(L_1)$. By Lemma 3, there exist s - 1 internally edge disjoint *S*-trees $T_1, T_2, \ldots, T_{s-1}$ in L_1 . Without loss of generality, suppose $x' \in V(R_1), y' \in V(R_2)$, and $z' \in V(R_3)$ by Lemma 7(4).

If $\{\bar{x}, \bar{y}, \bar{z}\} \cap (V(R_1) \cup V(R_2) \cup V(R_3)) = \emptyset$, we can assume $\bar{x} \in V(R_4), \bar{y} \in V(R_5), \bar{z} \in V(R_6)$. By Lemma 7(4), $EFH[V(R_1) \cup V(R_2) \cup V(R_3) \cup V(L_2)]$ is connected. Hence, there exists a tree \overline{T}_s containing x', y', and z' in $EFH[V(R_1) \cup V(R_2) \cup V(R_3) \cup V(L_2)]$. Take $T_s = \overline{T}_s \cup xx' \cup yy' \cup zz'$. Since $EFH[V(R_4) \cup V(R_5) \cup V(R_6) \cup V(L_3)]$ is connected, there exists a tree \overline{T}_{s+1} containing \bar{x}, \bar{y} , and \bar{z} in $EFH[V(R_4) \cup V(R_5) \cup V(R_6) \cup V(L_3)]$. Take $T_{s+1} = \overline{T}_{s+1} \cup x\bar{x} \cup y\bar{y} \cup z\bar{z}$. Then, $T_1, T_2, \ldots, T_{s+1}$ are s + 1 internally edge disjoint *S*-trees. Thus, $\kappa_3(EFH) \ge s + 1$.

If $\{\bar{x}, \bar{y}, \bar{z}\} \cap (V(R_1) \cup V(R_2) \cup V(R_3)) \neq \emptyset$, without loss of generality, noting that $\bar{x} \notin V(R_1)$ by Lemma 7(3), let $\bar{x} \in V(R_2)$. By Lemma 7(5), $\bar{y} \in V(R_1)$. By Lemma 7(3)(4), we can let $\bar{z} \in V(R_4)$. Since $EFH[V(R_1) \cup V(R_3) \cup V(L_2)]$ is connected, there exists a tree \overline{T}_s containing x', \bar{y} , and z' in $EFH[V(R_1) \cup V(R_3) \cup V(L_2)]$. Take $T_s = \overline{T}_s \cup xx' \cup y\bar{y} \cup zz'$. Since $EFH[V(R_2) \cup V(R_4) \cup V(L_3)]$ is connected, there exists a tree \overline{T}_{s+1} containing \bar{x}, y' , and \bar{z} in $EFH[V(R_2) \cup V(R_4) \cup V(L_3)]$. Take $T_{s+1} = \overline{T}_{s+1} \cup x\bar{x} \cup yy' \cup z\bar{z}$. Then, $T_1, T_2, \ldots, T_{s+1}$ are s + 1 internally edge disjoint *S*-trees. Thus, $\kappa_3(EFH) \ge s + 1$.

By symmetry and $t \ge s$, if $x, y, z \in V(R_j)$ for some $j \in \{1, 2, ..., 2^s\}$, we can also obtain $\kappa_3(EFH) \ge s + 1$.

Case 2. $x, y \in V(L_i)$ for some $i \in \{1, 2, ..., 2^t\}$. $z \in V(L_j)$ for some $j \in \{1, 2, ..., 2^t\}$ and $i \neq j$ or $z \in V(R_k)$ for some $k \in \{1, 2, ..., 2^s\}$.

Without loss of generality, we let $x, y \in V(L_1)$. By Lemmas 2 and 5, there exist *s* internally disjoint paths P_1, P_2, \ldots, P_s from *x* to *y* in L_1 . Let $x_i \in V(P_i)$, such that $xx_i \in E(P_i)$ for $i = 1, 2, \ldots, s$. In the following, we will show that for any two distinct vertices x_i and x_j with $i, j \in \{1, 2, \ldots, s\}$, $x', x'_i, x'_j, \bar{x}, \bar{x}_i, \bar{x}_j$ lie in distinct $V(R_k)$ for $k \in \{1, 2, \ldots, 2^s\}$. Without loss of generality, let $x = a_s \cdots a_2 a_1 b_t \cdots b_1 0$, $x_i = a_s \cdots a_2 \bar{a}_1 b_t \cdots b_1 0$, and $x_j = a_s \cdots \bar{a}_2 a_1 b_t \cdots b_1 0$. Then, $x' = a_s \cdots a_2 a_1 b_t \cdots b_1 1$, $\bar{x} = \bar{a}_s \cdots \bar{a}_2 a_1 \bar{b}_t \cdots \bar{b}_1 1$, $x'_i = a_s \cdots a_2 \bar{a}_1 \bar{b}_t \cdots \bar{b}_1 1$, $x'_i = a_s \cdots a_2 \bar{a}_1 \bar{b}_t \cdots \bar{b}_1 1$, $\bar{x}_i = \bar{a}_s \cdots \bar{a}_2 \bar{a}_1 \bar{b}_t \cdots \bar{b}_1 b_1$, $x'_i = a_s \cdots a_2 \bar{a}_1 \bar{b}_t \cdots \bar{b}_1 1$, $x'_i = a_s \cdots \bar{a}_2 \bar{a}_1 \bar{b}_t \cdots \bar{b}_1 1$, $x_i = \bar{a}_s \cdots \bar{a}_2 \bar{a}_1 \bar{b}_t \cdots \bar{b}_1 b_1$, $x'_i = a_s \cdots a_2 \bar{a}_1 \bar{b}_t \cdots \bar{b}_1 1$, $x'_i = a_s \cdots a_2 \bar{a}_1 \bar{b}_t \cdots \bar{b}_1 1$, $x_i = \bar{a}_s \cdots \bar{a}_2 \bar{a}_1 \bar{b}_t \cdots \bar{b}_1 b_1$, $x'_i = a_s \cdots a_2 \bar{a}_1 \bar{b}_t \cdots \bar{b}_1 1$. By $s \geq 3$ and the definition of R_k , we can show that $x', x'_i, x'_j, \bar{x}, \bar{x}_i, \bar{x}_j$ lie in different $V(R_k)$ for $k \in \{1, 2, \ldots, 2^s\}$, where $i, j \in \{1, 2, \ldots, s\}$ and $i \neq j$. This implies that $x', x'_1, x'_2, \ldots, x'_s, \bar{x}, \bar{x}_1, \bar{x}_2, \ldots, \bar{x}_s$ lie in distinct $V(R_k)$ for $k \in \{1, 2, \ldots, 2^s\}$.

