The Generalized 3-Connectivity of Exchanged Folded Hypercubes

Wantao Ning ${ }^{1, *(\mathbb{D}}$ and Hao Li ${ }^{2}$
1 School of Mathematics and Statistics, Xidian University, Xi'an 710071, China
2 Laboratoire Interdisciplinaire des Sciences du Numérique, UMR9015 CNRS-Université Paris-Saclay, 1 Rue Raimond Castaing, 91190 Gif-sur-Yvette, France; li@lri.fr
* Correspondence: wtning@xidian.edu.cn

check for updates

Citation: Ning, W.; Li, H. The Generalized 3-Connectivity of Exchanged Folded Hypercubes. Axioms 2024, 13, 194. https:// doi.org/10.3390/axioms13030194

Academic Editor: Fabio Caldarola
Received: 29 January 2024
Revised: 10 March 2024
Accepted: 13 March 2024
Published: 14 March 2024

[^0]
Abstract

For $S \subseteq V(G), \kappa_{G}(S)$ denotes the maximum number k of edge disjoint trees $T_{1}, T_{2}, \ldots, T_{k}$ in G, such that $V\left(T_{i}\right) \cap V\left(T_{j}\right)=S$ for any $i, j \in\{1,2, \ldots, k\}$ and $i \neq j$. For an integer $2 \leq r \leq|V(G)|$, the generalized r-connectivity of G is defined as $\kappa_{r}(G)=\min \left\{\kappa_{G}(S) \mid S \subseteq V(G)\right.$ and $\left.|S|=r\right\}$. In fact, $\kappa_{2}(G)$ is the traditional connectivity of G. Hence, the generalized r-connectivity is an extension of traditional connectivity. The exchanged folded hypercube $E F H(s, t)$, in which $s \geq 1$ and $t \geq 1$ are positive integers, is a variant of the hypercube. In this paper, we find that $\kappa_{3}(E F H(s, t))=s+1$ with $3 \leq s \leq t$.

Keywords: exchanged folded hypercubes; generalized 3-connectivity; fault tolerance; interconnection networks

MSC: 05C40; 68R10

1. Introduction

An interconnection network is usually modeled as a simple graph $G=(V(G), E(G))$, in which $V(G)$ represents the set of processors and $E(G)$ represents the set of links. For $v \in V(G), N(v)$ is the neighborhood of v in $G . d(v)=|N(v)|$ is the degree of v in G. The minimum degree of G is defined as $\delta(G)=\min \{d(v) \mid v \in V(G)\}$. For two graphs G_{1} and $G_{2}, G_{1} \cong G_{2}$ means that they are isomorphic. Let $S \subseteq V(G)$. The subgraph of G, whose vertex set is S and whose edge set is the set of those edges of G that have both ends in S, is called the subgraph of G induced by S and is denoted by $G[S]$. We say that $G[S]$ is an induced subgraph of $G . G-S$ means the induced subgraph $G[V(G) \backslash S]$, where $V(G) \backslash S$ represents the vertex set obtained from $V(G)$ by deleting the vertices in S. Let $V \subseteq V(G) \backslash\{v\}$. The (v, V) paths is a family of internally disjoint paths whose starting vertex is v and terminal vertices are distinct in V, which is called a fan from v to V. For other terminologies and notations, please refer to [1].

Connectivity is a basic and important metric in measuring the reliability and fault tolerance of networks. A cut set S of G is a vertex set of G, such that $G-S$ is disconnected or it is only one vertex. $\kappa(G)=\min \{|S| \mid S$ is a cut set of $G\}$, which is the connectivity of G. In [2], Whitney proposed an equivalent concept of connectivity. For each 2-subset $S=\{u, w\}$ of vertices of G, let $\kappa_{G}(S)$ be the maximum number of internally disjoint paths from u to w in G. Then, $\kappa(G)=\min \left\{\kappa_{G}(S) \mid S \subseteq V(G)\right.$ and $\left.|S|=2\right\}$. As an extension of connectivity, Chartrand et al. [3]showed the concept of generalized k-connectivity in 1984. Let $S \subseteq V(G)$. A tree T in G is called an S-tree if $S \subseteq V(T)$. The trees $T_{1}, T_{2}, \ldots, T_{r}$ are called internally edge disjoint S-trees if $V\left(T_{i}\right) \cap V\left(T_{j}\right)=S$ and $E\left(T_{i}\right) \cap E\left(T_{j}\right)=\varnothing$ for any distinct integers i, j with $1 \leq i, j \leq r . \kappa_{G}(S)$ refers to the maximum number of internally edge disjoint S-trees. For an integer k with $2 \leq k \leq|V(G)|, \kappa_{k}(G)=\min \left\{\kappa_{G}(S) \mid S \subseteq\right.$ $V(G)$ and $|S|=k\}$ is defined as the generalized k-connectivity of G.

In a graph G, an S-tree is also called an S-Steiner tree. Steiner trees have significant applications in computer networks [4]. Internally edge disjoint S-Steiner trees have been
applied to VLSI [5]. From the definition of generalized k-connectivity, we can see that the core of generalized k-connectivity is to seek the maximum number of internally edge disjoint S-Steiner trees. The generalized k-connectivity is an extension of traditional connectivity. It can more precisely measure the fault tolerance of networks. To decide whether there exist k internally edge disjoint S-Steiner trees is NP-complete for a graph [6]. The generalized 3connectivities of augmented cubes, (n, k)-bubble-sort graphs, and generalized hypercubes have been obtained in [7-9], respectively. The generalized 4-connectivities of hypercubes, crossed cubes, exchanged hypercubes, and hierarchical cubic networks have been obtained in [10-13], respectively. On the whole, the generalized k-connectivity is known for a small number of graphs and almost all known results are about $k=3$ or 4 .

The n-dimensional hypercube is denoted by Q_{n}, whose vertices are the ordered n tuples of 0 's and 1's. Two vertices are adjacent if and only if they differ in exactly one dimension. As variants of hypercubes Q_{n}, folded hypercubes $F Q_{n}$ and exchanged hypercubes $E H(s, t)$ were proposed in $[14,15]$, respectively. Based on $E H(s, t)$ and $F Q_{n}$, Qi et al. proposed an interconnection network named exchanged folded hypercube $E F H(s, t)$ in [16]. In this work, we will prove $\kappa_{3}(E F H(s, t))=s+1$ for $3 \leq s \leq t$.

2. Definitions and Lemmas

Exchanged hypercubes were defined by Lou et al. [15] as follows. Let $s \geq 1$ and $t \geq 1$ be positive integers. The exchanged hypercubes $E H(s, t)$ are defined as undirected graphs, whose vertex set V is

$$
V=\left\{a_{s} \cdots a_{1} b_{t} \cdots b_{1} c \mid a_{i}, b_{j}, c \in\{0,1\} \text { for } i \in[1, s], j \in[1, t]\right\}
$$

For $u, v \in V, u[0]$ means the c index of $u . u[i: j]$ is the indexes of u from dimension j to dimension $i . H(u[i: j], v[i: j])$ represents the number of different indexes at the same dimension between $u[i: j]$ and $v[i: j]$.

The edge set consists of three disjoint subsets E_{H}, E_{R} and E_{L}, where

$$
E_{H}=\{(u, v) \mid u[s+t: 1]=v[s+t: 1], u[0] \neq v[0]\},
$$

$$
\begin{aligned}
E_{R} & =\left\{(u, v) \mid u[s+t: t+1]=v_{2}[s+t: t+1], H(u[t: 1], v[t: 1])=1, u[0]=v[0]=1\right\}, \\
E_{L} & =\{(u, v) \mid u[t: 1]=v[t: 1], H(u[s+t: t+1], v[s+t: t+1])=1, u[0]=v[0]=0\},
\end{aligned}
$$

Figure 1 shows an example of $E H(1,2)$. Based on the concept of $E H(s, t)$, Qi et al. [16] put in a network called an exchanged folded hypercube EFH(s,t).EFH(s,t) and $E H(s, t)$ have the same vertex set. The edge set of $\operatorname{EFH}(s, t)$ consists of E_{H}, E_{R}, E_{L} and $E_{\text {comp }}$, where

$$
E_{\text {comp }}=\{(u, v) \mid H(u[s+t: 1], v[s+t: 1])=s+t, u[0] \neq v[0]\} .
$$

Figure 1. $E H(1,2)$.