Subcase 2.1. $z \in V(R_k)$ for some $k \in \{1, 2, ..., 2^s\}$.

Let $z \in V(R_1)$. We know that $\{x', x'_1, x'_2, \ldots, x'_s\} \cap V(R_1) = \emptyset$ or $\{\bar{x}, \bar{x}_1, \bar{x}_2, \ldots, \bar{x}_s\} \cap V(R_1) = \emptyset$. Without loss of generality, let $\{\bar{x}, \bar{x}_1, \bar{x}_2, \ldots, \bar{x}_s\} \cap V(R_1) = \emptyset$. Suppose $\bar{x} \in V(R_4)$ and $\bar{x}_i \in V(R_{i+4})$ for $i = 1, 2, \ldots, s$.

Subcase 2.1.1. $y = x_i$ for some $i \in \{1, 2, ..., s\}$.

Without loss of generality, let $y = x_s$. Then, $y' \notin V(R_{i+4})$ for i = 0, 1, 2, ..., s by the above discussion. We can let $y' \in V(R_1)$ or $y' \in V(R_2)$.

First, we consider $y' \in V(R_2)$ (Figure 4). By Lemma 7(3), $z' \notin V(L_1)$ or $\bar{z} \notin V(L_1)$. Without loss of generality, let $\bar{z} \notin V(L_1)$. Suppose $\bar{z} \in V(L_2)$. Take *s* vertices $z_1, z_2, ..., z_s$ in $V(R_1)$, such that $\bar{z}_i \in V(L_{i+4})$ for i = 1, 2, ..., s. Let $Z = \{z_1, z_2, ..., z_s\}$. By Lemma 6, there exist *s* internally disjoint paths $M_1, M_2, ..., M_s$ from *z* to *Z* in R_1 . Let M_i be the path from *z* to z_i for i = 1, 2, ..., s. Since $EFH[V(L_{i+4}) \cup V(R_{i+4})]$ is connected, there exists a tree \overline{T}_i containing \bar{x}_i and \bar{z}_i in $EFH[V(L_{i+4}) \cup V(R_{i+4})]$ for i = 1, 2, ..., s. Take $T_i = \overline{T}_i \cup P_i \cup M_i \cup x_i \bar{x}_i \cup z_i \bar{z}_i$ for i = 1, 2, ..., s. Since $EFH[V(L_2) \cup V(R_2) \cup V(R_4)]$ is connected, there exists a tree \overline{T}_{s+1} containing \bar{z}, y' , and \bar{x} in $EFH[V(L_2) \cup V(R_2) \cup V(R_4)]$. Take $T_{s+1} = \overline{T}_{s+1} \cup x \bar{x} \cup z \bar{z} \cup yy'$. Then, $T_1, T_2, ..., T_{s+1}$ are s + 1 internally edge disjoint *S*-trees. Thus, $\kappa_3(EFH) \ge s + 1$.

Now, we consider $y' \in V(R_1)$.

If y' = z, then $\overline{z} \notin V(L_1)$. Let $\overline{z} \in V(L_2)$. Taking T_1, T_2, \ldots, T_s to be the same as above, since $EFH[V(L_2) \cup V(R_4)]$ is connected, there exists a tree \overline{T}_{s+1} containing \overline{z} and \overline{x} in $EFH[V(L_2) \cup V(R_4)]$. Take $T_{s+1} = \overline{T}_{s+1} \cup x\overline{x} \cup yz\overline{z}$. Then, $T_1, T_2, \ldots, T_{s+1}$ are s + 1internally edge disjoint *S*-trees. Thus, $\kappa_3(EFH) \ge s + 1$.

Let $y' \neq z$ (Figure 5). By Lemma 7(4), $z' \notin V(L_1)$. Suppose $z' \in V(L_2)$. Take s - 1 vertices $z_1, z_2, \ldots, z_{s-1}$ in $V(R_1)$, such that $\bar{z}_i \in V(L_{i+4})$ for $i = 1, 2, \ldots, s - 1$. Let $Z = \{z_1, z_2, \ldots, z_{s-1}, y'\}$. By Lemma 6, there exist s internally disjoint paths M_1, M_2, \ldots, M_s from z to Z in R_1 . Let M_i be the path from z to z_i for $i = 1, 2, \ldots, s - 1$ and M_s be the path from z to y'. Since $EFH[V(L_{i+4}) \cup V(R_{i+4})]$ is connected, there exists a tree \overline{T}_i containing \bar{x}_i and \bar{z}_i in $EFH[V(L_{i+4}) \cup V(R_{i+4})]$ for $i = 1, 2, \ldots, s - 1$. Take $T_i = \overline{T}_i \cup P_i \cup M_i \cup x_i \bar{x}_i \cup z_i \bar{z}_i$ for $i = 1, 2, \ldots, s - 1$. Noting that $y = x_s$, then $\bar{y} \in V(R_{s+4})$. Since $EFH[V(L_2) \cup V(R_{s+4}) \cup V(R_4)]$ is connected, there exists a tree \overline{T}_s containing z', \bar{y} and \bar{x} in $EFH[V(L_2) \cup V(R_{s+4}) \cup V(R_4)]$. Take $T_s = \overline{T}_s \cup zz' \cup y\bar{y} \cup x\bar{x}$ and $T_{s+1} = P_s \cup yy' \cup M_s$. Then, $T_1, T_2, \ldots, T_{s+1}$ are s + 1 internally edge disjoint S-trees. Thus, $\kappa_3(EFH) \ge s + 1$.

Figure 4. The illustration of Subcase 2.1.1 (I).

Figure 5. The illustration of Subcase 2.1.1 (II).

Subcase 2.1.2. $y \neq x_i$ for each i = 1, 2, ..., s.

By Lemma 7(4), we can show $\bar{y} \notin V(R_{i+4})$ for i = 0, 1, ..., s. Without loss of generality, let $\bar{y} \in V(R_1) \cup V(R_2)$.

First, we let $\bar{y} \in V(R_2)$. By Lemma 7(3), $z' \notin V(L_1)$ or $\bar{z} \notin V(L_1)$. Without loss of generality, let $\bar{z} \notin V(L_1)$. Suppose $\bar{z} \in V(L_2)$. Take *s* vertices z_1, z_2, \ldots, z_s in $V(R_1)$, such that $\bar{z}_i \in V(L_{i+4})$ for $i = 1, 2, \ldots, s$. Let $Z = \{z_1, z_2, \ldots, z_s\}$. By Lemma 6, there exist *s* internally disjoint paths M_1, M_2, \ldots, M_s from *z* to *Z* in R_1 . Let M_i be the path from *z* to z_i for $i = 1, 2, \ldots, s$. Since $EFH[V(L_{i+4}) \cup V(R_{i+4})]$ is connected, there exists a tree \overline{T}_i containing \bar{x}_i and \bar{z}_i in $EFH[V(L_{i+4}) \cup V(R_{i+4})]$ for $i = 1, 2, \ldots, s$. Take $T_i = \overline{T}_i \cup P_i \cup M_i \cup x_i \bar{x}_i \cup z_i \bar{z}_i$ for $i = 1, 2, \ldots, s$. Since $EFH[V(L_2) \cup V(R_2) \cup V(R_4)]$ is connected, there exists a tree \overline{T}_{s+1} containing \bar{z}, \bar{y} and \bar{x} in $EFH[V(L_2) \cup V(R_2) \cup V(R_4)]$. Take $T_{s+1} = \overline{T}_{s+1} \cup x\bar{x} \cup z\bar{z} \cup y\bar{y}$. Then, $T_1, T_2, \ldots, T_{s+1}$ are s + 1 internally edge disjoint *S*-trees. Thus, $\kappa_3(EFH) \ge s + 1$. Now, we let $\bar{y} \in V(R_1)$.

If $\bar{y} = z$, then $z' \notin V(L_1)$. We can let $z' \in V(L_2)$. Taking T_1, T_2, \ldots, T_s to be the same as above, since $EFH[V(L_2) \cup V(R_4)]$ is connected, there exists a tree \overline{T}_{s+1} containing \bar{x} and z' in $EFH[V(L_2) \cup V(R_4)]$. Take $T_{s+1} = \overline{T}_{s+1} \cup x\bar{x} \cup yzz'$. Then, $T_1, T_2, \ldots, T_{s+1}$ are s + 1internally edge disjoint *S*-trees. Thus, $\kappa_3(EFH) \ge s + 1$.