The edges in $E_{\text {comp }}$ are called complementary edges of $E F H(s, t)$. From the two definitions, we know that $E F H(s, t)$ can be obtained from $E H(s, t)$ by adding extra 2^{s+t} edges. Figure 2 is an example of $E F H(1,2)$. From the definition, we can see that $|V(E F H(s, t))|=2^{s+t+1}$. For each vertex $v \in V(E F H(s, t)), d(v)=s+2$ or $t+2$. For simplicity, we always use $E F H$ instead of $E F H(s, t)$. The following results are useful.

Figure 2. $E F H(1,2)$
Lemma 1. ([16]) $E F H(t, s) \cong E F H(s, t)$.
From the lemma, we always assume $s \leq t$ from now on. Then, $\delta(E F H(s, t))=s+2$.
Lemma 2. ([1]) $\kappa\left(Q_{n}\right)=n$ for $n \geq 2$.
Lemma 3. ([17]) $\kappa_{3}\left(Q_{n}\right)=n-1$ for $n \geq 2$.

Lemma 4. ([18]) If there are two adjacent vertices of degree $\delta(G)$ in graph G, then $\kappa_{k}(G) \leq \delta(G)-1$ for $3 \leq k \leq|V(G)|$.

Lemma 5. ([1]) Let G be a k-connected graph, and let u and v be a pair of distinct vertices in G. Then, there exist k internally disjoint paths in G connecting u and v.

Lemma 6. (Fan lemma [1]) For a k-connected graph G, let $u \in V(G)$, and suppose $U \subseteq V(G) \backslash\{u\}$ and $|U| \geq k$. Then, there exists a k-fan in G from u to U, that is, there exists a family of k internally disjoint (u, U) paths whose terminal vertices are distinct in U.

In this work, we will prove the following result.
Theorem 1. $\kappa_{3}(E F H(s, t))=s+1$ for $3 \leq s \leq t$.

3. Proof of Theorem 1

We partition $E F H(s, t)$ into two subgraphs L, R and edges between them, in which for $u \in V(L)$ and $v \in V(R), u[0]=0$ and $v[0]=1$.

In $V(L)$, each collection of 2^{s} vertices u, with $u[t: 1]$ being identical, forms Q_{s} via the edges in E_{L}. We use L_{i} to denote these Q_{s} for $i=1,2, \ldots, 2^{t}$. Similarly, in $V(R)$, each collection of 2^{t} vertices v, with $v[s+t: t+1]$ being identical, forms Q_{t} via the edges in E_{R}. We use R_{j} to denote these Q_{t} for $j=1,2, \ldots, 2^{s}$.

Each vertex $x \in V(L)$ has two neighbors in $V(R)$. One is x^{\prime} with $x x^{\prime} \in E_{H}$. It is called the hypercube neighbor of x. The other is \bar{x} with $x \bar{x} \in E_{\text {comp }}$. It is called the complement neighbor of $x . x^{\prime}$ and \bar{x} are called outside neighbors of x. Similarly, for $y \in V(R), y^{\prime}$ and \bar{y}, the outside neighbors of y, are called the hypercube neighbor and the complement neighbor of y, respectively.

In the following, for each vertex x in a graph, we use x^{\prime} and \bar{x} to denote the hypercube neighbor and the complement neighbor of x, respectively.

Lemma 7. For Q_{n} and $\operatorname{EFH}(s, t)$, the following results hold.

1. Each $L_{i} \cong Q_{s}, R_{j} \cong Q_{t}$ and $\left|V\left(L_{i}\right)\right|=2^{s},\left|V\left(R_{j}\right)\right|=2^{t}$ for $i=1,2, \ldots, 2^{t}, j=1,2, \ldots, 2^{s}$.
2. There are no edges between any two distinct L_{i} and L_{k} for $i, k \in\left\{1,2, \ldots, 2^{t}\right\}$. Similarly, there are no edges between any two distinct R_{j} and R_{h} for $j, h \in\left\{1,2, \ldots, 2^{s}\right\}$.
3. For each vertex $x \in V(L), x^{\prime}$ and \bar{x} belong to distinct $V\left(R_{j}\right)$ and $V\left(R_{h}\right)$, where $j, h \in$ $\left\{1,2, \ldots, 2^{s}\right\}$. Similarly, for each vertex $w \in V(R), w^{\prime}$ and \bar{w} belong to distinct $V\left(L_{i}\right)$ and $V\left(L_{k}\right)$, where $i, k \in\left\{1,2, \ldots, 2^{t}\right\}$.
4. For two distinct vertices $x, y \in V\left(L_{i}\right)$ with $i \in\left\{1,2, \ldots, 2^{t}\right\}, x^{\prime}$ and y^{\prime} lie in distinct $V\left(R_{j}\right)$ and $V\left(R_{h}\right)$, where $j, h \in\left\{1,2, \ldots, 2^{s}\right\}, \bar{x}$ and \bar{y} lie in distinct $V\left(R_{i}\right)$ and $V\left(R_{k}\right)$, where $i, k \in$ $\left\{1,2, \ldots, 2^{s}\right\}$. Similar results hold for two distinct vertices $u, v \in V\left(R_{k}\right)$ for $k \in\left\{1,2, \ldots, 2^{s}\right\}$.
5. For two distinct vertices $x, y \in V\left(L_{i}\right)$ with $i \in\left\{1,2, \ldots, 2^{t}\right\}$, if $x^{\prime}, \bar{y} \in V\left(R_{j}\right)$ for some $j \in\left\{1,2, \ldots, 2^{s}\right\}$, then $\bar{x}, y^{\prime} \in V\left(R_{k}\right)$ for some $k \in\left\{1,2, \ldots, 2^{s}\right\}$ with $k \neq j$. A similar result holds for two distinct vertices $u, v \in V\left(R_{k}\right)$ for $k \in\left\{1,2, \ldots, 2^{s}\right\}$.

Proof. The first and second results are obvious. For two distinct vertices $x, y \in V\left(L_{i}\right)$ with $i \in\left\{1,2, \ldots, 2^{t}\right\}$, there exists at least one index m for which x and y differ. Let $x=a_{s} \cdots a_{m} \cdots a_{1} b_{t} \cdots b_{1} 0, y=a_{s}^{\prime} \cdots \bar{a}_{m} \cdots a_{1}^{\prime} b_{t} \cdots b_{1} 0$ in same $V\left(L_{i}\right)$ with some $m \in$ $\{1,2, \ldots, s\}$. Then, $x^{\prime}=a_{s} \cdots a_{m} \cdots a_{1} b_{t} \cdots b_{1} 1, \bar{x}=\bar{a}_{s} \cdots \bar{a}_{m} \cdots \bar{a}_{1} \bar{b}_{t} \cdots \bar{b}_{1} 1, y^{\prime}=a_{s}^{\prime} \cdots \bar{a}_{m}$ $\cdots a_{1}^{\prime} b_{t} \cdots b_{1} 1 . \bar{y}=\bar{a}_{s}^{\prime} \cdots a_{m} \cdots \bar{a}^{\prime}{ }_{1} \bar{b}_{t} \cdots \bar{b}_{1} 1$, where $\bar{a}_{i}=1-a_{i}, \bar{a}^{\prime}{ }_{i}=1-a_{i}^{\prime}, \bar{b}_{j}=1-b_{j}$ (Figure 3).
x^{\prime} and \bar{x} belong to distinct $V\left(R_{j}\right)$ and $V\left(R_{h}\right)$ where $j, h \in\left\{1,2, \ldots, 2^{s}\right\}$ since $a_{i} \neq \bar{a}_{i}$ for $i=1,2, \ldots, s$. Similarly, we can prove that, for any vertex $w \in V(R), w^{\prime}$ and \bar{w} belong to distinct $V\left(L_{i}\right)$ and $V\left(L_{k}\right)$, where $i, k \in\left\{1,2, \ldots, 2^{t}\right\}$. Hence, the third result holds.