If $\bar{y} \neq z$. By Lemma 7(3), suppose $\bar{y}' \in V(L_2)$, where \bar{y}' is the hypercube neighbor of \bar{y} . By Lemma 7(4), $\bar{z} \notin V(L_1)$. Without loss of generality, let $\bar{z} \in V(L_2) \cup V(L_3)$. Take s-1 vertices $z_1, z_2, \ldots, z_{s-1}$ in $V(R_1)$, such that $\overline{z}_i \in V(L_{i+4})$ for $i=1,2,\ldots,s-1$. Let $Z = \{z_1, z_2, \ldots, z_{s-1}, \overline{y}\}$. By Lemma 6, there exist *s* internally disjoint paths M_1, M_2, \ldots, M_s from z to Z in R_1 . Let M_i be the path from z to z_i for $i = 1, 2, \dots, s-1$ and M_s be the path from z to \bar{y} . Since $EFH[V(L_{i+4}) \cup V(R_{i+4})]$ is connected, there exists a tree \overline{T}_i containing \overline{x}_i and \overline{z}_i in $EFH[V(L_{i+4}) \cup V(R_{i+4})]$ for $i = 1, 2, \dots, s-1$. Take $T_i = \overline{T}_i \cup P_i \cup M_i \cup x_i \overline{x}_i \cup z_i \overline{z}_i$ for $i = 1, 2, \dots, s - 1$. If $\overline{z} \in V(L_3)$ (Figure 6), noting that $\bar{x}_s \in V(R_{s+4})$, since $EFH[V(L_3) \cup V(R_{s+4})]$ is connected, there exists a tree \overline{T}_s containing \bar{z} and \bar{x}_s in $EFH[V(L_3) \cup V(R_{s+4})]$. Take $T_s = \overline{T}_s \cup P_s \cup x_s \bar{x}_s \cup z\bar{z}$. Since $EFH[V(L_2) \cup V(R_4)]$ is connected, there exists a tree \overline{T}_{s+1} containing \overline{x} and \overline{y}' in $EFH[V(L_2) \cup V(R_4)]$. Take $T_{s+1} = \overline{T}_{s+1} \cup x\overline{x} \cup y\overline{y}\overline{y}' \cup M_s$. Then, $T_1, T_2, \ldots, T_{s+1}$ are s+1 internally edge disjoint Strees. If $\overline{z} \in V(L_2)$ (Figure 7), since $\overline{y} \neq z$, then $\overline{y}' \neq \overline{z}$ by Lemma 7(3). Since $L_2 \cong Q_s$, we can partition L_2 into L_{21} and L_{22} , such that $L_{21} \cong Q_{s-1}$, $L_{22} \cong Q_{s-1}$ and $\bar{y}' \in V(L_{21})$, $\bar{z} \in V(L_{22})$. In L_{21} , there exists a spanning tree T_{21} containing \bar{y}' . Since $|V(T_{21})| = |V(L_{21})| = 2^{s-1} \ge 1$ s+1 for $s \geq 3$, there exists a vertex $u \in V(L_{21})$, such that $u' \notin V(R_1) \cup V(R_{i+4})$ for $i = 1, \ldots, s$ by Lemma 7(4). Let $u' \in V(R_2) \cup V(R_4)$. Similarly, there exists a spanning tree T_{22} containing \bar{z} in L_{22} . Since $|V(T_{22})| = |V(L_{22})| = 2^{s-1} \ge s+1$ for $s \ge 3$, there exists a vertex $v \in V(L_{22})$, such that $v' \notin V(R_1) \cup V(R_2) \cup V(R_{i+4})$ for $i = 0, 1, \dots, s-1$ by Lemma 7(4). Let $v' \in V(R_3) \cup V(R_{s+4})$. Since $EFH[V(R_2) \cup V(R_4) \cup V(L_3)]$ is connected, there exists a tree \overline{T}_s containing u' and \overline{x} . Take $T_s = \overline{T}_s \cup x\overline{x} \cup T_{21} \cup uu' \cup y\overline{y}\overline{y}' \cup M_s$. Since $EFH[V(R_3) \cup V(R_{s+4}) \cup V(L_4)]$ is connected, there exists a tree T_{s+1} containing v' and \bar{x}_s . Take $T_{s+1} = \overline{T}_{s+1} \cup vv' \cup T_{22} \cup z\bar{z} \cup P_s \cup x_s\bar{x}_s$. Then, T_1, T_2, \dots, T_{s+1} are s+1 internally edge disjoint *S*-trees. Thus, $\kappa_3(EFH) \ge s + 1$.

By symmetry and $t \ge s$, if $x, y \in V(R_i), z \in V(L_j)$ for some $i \in \{1, 2, ..., 2^s\}$ and some $j \in \{1, 2, ..., 2^t\}$, we can also obtain $\kappa_3(EFH) \ge s + 1$.

Subcase 2.2. $z \in V(L_i)$ for some $j \in \{2, ..., 2^t\}$.

Without loss of generality, we let $z \in V(L_2)$ (Figure 8), and suppose $\bar{x} \in V(R_3)$, $\bar{x}_i \in V(R_{i+3})$, $x' \in V(R_{s+4})$, $x'_i \in V(R_{s+i+4})$ for i = 1, 2, ..., s. Then, $z' \notin V(R_{i+3})$ or $\bar{z} \notin V(R_{i+3})$ or $\bar{z} \notin V(R_{i+3})$ or $\bar{z} \notin V(R_{s+i+4})$ for i = 0, 1, ..., s. Without loss of generality, let $\bar{z} \notin V(R_{i+3})$ for i = 0, 1, ..., s. Suppose $\bar{z} \in V(R_2)$. If $y = x_i$ for some $i \in \{1, 2, ..., s\}$, then $\bar{y} = \bar{x}_i$ for some $i \in \{1, 2, ..., s\}$. Then, $y' \notin V(R_{i+3})$ for i = 0, 1, ..., s. If $y \neq x_i$ for each i = 1, 2, ..., s, then $\bar{y} \notin V(R_{i+3})$ for i = 0, 1, ..., s. Suppose $\bar{y} \in V(R_1) \cup V(R_2)$.

Choose *s* vertices $z_1, z_2, ..., z_s$ in $V(L_2)$, such that $\overline{z}_i \in V(R_{i+3})$ for i = 1, 2, ..., s. Denote $Z = \{z_1, z_2, ..., z_s\}$. By Lemma 6, there exist *s* internally disjoint paths $M_1, M_2, ..., M_s$ from *z* to *Z* in L_2 . Let M_i be the path from *z* to z_i for i = 1, 2, ..., s. Since R_{i+3} is connected, there exists a tree \overline{T}_i containing \overline{x}_i and \overline{z}_i in R_{i+3} for i = 1, 2, ..., s. Take $T_i = \overline{T}_i \cup P_i \cup M_i \cup x_i \overline{x}_i \cup z_i \overline{z}_i$ for i = 1, 2, ..., s. Since $EFH[V(R_1) \cup V(R_2) \cup V(R_3) \cup V(L_3)]$ is connected, there exists a tree \overline{T}_{s+1} containing $\overline{x}, \overline{y}$ and \overline{z} in $EFH[V(R_1) \cup V(R_2) \cup V(R_3) \cup V(L_3)]$. Take $T_{s+1} = \overline{T}_{s+1} \cup x \overline{x} \cup y \overline{y} \cup z \overline{z}$. Then, $T_1, T_2, ..., T_{s+1}$ are s + 1 internally edge disjoint *S*-trees. Thus, $\kappa_3(EFH) \ge s + 1$.

By symmetry and $t \ge s$, if $x, y \in V(R_i), z \in V(R_j)$ for some $i, j \in \{1, 2, ..., 2^s\}$ and $i \ne j$, we can also obtain $\kappa_3(EFH) \ge s + 1$.

Figure 6. The illustration of Subcase 2.1.2 (I).

Figure 7. The illustration of Subcase 2.1.2 (II).

Figure 8. The illustration of Subcase 2.2.

Case 3. $x \in V(L_i), y \in V(L_j)$, and $z \in V(R_k)$ for some $i, j \in \{1, 2, ..., 2^t\}$ with $i \neq j$ and some $k \in \{1, 2, ..., 2^s\}$.

Without loss of generality, let $x \in V(L_1)$, $y \in V(L_2)$, $z \in V(R_1)$.

Subcase 3.1. $z', \bar{z} \in V(L_1) \cup V(L_2)$.

By Lemma 7(3), without loss of generality, let $\overline{z} \in V(L_1)$, $z' \in V(L_2)$.

We first consider $\bar{z} = x$ or z' = y. Without loss of generality, let $\bar{z} = x$. By Lemma 7(3), we can let $x' \in V(R_2)$ and $y' \notin V(R_1)$ or $\bar{y} \notin V(R_1)$. Suppose $\bar{y} \notin V(R_1)$. Then, put $\bar{y} \in V(R_2) \cup V(R_3)$. Choose x_1, x_2, \ldots, x_s in $V(L_1) \setminus \{x\}$, such that $\bar{x}_i \in V(R_{i+3})$ for $i = 1, 2, \ldots, s$. Denote $X = \{x_1, x_2, \ldots, x_s\}$. Choose y_1, y_2, \ldots, y_s in $V(L_2) \setminus \{y\}$, such that $\bar{y}_i \in V(R_{i+3})$ for $i = 1, 2, \ldots, s$. Denote $Y = \{y_1, y_2, \ldots, y_s\}$. Choose z_1, z_2, \ldots, z_s in $V(R_1) \setminus \{z\}$, such that $\bar{z}_i \in V(L_{i+3})$ for $i = 1, 2, \ldots, s$. Denote $Z = \{z_1, z_2, \ldots, z_s\}$. By Lemma 6, there exist s paths P_1, P_2, \ldots, P_s from x to X in L_1, s paths N_1, N_2, \ldots, N_s from yto Y in L_2, s paths M_1, M_2, \ldots, M_s from z to Z in R_1 . Let P_i, N_i, M_i be the paths from x to x_i , from y to y_i , and from z to z_i , respectively, for $i = 1, 2, \ldots, s$. Since $EFH[V(L_{i+3}) \cup V(R_{i+3})]$ is connected, there exists a tree \overline{T}_i containing \bar{x}_i, \bar{y}_i , and \bar{z}_i in $EFH[V(L_{i+3}) \cup V(R_{i+3})]$ for $i = 1, 2, \ldots, s$. Take $T_i = \overline{T}_i \cup P_i \cup N_i \cup M_i \cup x_i \bar{x}_i \cup y_i \bar{y}_i \cup z_i \bar{z}_i$ for $i = 1, 2, \ldots, s$. Since $EFH[V(R_2) \cup V(R_3) \cup V(L_3)]$ is connected, there exists a tree $\overline{T}_{s+1} \cup y \bar{y} \cup xx' \cup xz$. Then, $T_1, T_2, \ldots, T_{s+1}$ are s + 1 internally edge disjoint S-trees. Thus, $\kappa_3(EFH) \ge s + 1$.