Since $a_{m} \neq \bar{a}_{m}$ for some $m \in\{1,2, \ldots, s\}, x^{\prime}$ and y^{\prime} lie in different $V\left(R_{j}\right)$ and $V\left(R_{h}\right)$, where $j, h \in\left\{1,2, \ldots, 2^{s}\right\}, \bar{x}$ and \bar{y} lie in different $V\left(R_{i}\right)$ and $V\left(R_{k}\right)$, where $i, k \in$ $\left\{1,2, \ldots, 2^{s}\right\}$. We can prove that similar results for any distinct vertices $u, v \in V\left(R_{k}\right)$ for $k \in\left\{1,2, \ldots, 2^{s}\right\}$. Hence, the fourth result holds.

If $x^{\prime}, \bar{y} \in V\left(R_{j}\right)$ for some $j \in\left\{1,2, \ldots, 2^{s}\right\}$, then $a_{j}=\bar{a}^{\prime}{ }_{j}$ for $j=1, \ldots, m-1$, $m+1, \ldots, s$. Hence, $\bar{a}_{j}=a_{j}^{\prime}$ for $j=1, \ldots, m-1, m+1, \ldots, s$. This implies that $\bar{x}, y^{\prime} \in V\left(R_{k}\right)$ for some $k \in\left\{1,2, \ldots, 2^{s}\right\}$ with $k \neq j$. We can prove that a similar result for any distinct vertices $u, v \in V\left(R_{k}\right)$ for $k \in\left\{1,2, \ldots, 2^{s}\right\}$. Hence, the fifth result holds.

Figure 3. A partitioned sketch of $E F H(s, t)$.

Proof of Theorem 1. By Lemma 7, for any vertex $u \in V\left(L_{1}\right), d(u)=s+2$. Since $\delta(E F H(s, t))$ $=s+2, \kappa_{3}(E F H(s, t)) \leq s+1$ by Lemma 4 . In the following, we will prove $\kappa_{3}(E F H(s, t)) \geq$ $s+1$. Take any three distinct vertices x, y, and z in $E F H$ and let $S=\{x, y, z\}$. If we can prove that there are $s+1$ internally edge disjoint S-trees in $E F H$, we are done.

Case 1. $x, y, z \in V\left(L_{i}\right)$ for some $i \in\left\{1,2, \ldots, 2^{t}\right\}$.
Without loss of generality, let $x, y, z \in V\left(L_{1}\right)$. By Lemma 3, there exist $s-1$ internally edge disjoint S-trees $T_{1}, T_{2}, \ldots, T_{s-1}$ in L_{1}. Without loss of generality, suppose $x^{\prime} \in V\left(R_{1}\right), y^{\prime} \in V\left(R_{2}\right)$, and $z^{\prime} \in V\left(R_{3}\right)$ by Lemma 7(4).

If $\{\bar{x}, \bar{y}, \bar{z}\} \cap\left(V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{3}\right)\right)=\varnothing$, we can assume $\bar{x} \in V\left(R_{4}\right), \bar{y} \in V\left(R_{5}\right), \bar{z} \in$ $V\left(R_{6}\right)$. By Lemma 7(4), $E F H\left[V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{3}\right) \cup V\left(L_{2}\right)\right]$ is connected. Hence, there exists a tree \bar{T}_{s} containing x^{\prime}, y^{\prime}, and z^{\prime} in $E F H\left[V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{3}\right) \cup V\left(L_{2}\right)\right]$. Take $T_{s}=\bar{T}_{s} \cup x x^{\prime} \cup y y^{\prime} \cup z z^{\prime}$. Since $E F H\left[V\left(R_{4}\right) \cup V\left(R_{5}\right) \cup V\left(R_{6}\right) \cup V\left(L_{3}\right)\right]$ is connected, there exists a tree \bar{T}_{s+1} containing \bar{x}, \bar{y}, and \bar{z} in $E F H\left[V\left(R_{4}\right) \cup V\left(R_{5}\right) \cup V\left(R_{6}\right) \cup V\left(L_{3}\right)\right]$. Take $T_{s+1}=\bar{T}_{s+1} \cup x \bar{x} \cup y \bar{y} \cup z \bar{z}$. Then, $T_{1}, T_{2}, \ldots, T_{s+1}$ are $s+1$ internally edge disjoint S-trees. Thus, $\kappa_{3}(E F H) \geq s+1$.

If $\{\bar{x}, \bar{y}, \bar{z}\} \cap\left(V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{3}\right)\right) \neq \varnothing$, without loss of generality, noting that $\bar{x} \notin V\left(R_{1}\right)$ by Lemma 7(3), let $\bar{x} \in V\left(R_{2}\right)$. By Lemma 7(5), $\bar{y} \in V\left(R_{1}\right)$. By Lemma 7(3)(4), we can let $\bar{z} \in V\left(R_{4}\right)$. Since $E F H\left[V\left(R_{1}\right) \cup V\left(R_{3}\right) \cup V\left(L_{2}\right)\right]$ is connected, there exists a tree \bar{T}_{s} containing x^{\prime}, \bar{y}, and z^{\prime} in $E F H\left[V\left(R_{1}\right) \cup V\left(R_{3}\right) \cup V\left(L_{2}\right)\right]$. Take $T_{s}=\bar{T}_{s} \cup x x^{\prime} \cup y \bar{y} \cup z z^{\prime}$. Since $E F H\left[V\left(R_{2}\right) \cup V\left(R_{4}\right) \cup V\left(L_{3}\right)\right]$ is connected, there exists a tree \bar{T}_{s+1} containing \bar{x}, y^{\prime}, and \bar{z} in $E F H\left[V\left(R_{2}\right) \cup V\left(R_{4}\right) \cup V\left(L_{3}\right)\right]$. Take $T_{s+1}=\bar{T}_{s+1} \cup x \bar{x} \cup y y^{\prime} \cup z \bar{z}$. Then, $T_{1}, T_{2}, \ldots, T_{s+1}$ are $s+1$ internally edge disjoint S-trees. Thus, $\kappa_{3}(E F H) \geq s+1$.

By symmetry and $t \geq s$, if $x, y, z \in V\left(R_{j}\right)$ for some $j \in\left\{1,2, \ldots, 2^{s}\right\}$, we can also obtain $\kappa_{3}(E F H) \geq s+1$.

Case 2. $x, y \in V\left(L_{i}\right)$ for some $i \in\left\{1,2, \ldots, 2^{t}\right\} . z \in V\left(L_{j}\right)$ for some $j \in\left\{1,2, \ldots, 2^{t}\right\}$ and $i \neq j$ or $z \in V\left(R_{k}\right)$ for some $k \in\left\{1,2, \ldots, 2^{s}\right\}$.

Without loss of generality, we let $x, y \in V\left(L_{1}\right)$. By Lemmas 2 and 5, there exist s internally disjoint paths $P_{1}, P_{2}, \ldots, P_{s}$ from x to y in L_{1}. Let $x_{i} \in V\left(P_{i}\right)$, such that $x x_{i} \in E\left(P_{i}\right)$ for $i=1,2, \ldots, s$. In the following, we will show that for any two distinct vertices x_{i} and x_{j} with $i, j \in\{1,2, \ldots, s\}, x^{\prime}, x_{i}^{\prime}, x_{j}^{\prime}, \bar{x}, \bar{x}_{i}, \bar{x}_{j}$ lie in distinct $V\left(R_{k}\right)$ for $k \in\left\{1,2, \ldots, 2^{s}\right\}$. Without loss of generality, let $x=a_{s} \cdots a_{2} a_{1} b_{t} \cdots b_{1} 0, x_{i}=a_{s} \cdots a_{2} \bar{a}_{1} b_{t} \cdots b_{1} 0$, and $x_{j}=a_{s} \cdots \bar{a}_{2} a_{1} b_{t} \cdots b_{1} 0$. Then, $x^{\prime} \quad=\quad a_{s} \cdots a_{2} a_{1} b_{t} \cdots b_{1} 1, \quad \bar{x} \quad=\quad \bar{a}_{s} \cdots \bar{a}_{2} \bar{a}_{1} \bar{b}_{t} \cdots \bar{b}_{1} 1$, $x_{i}^{\prime}=a_{s} \cdots a_{2} \bar{a}_{1} b_{t} \cdots b_{1} 1, \quad \bar{x}_{i}=\bar{a}_{s} \cdots \bar{a}_{2} a_{1} \bar{b}_{t} \cdots \bar{b}_{1} 1, \quad x_{j}^{\prime}=a_{s} \cdots \bar{a}_{2} a_{1} b_{t}$ $\cdots b_{1} 1, \bar{x}_{j}=\bar{a}_{s} \cdots a_{2} \bar{a}_{1} \bar{b}_{t} \cdots \bar{b}_{1} 1$. By $s \geq 3$ and the definition of R_{k}, we can show that $x^{\prime}, x_{i}^{\prime}, x_{j}^{\prime}, \bar{x}, \bar{x}_{i}, \bar{x}_{j}$ lie in different $V\left(R_{k}\right)$ for $k \in\left\{1,2, \ldots, 2^{s}\right\}$, where $i, j \in\{1,2, \ldots, s\}$ and $i \neq j$. This implies that $x^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{s}^{\prime}, \bar{x}, \bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{s}$ lie in distinct $V\left(R_{k}\right)$ for $k \in$ $\left\{1,2, \ldots, 2^{s}\right\}$.

Subcase 2.1. $z \in V\left(R_{k}\right)$ for some $k \in\left\{1,2, \ldots, 2^{s}\right\}$.
Let $z \in V\left(R_{1}\right)$. We know that $\left\{x^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{s}^{\prime}\right\} \cap V\left(R_{1}\right)=\varnothing$ or $\left\{\bar{x}, \bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{s}\right\} \cap$ $V\left(R_{1}\right)=\varnothing$. Without loss of generality, let $\left\{\bar{x}_{,}, \bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{s}\right\} \cap V\left(R_{1}\right)=\varnothing$. Suppose $\bar{x} \in V\left(R_{4}\right)$ and $\bar{x}_{i} \in V\left(R_{i+4}\right)$ for $i=1,2, \ldots, s$.

Subcase 2.1.1. $y=x_{i}$ for some $i \in\{1,2, \ldots, s\}$.
Without loss of generality, let $y=x_{s}$. Then, $y^{\prime} \notin V\left(R_{i+4}\right)$ for $i=0,1,2, \ldots, s$ by the above discussion. We can let $y^{\prime} \in V\left(R_{1}\right)$ or $y^{\prime} \in V\left(R_{2}\right)$.

First, we consider $y^{\prime} \in V\left(R_{2}\right)$ (Figure 4). By Lemma 7(3), $z^{\prime} \notin V\left(L_{1}\right)$ or $\bar{z} \notin V\left(L_{1}\right)$. Without loss of generality, let $\bar{z} \notin V\left(L_{1}\right)$. Suppose $\bar{z} \in V\left(L_{2}\right)$. Take s vertices $z_{1}, z_{2}, \ldots, z_{s}$
in $V\left(R_{1}\right)$, such that $\bar{z}_{i} \in V\left(L_{i+4}\right)$ for $i=1,2, \ldots, s$. Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{s}\right\}$. By Lemma 6, there exist s internally disjoint paths $M_{1}, M_{2}, \ldots, M_{s}$ from z to Z in R_{1}. Let M_{i} be the path from z to z_{i} for $i=1,2, \ldots, s$. Since $\operatorname{EFH}\left[V\left(L_{i+4}\right) \cup V\left(R_{i+4}\right)\right]$ is connected, there exists a tree \bar{T}_{i} containing \bar{x}_{i} and \bar{z}_{i} in $E F H\left[V\left(L_{i+4}\right) \cup V\left(R_{i+4}\right)\right]$ for $i=1,2, \ldots$, s. Take $T_{i}=\bar{T}_{i} \cup P_{i} \cup M_{i} \cup x_{i} \bar{x}_{i} \cup z_{i} \bar{z}_{i}$ for $i=1,2, \ldots, s$. Since $E F H\left[V\left(L_{2}\right) \cup V\left(R_{2}\right) \cup V\left(R_{4}\right)\right]$ is connected, there exists a tree \bar{T}_{s+1} containing \bar{z}, y^{\prime}, and \bar{x} in $E F H\left[V\left(L_{2}\right) \cup V\left(R_{2}\right) \cup V\left(R_{4}\right)\right]$. Take $T_{s+1}=\bar{T}_{s+1} \cup x \bar{x} \cup z \bar{z} \cup y y^{\prime}$. Then, $T_{1}, T_{2}, \ldots, T_{s+1}$ are $s+1$ internally edge disjoint S-trees. Thus, $\kappa_{3}(E F H) \geq s+1$.

Now, we consider $y^{\prime} \in V\left(R_{1}\right)$.
If $y^{\prime}=z$, then $\bar{z} \notin V\left(L_{1}\right)$. Let $\bar{z} \in V\left(L_{2}\right)$. Taking $T_{1}, T_{2}, \ldots, T_{s}$ to be the same as above, since $E F H\left[V\left(L_{2}\right) \cup V\left(R_{4}\right)\right]$ is connected, there exists a tree \bar{T}_{s+1} containing \bar{z} and \bar{x} in $E F H\left[V\left(L_{2}\right) \cup V\left(R_{4}\right)\right]$. Take $T_{s+1}=\bar{T}_{s+1} \cup x \bar{x} \cup y z \bar{z}$. Then, $T_{1}, T_{2}, \ldots, T_{s+1}$ are $s+1$ internally edge disjoint S-trees. Thus, $\kappa_{3}(E F H) \geq s+1$.

Let $y^{\prime} \neq z$ (Figure 5). By Lemma 7(4), $z^{\prime} \notin V\left(L_{1}\right)$. Suppose $z^{\prime} \in V\left(L_{2}\right)$. Take $s-1$ vertices $z_{1}, z_{2}, \ldots, z_{s-1}$ in $V\left(R_{1}\right)$, such that $\bar{z}_{i} \in V\left(L_{i+4}\right)$ for $i=1,2, \ldots, s-1$. Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{s-1}, y^{\prime}\right\}$. By Lemma 6, there exist s internally disjoint paths $M_{1}, M_{2}, \ldots, M_{s}$ from z to Z in R_{1}. Let M_{i} be the path from z to z_{i} for $i=1,2, \ldots, s-1$ and M_{s} be the path from z to y^{\prime}. Since $E F H\left[V\left(L_{i+4}\right) \cup V\left(R_{i+4}\right)\right]$ is connected, there exists a tree \bar{T}_{i} containing \bar{x}_{i} and \bar{z}_{i} in $E F H\left[V\left(L_{i+4}\right) \cup V\left(R_{i+4}\right)\right]$ for $i=1,2, \ldots, s-1$. Take $T_{i}=\bar{T}_{i} \cup P_{i} \cup M_{i} \cup x_{i} \bar{x}_{i} \cup z_{i} \bar{z}_{i}$ for $i=1,2, \ldots, s-1$. Noting that $y=x_{s}$, then $\bar{y} \in V\left(R_{s+4}\right)$. Since EFH[V(L2) $\left.\cup V\left(R_{s+4}\right) \cup V\left(R_{4}\right)\right]$ is connected, there exists a tree \bar{T}_{s} containing z^{\prime}, \bar{y} and \bar{x} in $E F H\left[V\left(L_{2}\right) \cup V\left(R_{s+4}\right) \cup V\left(R_{4}\right)\right]$. Take $T_{s}=\bar{T}_{s} \cup z z^{\prime} \cup y \bar{y} \cup x \bar{x}$ and $T_{s+1}=P_{s} \cup y y^{\prime} \cup M_{s}$. Then, $T_{1}, T_{2}, \ldots, T_{s+1}$ are $s+1$ internally edge disjoint S-trees. Thus, $\kappa_{3}(E F H) \geq s+1$.

Figure 4. The illustration of Subcase 2.1.1 (I).

Figure 5. The illustration of Subcase 2.1.1 (II).

Subcase 2.1.2. $y \neq x_{i}$ for each $i=1,2, \ldots, s$.
By Lemma 7(4), we can show $\bar{y} \notin V\left(R_{i+4}\right)$ for $i=0,1, \ldots, s$. Without loss of generality, let $\bar{y} \in V\left(R_{1}\right) \cup V\left(R_{2}\right)$.