Now, we consider $\bar{z} \neq x$ and $z' \neq y$ (Figure 9). Since $L_1 \cong Q_s$ and $L_2 \cong Q_s$, we can partition L_1 into L_{11} and L_{12} , such that $L_{11} \cong Q_{s-1}$, $L_{12} \cong Q_{s-1}$ and $\bar{z} \in V(L_{11})$, $x \in V(L_{12})$. Similarly, we partition L_2 into L_{21} and L_{22} , such that $L_{21} \cong Q_{s-1}$, $L_{22} \cong Q_{s-1}$ and $z' \in V(L_{21})$, $y \in V(L_{22})$. By Lemma 7(4), we can let $\bar{x} \in V(R_2)$ and $y' \in V(R_2) \cup V(R_3)$. Choose $x_1, x_2, \ldots, x_{s-1}$ in $V(L_{12}) \setminus \{x\}$ such that $\bar{x}_i \notin V(R_1) \cup V(R_2) \cup V(R_3)$ for $i = 1, 2, \ldots, s - 1$. This can be performed since $2^{s-1} - 1 \ge 3$ with $s \ge 3$. Let $\bar{x}_i \in V(R_{i+3})$ for $i = 1, 2, \ldots, s - 1$. Denote $X = \{x_1, x_2, \ldots, x_{s-1}\}$. Choose $y_1, y_2, \ldots, y_{s-1}$ in $V(L_{22}) \setminus \{y\}$, such that $y'_i \notin V(R_1) \cup V(R_2) \cup V(R_3)$ for $i = 1, 2, \ldots, s - 1$. Without loss of generality, for simplicity of description, we can let $y'_1 \in V(R_4)$ and $y'_i \in V(R_{s+i+1})$ for $i = 2, \ldots, s - 1$. Note that $\bar{x}_1 \in V(R_4)$ and $\bar{x}_i \in V(R_{i+3})$ for $i = 2, \ldots, s - 1$. Denote $Y = \{y_1, y_2, \ldots, y_{s-1}\}$. Choose $z_1, z_2, \ldots, z_s \in V(R_1) \setminus \{z\}$ such that $\bar{z}_i \in V(L_{i+3})$ for $i = 1, 2, \ldots, s$. Denote $Z = \{z_1, z_2, \ldots, z_s\}$. By Lemma 6 and $\kappa(L_{12}) = \kappa(L_{22}) = s - 1, \kappa(R_1) = s$, there exist

s − 1 paths *P*₁, *P*₂, ..., *P*_{*s*−1} from *x* to *X* in *L*₁₂, *s* − 1 paths *N*₁, *N*₂, ..., *N*_{*s*−1} from *y* to *Y* in *L*₂₂, *s* paths *M*₁, *M*₂, ..., *M*_{*s*} from *z* to *Z* in *R*₁. Let *P*_{*i*}, *N*_{*i*}, *M*_{*i*} be the paths from *x* to *x*_{*i*}, from *y* to *y*_{*i*}, and from *z* to *z*_{*i*}, respectively, for *i* = 1, 2, ..., *s* − 1 and *M*_{*s*} be the path from *z* to *z*_{*s*}. Since *EFH*[*V*(*R*₄) ∪ *V*(*L*₄)] is connected, there exists a tree *T*₁ containing *x*₁, *y*'₁ and *z*₁ in *EFH*[*V*(*R*₄) ∪ *V*(*L*₄)]. Take *T*₁ = *T*₁ ∪ *P*₁ ∪ *N*₁ ∪ *M*₁ ∪ *x*₁*x*₁ ∪ *y*₁*y*'₁ ∪ *z*₁*z*₁. Since *EFH*[*V*(*R*_{*i*+3}) ∪ *V*(*R*_{*s*+*i*+1}) ∪ *V*(*L*_{*i*+3})] is connected for *i* = 2, 3, ..., *s* − 1, there exists a tree *T*_{*i*} containing *x*_{*i*}, *y*'_{*i*} and *z*_{*i*} in *EFH*[*V*(*R*_{*i*+3}) ∪ *V*(*R*_{*s*+*i*+1}) ∪ *V*(*L*_{*i*+3})] for *i* = 2, 3, ..., *s* − 1. Take *T*_{*i*} = *T*_{*i*} ∪ *P*_{*i*} ∪ *N*_{*i*} ∪ *M*_{*i*} ∪ *x*_{*i*}*x*_{*i*} ∪ *yy*'_{*i*} ∪ *z*_{*i*}*z*_{*i*} for *i* = 2, 3, ..., *s* − 1. Since *EFH*[*V*(*R*₂) ∪ *V*(*R*₃) ∪ *V*(*L*_{*s*+3})] is connected, there exists a tree *T*_{*s*} containing *x*, *y*' and *z*_{*s*} in *EFH*[*V*(*R*₂) ∪ *V*(*R*₃) ∪ *V*(*L*_{*s*+3})]. Take *T*_{*s*} = *T*_{*s*} ∪ *M*_{*s*} ∪ *xx* ∪ *yy*' ∪ *z*_{*s*}*z*_{*s*}. Let *u* be the neighbor of *x* in *V*(*L*₁₁) and *v* be the neighbor of *y* in *V*(*L*₂₁). Suppose that *T*₁₁ is a spanning tree of *L*₁₁ and *T*₂₁ is a spanning tree of *L*₂₁. Take *T*_{*s*} = *T*₁₁ ∪ *T*₂₁ ∪ *ux* ∪ *vy* ∪ *zz̄* ∪ *zz*'. Then, *T*₁, *T*₂, ..., *T*_{*s*+1} are *s* + 1 internally edge disjoint *S*-trees. Thus, *κ*₃(*EFH*) ≥ *s* + 1.

Figure 9. The illustration of Subcase 3.1.

Subcase 3.2. $z' \notin V(L_1) \cup V(L_2)$ or $\bar{z} \notin V(L_1) \cup V(L_2)$.

Without loss of generality, let $z' \notin V(L_1) \cup V(L_2)$. Suppose $z' \in V(L_3)$. By Lemma 7(3), $x' \notin V(R_1)$ or $\bar{x} \notin V(R_1)$, $y' \notin V(R_1)$ or $\bar{y} \notin V(R_1)$. Without loss of generality, we can let $\bar{x} \in V(R_2)$, $y' \in V(R_2) \cup V(R_3)$. Choose $x_1, x_2, \ldots, x_s \in V(L_1) \setminus \{x\}$, such that $\bar{x}_i \notin V(R_1) \cup V(R_2) \cup V(R_3)$ for $i = 1, 2, \ldots, s$. Suppose $\bar{x}_i \in V(R_{i+3})$ for $i = 1, 2, \ldots, s$. Denote $X = \{x_1, x_2, \ldots, x_s\}$. Choose $y_1, y_2, \ldots, y_s \in V(L_2)$, such that $\bar{y}_i \in V(R_{i+3})$ for $i = 1, 2, \ldots, s$. Denote $Y = \{y_1, y_2, \ldots, y_s\}$. Choose $z_1, z_2, \ldots, z_s \in V(R_1) \setminus \{z\}$, such that $z'_i \in V(L_{i+3})$ for $i = 1, 2, \ldots, s$. Denote $Z = \{z_1, z_2, \ldots, z_s\}$. By Lemma 6, there exist s paths P_1, P_2, \ldots, P_s from x to X in L_1 , s paths N_1, N_2, \ldots, N_s from y to Y in L_2 , s paths M_1, M_2, \ldots, M_s from z to Z in R_1 . Let P_i, N_i, M_i be the paths from x to x_i , from y to y_i , and from z to z_i , respectively, for $i = 1, 2, \ldots, s$. Note that if $y = y_i$ for some $i \in \{1, 2, \ldots, s\}$, we regard N_i as the vertex y. Since $EFH[V(L_{i+3}) \cup V(R_{i+3})]$ is connected, there exists a tree $\overline{T}_i \cup P_i \cup N_i \cup M_i \cup x_i \bar{x}_i \cup y_i \bar{y}_i \cup z_i z'_i$ for $i = 1, 2, \ldots, s$. Since $EFH[V(R_2) \cup V(R_3) \cup V(L_3)]$ is connected, there exists a tree \overline{T}_{s+1} ontaining z', \bar{x}, y' in $EFH[V(R_2) \cup V(R_3) \cup V(L_3)]$. Take $T_{s+1} = \overline{T}_{s+1} \cup x \bar{x} \cup yy' \cup zz'$. Then, $T_1, T_2, \ldots, T_{s+1}$ are s + 1 internally edge disjoint S-trees. Thus, $\kappa_3(EFH) \ge s + 1$.

By symmetry and $t \ge s$, if $x \in V(R_i)$, $y \in V(R_j)$, $z \in V(L_k)$ for some $i, j \in \{1, 2, ..., 2^s\}$ with $i \ne j$ and some $k \in \{1, 2, ..., 2^t\}$, we can also obtain $\kappa_3(EFH) \ge s + 1$.

Case 4. $x \in V(L_i), y \in V(L_i)$, and $z \in V(L_k)$ for some $i, j, k \in \{1, 2, ..., 2^t\}$ with $i \neq j \neq k$.

Let $x \in V(L_1)$, $y \in V(L_2)$, and $z \in V(L_3)$ (Figure 10). Without loss of generality, suppose $\bar{x}, \bar{y}, \bar{z} \in V(R_1) \cup V(R_2) \cup V(R_3)$. Choose $x_i \in V(L_1) \setminus \{x\}$, $y_i \in V(L_2) \setminus \{y\}$, $z_i \in V(L_3) \setminus \{z\}$, such that $\bar{x}_i, \bar{y}_i, \bar{z}_i \in V(R_{i+3})$ for i = 1, 2, ..., s. Let $X = \{x_1, x_2, ..., x_s\}$, $Y = \{y_1, y_2, ..., y_s\}$ and $Z = \{z_1, z_2, ..., z_s\}$. By Lemma 6, there exist *s* paths $P_1, P_2, ..., P_s$ from *x* to *X* in L_1 , *s* paths $N_1, N_2, ..., N_s$ from *y* to *Y* in L_2 , *s* paths $M_1, M_2, ..., M_s$ from *z* to *Z* in L_3 . Let P_i, N_i, M_i be the paths from *x* to x_i , from *y* to y_i , and from *z* to z_i , respectively, for i = 1, 2, ..., s. Since $EFH[V(R_{i+3})]$ is connected, there exists a tree \overline{T}_i containing \bar{x}_i, \bar{y}_i and \bar{z}_i in $EFH[V(R_{i+3})]$ for i = 1, 2, ..., s. Take $T_i = \overline{T}_i \cup P_i \cup N_i \cup M_i \cup x_i \bar{x}_i \cup y_i \bar{y}_i \cup z_i \bar{z}_i$ for i = 1, 2, ..., s. Since $EFH[V(R_1) \cup V(R_2) \cup V(R_3) \cup V(L_4)]$ is connected, there exists a tree \overline{T}_{s+1} containing \bar{x}, \bar{y} and \bar{z} in $EFH[V(R_1) \cup V(R_2) \cup V(R_3) \cup V(L_4)]$. Take $T_{s+1} = \overline{T}_{s+1} \cup x \bar{x} \cup y \bar{y} \cup z \bar{z}$. Then, $T_1, T_2, ..., T_{s+1}$ are s + 1 internally edge disjoint *S*-trees. Thus, $\kappa_3(EFH) \ge s + 1$.