First, we let $\bar{y} \in V\left(R_{2}\right)$. By Lemma $7(3), z^{\prime} \notin V\left(L_{1}\right)$ or $\bar{z} \notin V\left(L_{1}\right)$. Without loss of generality, let $\bar{z} \notin V\left(L_{1}\right)$. Suppose $\bar{z} \in V\left(L_{2}\right)$. Take s vertices $z_{1}, z_{2}, \ldots, z_{s}$ in $V\left(R_{1}\right)$, such that $\bar{z}_{i} \in V\left(L_{i+4}\right)$ for $i=1,2, \ldots, s$. Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{s}\right\}$. By Lemma 6, there exist s internally disjoint paths $M_{1}, M_{2}, \ldots, M_{s}$ from z to Z in R_{1}. Let M_{i} be the path from z to z_{i} for $i=1,2, \ldots$ s. Since $E F H\left[V\left(L_{i+4}\right) \cup V\left(R_{i+4}\right)\right]$ is connected, there exists a tree \bar{T}_{i} containing \bar{x}_{i} and \bar{z}_{i} in $E F H\left[V\left(L_{i+4}\right) \cup V\left(R_{i+4}\right)\right]$ for $i=1,2, \ldots, s$. Take $T_{i}=\bar{T}_{i} \cup P_{i} \cup M_{i} \cup x_{i} \bar{x}_{i} \cup z_{i} \bar{z}_{i}$ for $i=1,2, \ldots, s$. Since $\operatorname{EFH}\left[V\left(L_{2}\right) \cup V\left(R_{2}\right) \cup V\left(R_{4}\right)\right]$ is connected, there exists a tree \bar{T}_{s+1} containing \bar{z}, \bar{y} and \bar{x} in $E F H\left[V\left(L_{2}\right) \cup V\left(R_{2}\right) \cup V\left(R_{4}\right)\right]$. Take $T_{s+1}=\bar{T}_{s+1} \cup x \bar{x} \cup z \bar{z} \cup y \bar{y}$. Then, $T_{1}, T_{2}, \ldots, T_{s+1}$ are $s+1$ internally edge disjoint S-trees. Thus, $\kappa_{3}(E F H) \geq s+1$.

Now, we let $\bar{y} \in V\left(R_{1}\right)$.
If $\bar{y}=z$, then $z^{\prime} \notin V\left(L_{1}\right)$. We can let $z^{\prime} \in V\left(L_{2}\right)$. Taking $T_{1}, T_{2}, \ldots, T_{s}$ to be the same as above, since $E F H\left[V\left(L_{2}\right) \cup V\left(R_{4}\right)\right]$ is connected, there exists a tree \bar{T}_{s+1} containing \bar{x} and z^{\prime} in $E F H\left[V\left(L_{2}\right) \cup V\left(R_{4}\right)\right]$. Take $T_{s+1}=\bar{T}_{s+1} \cup x \bar{x} \cup y z z^{\prime}$. Then, $T_{1}, T_{2}, \ldots, T_{s+1}$ are $s+1$ internally edge disjoint S-trees. Thus, $\kappa_{3}(E F H) \geq s+1$.

If $\bar{y} \neq z$. By Lemma $7(3)$, suppose $\bar{y}^{\prime} \in V\left(L_{2}\right)$, where \bar{y}^{\prime} is the hypercube neighbor of \bar{y}. By Lemma $7(4), \bar{z} \notin V\left(L_{1}\right)$. Without loss of generality, let $\bar{z} \in V\left(L_{2}\right) \cup V\left(L_{3}\right)$. Take $s-1$ vertices $z_{1}, z_{2}, \ldots, z_{s-1}$ in $V\left(R_{1}\right)$, such that $\bar{z}_{i} \in V\left(L_{i+4}\right)$ for $i=1,2, \ldots, s-1$. Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{s-1}, \bar{y}\right\}$. By Lemma 6 , there exist s internally disjoint paths $M_{1}, M_{2}, \ldots, M_{s}$ from z to Z in R_{1}. Let M_{i} be the path from z to z_{i} for $i=1,2, \ldots, s-1$ and M_{s} be the path from z to \bar{y}. Since $\operatorname{EFH}\left[V\left(L_{i+4}\right) \cup V\left(R_{i+4}\right)\right]$ is connected, there exists a tree \bar{T}_{i} containing \bar{x}_{i} and \bar{z}_{i} in $E F H\left[V\left(L_{i+4}\right) \cup V\left(R_{i+4}\right)\right]$ for $i=1,2, \ldots, s-1$. Take $T_{i}=\bar{T}_{i} \cup P_{i} \cup M_{i} \cup x_{i} \bar{x}_{i} \cup z_{i} \bar{z}_{i}$ for $i=1,2, \ldots, s-1$. If $\bar{z} \in V\left(L_{3}\right)$ (Figure 6), noting that $\bar{x}_{s} \in V\left(R_{s+4}\right)$, since $E F H\left[V\left(L_{3}\right) \cup V\left(R_{s+4}\right)\right]$ is connected, there exists a tree \bar{T}_{s} containing \bar{z} and \bar{x}_{s} in $E F H\left[V\left(L_{3}\right) \cup V\left(R_{s+4}\right)\right]$. Take $T_{s}=\bar{T}_{s} \cup P_{s} \cup x_{s} \bar{x}_{s} \cup z \bar{z}$. Since $E F H\left[V\left(L_{2}\right) \cup V\left(R_{4}\right)\right]$ is connected, there exists a tree \bar{T}_{s+1} containing \bar{x} and \bar{y}^{\prime} in $E F H\left[V\left(L_{2}\right) \cup V\left(R_{4}\right)\right]$. Take $T_{s+1}=\bar{T}_{s+1} \cup x \bar{x} \cup y \bar{y} \bar{y}^{\prime} \cup M_{s}$. Then, $T_{1}, T_{2}, \ldots, T_{s+1}$ are $s+1$ internally edge disjoint S trees. If $\bar{z} \in V\left(L_{2}\right)$ (Figure 7), since $\bar{y} \neq z$, then $\bar{y}^{\prime} \neq \bar{z}$ by Lemma 7(3). Since $L_{2} \cong Q_{s}$, we can partition L_{2} into L_{21} and L_{22}, such that $L_{21} \cong Q_{s-1}, L_{22} \cong Q_{s-1}$ and $\bar{y}^{\prime} \in V\left(L_{21}\right), \bar{z} \in V\left(L_{22}\right)$. In L_{21}, there exists a spanning tree T_{21} containing \bar{y}^{\prime}. Since $\left|V\left(T_{21}\right)\right|=\left|V\left(L_{21}\right)\right|=2^{s-1} \geq$ $s+1$ for $s \geq 3$, there exists a vertex $u \in V\left(L_{21}\right)$, such that $u^{\prime} \notin V\left(R_{1}\right) \cup V\left(R_{i+4}\right)$ for $i=1, \ldots, s$ by Lemma $7(4)$. Let $u^{\prime} \in V\left(R_{2}\right) \cup V\left(R_{4}\right)$. Similarly, there exists a spanning tree T_{22} containing \bar{z} in L_{22}. Since $\left|V\left(T_{22}\right)\right|=\left|V\left(L_{22}\right)\right|=2^{s-1} \geq s+1$ for $s \geq 3$, there exists a vertex $v \in V\left(L_{22}\right)$, such that $v^{\prime} \notin V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{i+4}\right)$ for $i=0,1, \ldots, s-1$ by Lemma $7(4)$. Let $v^{\prime} \in V\left(R_{3}\right) \cup V\left(R_{s+4}\right)$. Since $E F H\left[V\left(R_{2}\right) \cup V\left(R_{4}\right) \cup V\left(L_{3}\right)\right]$ is connected, there exists a tree \bar{T}_{s} containing u^{\prime} and \bar{x}. Take $T_{s}=\bar{T}_{s} \cup x \bar{x} \cup T_{21} \cup u u^{\prime} \cup y \bar{y} \bar{y}^{\prime} \cup M_{s}$. Since $E F H\left[V\left(R_{3}\right) \cup V\left(R_{s+4}\right) \cup V\left(L_{4}\right)\right]$ is connected, there exists a tree \bar{T}_{s+1} containing v^{\prime} and \bar{x}_{s}. Take $T_{s+1}=\bar{T}_{s+1} \cup v v^{\prime} \cup T_{22} \cup z \bar{z} \cup P_{s} \cup x_{s} \bar{x}_{s}$. Then, $T_{1}, T_{2}, \ldots, T_{s+1}$ are $s+1$ internally edge disjoint S-trees. Thus, $\kappa_{3}(E F H) \geq s+1$.

By symmetry and $t \geq s$, if $x, y \in V\left(R_{i}\right), z \in V\left(L_{j}\right)$ for some $i \in\left\{1,2, \ldots, 2^{s}\right\}$ and some $j \in\left\{1,2, \ldots, 2^{t}\right\}$, we can also obtain $\kappa_{3}(E F H) \geq s+1$.

Subcase 2.2. $z \in V\left(L_{j}\right)$ for some $j \in\left\{2, \ldots, 2^{t}\right\}$.
Without loss of generality, we let $z \in V\left(L_{2}\right)$ (Figure 8), and suppose $\bar{x} \in V\left(R_{3}\right), \bar{x}_{i} \in$ $V\left(R_{i+3}\right), x^{\prime} \in V\left(R_{s+4}\right), x_{i}^{\prime} \in V\left(R_{s+i+4}\right)$ for $i=1,2, \ldots, s$. Then, $z^{\prime} \notin V\left(R_{i+3}\right)$ or $\bar{z} \notin$ $V\left(R_{i+3}\right)$ or $z^{\prime} \notin V\left(R_{s+i+4}\right)$ or $\bar{z} \notin V\left(R_{s+i+4}\right)$ for $i=0,1, \ldots, s$. Without loss of generality, let $\bar{z} \notin V\left(R_{i+3}\right)$ for $i=0,1, \ldots, s$. Suppose $\bar{z} \in V\left(R_{2}\right)$. If $y=x_{i}$ for some $i \in\{1,2, \ldots, s\}$, then $\bar{y}=\bar{x}_{i}$ for some $i \in\{1,2, \ldots, s\}$. Then, $y^{\prime} \notin V\left(R_{i+3}\right)$ for $i=0,1, \ldots, s$. If $y \neq x_{i}$ for each $i=1,2, \ldots, s$, then $\bar{y} \notin V\left(R_{i+3}\right)$ for $i=0,1, \ldots, s$ by Lemma 7(4). Without loss of generality, let $\bar{y} \notin V\left(R_{i+3}\right)$ for $i=0,1, \ldots$, suppose $\bar{y} \in V\left(R_{1}\right) \cup V\left(R_{2}\right)$.

Choose s vertices $z_{1}, z_{2}, \ldots, z_{s}$ in $V\left(L_{2}\right)$, such that $\bar{z}_{i} \in V\left(R_{i+3}\right)$ for $i=1,2, \ldots, s$. Denote $Z=\left\{z_{1}, z_{2}, \ldots, z_{s}\right\}$. By Lemma 6 , there exist s internally disjoint paths $M_{1}, M_{2}, \ldots, M_{s}$ from z to Z in L_{2}. Let M_{i} be the path from z to z_{i} for $i=1,2, \ldots, s$. Since R_{i+3} is connected, there exists a tree \bar{T}_{i} containing \bar{x}_{i} and \bar{z}_{i} in R_{i+3} for $i=1,2, \ldots, s$. Take $T_{i}=\bar{T}_{i} \cup P_{i} \cup M_{i} \cup$ $x_{i} \bar{x}_{i} \cup z_{i} \bar{z}_{i}$ for $i=1,2, \ldots, s$. Since $E F H\left[V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{3}\right) \cup V\left(L_{3}\right)\right]$ is connected, there exists a tree \bar{T}_{s+1} containing \bar{x}, \bar{y} and \bar{z} in $\operatorname{EFH}\left[V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{3}\right) \cup V\left(L_{3}\right)\right]$. Take $T_{s+1}=\bar{T}_{s+1} \cup x \bar{x} \cup y \bar{y} \cup z \bar{z}$. Then, $T_{1}, T_{2}, \ldots, T_{s+1}$ are $s+1$ internally edge disjoint S-trees. Thus, $\kappa_{3}(E F H) \geq s+1$.

By symmetry and $t \geq s$, if $x, y \in V\left(R_{i}\right), z \in V\left(R_{j}\right)$ for some $i, j \in\left\{1,2, \ldots, 2^{s}\right\}$ and $i \neq j$, we can also obtain $\kappa_{3}(E F H) \geq s+1$.

Figure 6. The illustration of Subcase 2.1.2 (I).

Figure 7. The illustration of Subcase 2.1.2 (II).

Figure 8. The illustration of Subcase 2.2.
Case 3. $x \in V\left(L_{i}\right), y \in V\left(L_{j}\right)$, and $z \in V\left(R_{k}\right)$ for some $i, j \in\left\{1,2, \ldots, 2^{t}\right\}$ with $i \neq j$ and some $k \in\left\{1,2, \ldots, 2^{s}\right\}$.

Without loss of generality, let $x \in V\left(L_{1}\right), y \in V\left(L_{2}\right), z \in V\left(R_{1}\right)$.
Subcase 3.1. $z^{\prime}, \bar{z} \in V\left(L_{1}\right) \cup V\left(L_{2}\right)$.
By Lemma 7(3), without loss of generality, let $\bar{z} \in V\left(L_{1}\right), z^{\prime} \in V\left(L_{2}\right)$.
We first consider $\bar{z}=x$ or $z^{\prime}=y$. Without loss of generality, let $\bar{z}=x$. By Lemma 7(3), we can let $x^{\prime} \in V\left(R_{2}\right)$ and $y^{\prime} \notin V\left(R_{1}\right)$ or $\bar{y} \notin V\left(R_{1}\right)$. Suppose $\bar{y} \notin V\left(R_{1}\right)$. Then, put $\bar{y} \in V\left(R_{2}\right) \cup V\left(R_{3}\right)$. Choose $x_{1}, x_{2}, \ldots, x_{s}$ in $V\left(L_{1}\right) \backslash\{x\}$, such that $\bar{x}_{i} \in V\left(R_{i+3}\right)$ for $i=1,2, \ldots$ s. Denote $X=\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$. Choose $y_{1}, y_{2}, \ldots, y_{s}$ in $V\left(L_{2}\right) \backslash\{y\}$, such that $\bar{y}_{i} \in V\left(R_{i+3}\right)$ for $i=1,2, \ldots, s$. Denote $Y=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$. Choose $z_{1}, z_{2}, \ldots, z_{s}$ in $V\left(R_{1}\right) \backslash\{z\}$, such that $\bar{z}_{i} \in V\left(L_{i+3}\right)$ for $i=1,2, \ldots, s$. Denote $Z=\left\{z_{1}, z_{2}, \ldots, z_{s}\right\}$. By Lemma 6, there exist s paths $P_{1}, P_{2}, \ldots, P_{s}$ from x to X in L_{1}, s paths $N_{1}, N_{2}, \ldots, N_{s}$ from y to Y in L_{2}, s paths $M_{1}, M_{2}, \ldots, M_{s}$ from z to Z in R_{1}. Let P_{i}, N_{i}, M_{i} be the paths from x to x_{i}, from y to y_{i}, and from z to z_{i}, respectively, for $i=1,2, \ldots$, s. Since $E F H\left[V\left(L_{i+3}\right) \cup V\left(R_{i+3}\right)\right]$ is connected, there exists a tree \bar{T}_{i} containing \bar{x}_{i}, \bar{y}_{i}, and \bar{z}_{i} in $E F H\left[V\left(L_{i+3}\right) \cup V\left(R_{i+3}\right)\right]$ for $i=1,2, \ldots, s$. Take $T_{i}=\bar{T}_{i} \cup P_{i} \cup N_{i} \cup M_{i} \cup x_{i} \bar{x}_{i} \cup y_{i} \bar{y}_{i} \cup z_{i} \bar{z}_{i}$ for $i=1,2, \ldots, s$. Since $E F H\left[V\left(R_{2}\right) \cup V\left(R_{3}\right) \cup V\left(L_{3}\right)\right]$ is connected, there exists a tree \bar{T}_{s+1} containing x^{\prime}, \bar{y} in $E F H\left[V\left(R_{2}\right) \cup V\left(R_{3}\right) \cup V\left(L_{3}\right)\right]$. Take $T_{s+1}=\bar{T}_{s+1} \cup y \bar{y} \cup x x^{\prime} \cup x z$. Then, $T_{1}, T_{2}, \ldots, T_{s+1}$ are $s+1$ internally edge disjoint S-trees. Thus, $\kappa_{3}(E F H) \geq s+1$.