By symmetry and $t \ge s$, if $x \in V(R_i), y \in V(R_j), z \in V(R_k)$ for some $i, j, k \in \{1, 2, ..., 2^s\}$ with $i \ne j \ne k$, we can also obtain $\kappa_3(EFH) \ge s + 1$.

Figure 10. The illustration of Case 4.

We have completed the proof. \Box

4. Conclusions

The exchanged folded hypercube is a variant of the hypercube and denoted by EFH(s,t). It has many attractive properties to design interconnection networks. The generalized *k*-connectivity is an extension of the traditional connectivity. In this paper, we computed the generalized 3-connectivity of the exchanged folded hypercube. The study of the generalized *k*-connectivity of the exchanged folded hypercube for $k \ge 4$ is a meaningful and challenging problem.

Author Contributions: W.N.: writing—original draft; W.N. and H.L.: methodology, writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: The work is supported by the Natural Science Basic Research Program of Shaanxi (Program Nos. 2023-JC-YB-054, 2024JC-YBMS-034, and 2024JC-YBQN-0050) and the Fundamental Research Fund for the Central Universities (No. JB210716).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Bondy, J.A.; Murty, U.S.R. Graph Theory with Applications; Elsevier: New York, NY, USA, 1976.
- 2. Whitney, H. Congruent graphs and the connectivity of graphs and the connectivity of graphs. *Am. J. Math.* **1932**, *54*, 150–168. [CrossRef]
- 3. Chartrand, G.; Kapoor, S.F.; Lesniak, L.; Lick, D.R. Generalized connectivity in graphs. Bull. Bombay Math. Colloq. 1984, 2, 1-6.
- 4. Du, D.; Hu, X. Steiner Tree Problem in Computer Communication Networks; World Scientific: Singapore, 2008.
- 5. Sherwani, N.A. Algorithms for VLSI Physical Design Automation, 3rd ed.; Kluwer Academic Publication: London, UK, 1999.
- 6. Li, S.; Li, X. Note on the hardness of generalized connectivity. J. Comb. Optim. 2012, 24, 389–396. [CrossRef]
- 7. Wang, J. The generalized 3-connectivity of two kinds of regular networks. Theor. Comput. Sci. 2021, 893, 183–190. [CrossRef]
- Wei, C.; Hao, R.X.; Chang, J.M. Packing internally disjoint steiner trees to compute the κ₃-connectivity in augmented cubes. *J. Parallel Distrib. Comput.* 2021, 154, 42–53. [CrossRef]
- 9. Zhao, S.; Hao, R.; Wu, L. The generalized connectivity of (n,k)-bubble-sort graphs. Comput. J. 2019, 62, 1277–1283. [CrossRef]
- 10. Lin, S.W.; Zhang, Q.H. The generalized 4-connectivity of hypercubes. Discret. Appl. Math. 2017, 220, 60-67. [CrossRef]
- 11. Liu, H.Q.; Cheng, D.Q. The generalized 3-connectivity and 4-connectivity of crossed cube. *Discuss. Math. Graph Theory* 2024, 44, 791–811. [CrossRef]
- 12. Zhao, S.; Hao, R. The generalized 4-connectivity of exchanged hypercubes. Appl. Math. Comput. 2019, 347, 342–353. [CrossRef]
- Zhao, S.; Hao, R.; Wu, J. The generalized 4-connectivity of hierarchical cubic networks. *Discret. Appl. Math.* 2021, 289, 194–206. [CrossRef]
- 14. Amawy, A.E.; Latifi, S. Properties and performance of folded hypercubes. *IEEE Trans. Parallel Distrib. Syst.* **1991**, 2, 31–42. [CrossRef]
- 15. Lou, P.K.K.; Hsu, W.J.; Pan, Y. The exchanged hypercube. IEEE Trans. Parallel Distrib. Syst. 2005, 16, 866–874.
- 16. Qi, H.; Li, Y.; Li, K.Q.; Stojmenovic, M. An exchanged folded hypercube–based topology structure for interconnection networks. *Concurr. Comput. Pract. Exp.* **2015**, *27*, 4194–4210. [CrossRef]
- 17. Li, H.; Li, X.; Sun, Y. The generalized 3-connectivity of Cartesian product graphs. *Discrete Math. Theor. Comput. Sci.* 2012, 14, 43–54. [CrossRef]
- 18. Li, S.S.; Li, X.L.; Zhou, W.L. Sharp bounds for the generalized connectivity $\kappa_3(G)$. Discret. Math. 2010, 310, 2147–2163. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.