Now, we consider $\bar{z} \neq x$ and $z^{\prime} \neq y$ (Figure 9). Since $L_{1} \cong Q_{s}$ and $L_{2} \cong Q_{s}$, we can partition L_{1} into L_{11} and L_{12}, such that $L_{11} \cong Q_{s-1}, L_{12} \cong Q_{s-1}$ and $\bar{z} \in V\left(L_{11}\right)$, $x \in V\left(L_{12}\right)$. Similarly, we partition L_{2} into L_{21} and L_{22}, such that $L_{21} \cong Q_{s-1}, L_{22} \cong Q_{s-1}$ and $z^{\prime} \in V\left(L_{21}\right), y \in V\left(L_{22}\right)$. By Lemma 7(4), we can let $\bar{x} \in V\left(R_{2}\right)$ and $y^{\prime} \in V\left(R_{2}\right) \cup$ $V\left(R_{3}\right)$. Choose $x_{1}, x_{2}, \ldots, x_{s-1}$ in $V\left(L_{12}\right) \backslash\{x\}$ such that $\bar{x}_{i} \notin V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{3}\right)$ for $i=1,2, \ldots, s-1$. This can be performed since $2^{s-1}-1 \geq 3$ with $s \geq 3$. Let $\bar{x}_{i} \in V\left(R_{i+3}\right)$ for $i=1,2, \ldots, s-1$. Denote $X=\left\{x_{1}, x_{2}, \ldots, x_{s-1}\right\}$. Choose $y_{1}, y_{2}, \ldots, y_{s-1}$ in $V\left(L_{22}\right) \backslash\{y\}$, such that $y_{i}^{\prime} \notin V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{3}\right)$ for $i=1,2, \ldots, s-1$. Without loss of generality, for simplicity of description, we can let $y_{1}^{\prime} \in V\left(R_{4}\right)$ and $y_{i}^{\prime} \in V\left(R_{s+i+1}\right)$ for $i=2, \ldots, s-1$. Note that $\bar{x}_{1} \in V\left(R_{4}\right)$ and $\bar{x}_{i} \in V\left(R_{i+3}\right)$ for $i=2, \ldots, s-1$. Denote $Y=\left\{y_{1}, y_{2}, \ldots, y_{s-1}\right\}$. Choose $z_{1}, z_{2}, \ldots, z_{s} \in V\left(R_{1}\right) \backslash\{z\}$ such that $\bar{z}_{i} \in V\left(L_{i+3}\right)$ for $i=1,2, \ldots, s$. Denote $Z=\left\{z_{1}, z_{2}, \ldots, z_{s}\right\}$. By Lemma 6 and $\kappa\left(L_{12}\right)=\kappa\left(L_{22}\right)=s-1, \kappa\left(R_{1}\right)=s$, there exist
$s-1$ paths $P_{1}, P_{2}, \ldots, P_{s-1}$ from x to X in $L_{12}, s-1$ paths $N_{1}, N_{2}, \ldots, N_{s-1}$ from y to Y in L_{22}, s paths $M_{1}, M_{2}, \ldots, M_{s}$ from z to Z in R_{1}. Let P_{i}, N_{i}, M_{i} be the paths from x to x_{i}, from y to y_{i}, and from z to z_{i}, respectively, for $i=1,2, \ldots, s-1$ and M_{s} be the path from z to z_{s}. Since $E F H\left[V\left(R_{4}\right) \cup V\left(L_{4}\right)\right]$ is connected, there exists a tree \bar{T}_{1} containing $\bar{x}_{1}, y_{1}^{\prime}$ and \bar{z}_{1} in $E F H\left[V\left(R_{4}\right) \cup V\left(L_{4}\right)\right]$. Take $T_{1}=\bar{T}_{1} \cup P_{1} \cup N_{1} \cup M_{1} \cup x_{1} \bar{x}_{1} \cup y_{1} y_{1}^{\prime} \cup z_{1} \bar{z}_{1}$. Since $E F H\left[V\left(R_{i+3}\right) \cup V\left(R_{s+i+1}\right) \cup V\left(L_{i+3}\right)\right]$ is connected for $i=2,3, \ldots, s-1$, there exists a tree \bar{T}_{i} containing $\bar{x}_{i}, y_{i}^{\prime}$ and \bar{z}_{i} in $E F H\left[V\left(R_{i+3}\right) \cup V\left(R_{s+i+1}\right) \cup V\left(L_{i+3}\right)\right]$ for $i=2,3, \ldots, s-1$. Take $T_{i}=\bar{T}_{i} \cup P_{i} \cup N_{i} \cup M_{i} \cup x_{i} \bar{x}_{i} \cup y_{i} y_{i}^{\prime} \cup z_{i} \bar{z}_{i}$ for $i=2,3, \ldots, s-1$. Since $E F H\left[V\left(R_{2}\right) \cup\right.$ $\left.V\left(R_{3}\right) \cup V\left(L_{s+3}\right)\right]$ is connected, there exists a tree \bar{T}_{s} containing \bar{x}, y^{\prime} and \bar{z}_{s} in $E F H\left[V\left(R_{2}\right) \cup\right.$ $\left.V\left(R_{3}\right) \cup V\left(L_{s+3}\right)\right]$. Take $T_{s}=\bar{T}_{s} \cup M_{s} \cup x \bar{x} \cup y y^{\prime} \cup z_{s} \bar{z}_{s}$. Let u be the neighbor of x in $V\left(L_{11}\right)$ and v be the neighbor of y in $V\left(L_{21}\right)$. Suppose that T_{11} is a spanning tree of L_{11} and T_{21} is a spanning tree of L_{21}. Take $T_{s}=T_{11} \cup T_{21} \cup u x \cup v y \cup z \bar{z} \cup z z^{\prime}$. Then, $T_{1}, T_{2}, \ldots, T_{s+1}$ are $s+1$ internally edge disjoint S-trees. Thus, $\kappa_{3}(E F H) \geq s+1$.

Figure 9. The illustration of Subcase 3.1.

Subcase 3.2. $z^{\prime} \notin V\left(L_{1}\right) \cup V\left(L_{2}\right)$ or $\bar{z} \notin V\left(L_{1}\right) \cup V\left(L_{2}\right)$.
Without loss of generality, let $z^{\prime} \notin V\left(L_{1}\right) \cup V\left(L_{2}\right)$. Suppose $z^{\prime} \in V\left(L_{3}\right)$. By Lemma 7(3), $x^{\prime} \notin V\left(R_{1}\right)$ or $\bar{x} \notin V\left(R_{1}\right), y^{\prime} \notin V\left(R_{1}\right)$ or $\bar{y} \notin V\left(R_{1}\right)$. Without loss of generality, we can let $\bar{x} \in V\left(R_{2}\right), y^{\prime} \in V\left(R_{2}\right) \cup V\left(R_{3}\right)$. Choose $x_{1}, x_{2}, \ldots, x_{s} \in V\left(L_{1}\right) \backslash\{x\}$, such that $\bar{x}_{i} \notin V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{3}\right)$ for $i=1,2, \ldots, s$. Suppose $\bar{x}_{i} \in V\left(R_{i+3}\right)$ for $i=1,2, \ldots, s$. Denote $X=\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$. Choose $y_{1}, y_{2}, \ldots, y_{s} \in V\left(L_{2}\right)$, such that $\bar{y}_{i} \in V\left(R_{i+3}\right)$ for $i=1,2, \ldots, s$. Denote $Y=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$. Choose $z_{1}, z_{2}, \ldots, z_{s} \in V\left(R_{1}\right) \backslash\{z\}$, such that $z_{i}^{\prime} \in V\left(L_{i+3}\right)$ for $i=1,2, \ldots, s$. Denote $Z=\left\{z_{1}, z_{2}, \ldots, z_{s}\right\}$. By Lemma 6, there exist s paths $P_{1}, P_{2}, \ldots, P_{s}$ from x to X in L_{1}, s paths $N_{1}, N_{2}, \ldots, N_{s}$ from y to Y in L_{2},s paths $M_{1}, M_{2}, \ldots, M_{s}$ from z to Z in R_{1}. Let P_{i}, N_{i}, M_{i} be the paths from x to x_{i}, from y to y_{i}, and from z to z_{i}, respectively, for $i=1,2, \ldots, s$. Note that if $y=y_{i}$ for some $i \in\{1,2, \ldots, s\}$, we regard N_{i} as the vertex y. Since $E F H\left[V\left(L_{i+3}\right) \cup V\left(R_{i+3}\right)\right]$ is connected, there exists a tree \bar{T}_{i} containing \bar{x}_{i}, \bar{y}_{i} and z_{i}^{\prime} in $E F H\left[V\left(L_{i+3}\right) \cup V\left(R_{i+3}\right)\right]$ for $i=1,2, \ldots, s$. Take $T_{i}=\bar{T}_{i} \cup P_{i} \cup N_{i} \cup M_{i} \cup x_{i} \bar{x}_{i} \cup y_{i} \bar{y}_{i} \cup z_{i} z_{j}^{\prime}$ for $i=1,2, \ldots, s$. Since $E F H\left[V\left(R_{2}\right) \cup V\left(R_{3}\right) \cup V\left(L_{3}\right)\right]$ is connected, there exists a tree \bar{T}_{s+1} containing $z^{\prime}, \bar{x}, y^{\prime}$ in $E F H\left[V\left(R_{2}\right) \cup V\left(R_{3}\right) \cup V\left(L_{3}\right)\right]$. Take $T_{s+1}=\bar{T}_{s+1} \cup x \bar{x} \cup y y^{\prime} \cup z z^{\prime}$. Then, $T_{1}, T_{2}, \ldots, T_{s+1}$ are $s+1$ internally edge disjoint S-trees. Thus, $\kappa_{3}(E F H) \geq s+1$.

By symmetry and $t \geq s$, if $x \in V\left(R_{i}\right), y \in V\left(R_{j}\right), z \in V\left(L_{k}\right)$ for some $i, j \in\left\{1,2, \ldots, 2^{s}\right\}$ with $i \neq j$ and some $k \in\left\{1,2, \ldots, 2^{t}\right\}$, we can also obtain $\kappa_{3}(E F H) \geq s+1$.

Case 4. $x \in V\left(L_{i}\right), y \in V\left(L_{j}\right)$, and $z \in V\left(L_{k}\right)$ for some $i, j, k \in\left\{1,2, \ldots, 2^{t}\right\}$ with $i \neq j \neq k$.
Let $x \in V\left(L_{1}\right), y \in V\left(L_{2}\right)$, and $z \in V\left(L_{3}\right)$ (Figure 10). Without loss of generality, suppose $\bar{x}, \bar{y}, \bar{z} \in V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{3}\right)$. Choose $x_{i} \in V\left(L_{1}\right) \backslash\{x\}, y_{i} \in V\left(L_{2}\right) \backslash\{y\}, z_{i} \in$ $V\left(L_{3}\right) \backslash\{z\}$, such that $\bar{x}_{i}, \bar{y}_{i}, \bar{z}_{i} \in V\left(R_{i+3}\right)$ for $i=1,2, \ldots, s$. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{s}\right\}$, $Y=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}$ and $Z=\left\{z_{1}, z_{2}, \ldots, z_{s}\right\}$. By Lemma 6 , there exist s paths $P_{1}, P_{2}, \ldots, P_{s}$ from x to X in L_{1}, s paths $N_{1}, N_{2}, \ldots, N_{s}$ from y to Y in L_{2}, s paths $M_{1}, M_{2}, \ldots, M_{s}$ from z to Z in L_{3}. Let P_{i}, N_{i}, M_{i} be the paths from x to x_{i}, from y to y_{i}, and from z to z_{i}, respectively, for $i=1,2, \ldots$, s. Since $\operatorname{EFH}\left[V\left(R_{i+3}\right)\right]$ is connected, there exists a tree \bar{T}_{i} containing \bar{x}_{i}, \bar{y}_{i} and \bar{z}_{i} in $E F H\left[V\left(R_{i+3}\right)\right]$ for $i=1,2, \ldots, s$. Take $T_{i}=\bar{T}_{i} \cup P_{i} \cup N_{i} \cup M_{i} \cup x_{i} \bar{x}_{i} \cup y_{i} \bar{y}_{i} \cup$ $z_{i} \bar{z}_{i}$ for $i=1,2, \ldots$, s. Since $E F H\left[V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{3}\right) \cup V\left(L_{4}\right)\right]$ is connected, there exists a tree \bar{T}_{s+1} containing \bar{x}, \bar{y} and \bar{z} in $E F H\left[V\left(R_{1}\right) \cup V\left(R_{2}\right) \cup V\left(R_{3}\right) \cup V\left(L_{4}\right)\right]$. Take $T_{s+1}=\bar{T}_{s+1} \cup x \bar{x} \cup y \bar{y} \cup z \bar{z}$. Then, $T_{1}, T_{2}, \ldots, T_{s+1}$ are $s+1$ internally edge disjoint S-trees. Thus, $\kappa_{3}(E F H) \geq s+1$.

By symmetry and $t \geq s$, if $x \in V\left(R_{i}\right), y \in V\left(R_{j}\right), z \in V\left(R_{k}\right)$ for some $i, j, k \in\left\{1,2, \ldots, 2^{s}\right\}$ with $i \neq j \neq k$, we can also obtain $\kappa_{3}(E F H) \geq s+1$.

Figure 10. The illustration of Case 4.
We have completed the proof.

4. Conclusions

The exchanged folded hypercube is a variant of the hypercube and denoted by $E F H(s, t)$. It has many attractive properties to design interconnection networks. The generalized k-connectivity is an extension of the traditional connectivity. In this paper, we computed the generalized 3-connectivity of the exchanged folded hypercube. The study of the generalized k-connectivity of the exchanged folded hypercube for $k \geq 4$ is a meaningful and challenging problem.

Author Contributions: W.N.: writing—original draft; W.N. and H.L.: methodology, writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: The work is supported by the Natural Science Basic Research Program of Shaanxi (Program Nos. 2023-JC-YB-054, 2024JC-YBMS-034, and 2024JC-YBQN-0050) and the Fundamental Research Fund for the Central Universities (No. JB210716) .

Data Availability Statement: Data are contained within the article.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bondy, J.A.; Murty, U.S.R. Graph Theory with Applications; Elsevier: New York, NY, USA, 1976.
2. Whitney, H. Congruent graphs and the connectivity of graphs and the connectivity of graphs. Am. J. Math. 1932, 54, 150-168. [CrossRef]
3. Chartrand, G.; Kapoor, S.F.; Lesniak, L.; Lick, D.R. Generalized connectivity in graphs. Bull. Bombay Math. Colloq. 1984, 2, 1-6.
4. Du, D.; Hu, X. Steiner Tree Problem in Computer Communication Networks; World Scientific: Singapore, 2008.
5. Sherwani, N.A. Algorithms for VLSI Physical Design Automation, 3rd ed.; Kluwer Academic Publication: London, UK, 1999.
6. Li, S.; Li, X. Note on the hardness of generalized connectivity. J. Comb. Optim. 2012, 24, 389-396. [CrossRef]
7. Wang, J. The generalized 3-connectivity of two kinds of regular networks. Theor. Comput. Sci. 2021, 893, 183-190. [CrossRef]
8. Wei, C.; Hao, R.X.; Chang, J.M. Packing internally disjoint steiner trees to compute the κ_{3}-connectivity in augmented cubes. J. Parallel Distrib. Comput. 2021, 154, 42-53. [CrossRef]
9. Zhao, S.; Hao, R.; Wu, L. The generalized connectivity of (n, k)-bubble-sort graphs. Comput. J. 2019, 62, 1277-1283. [CrossRef]
10. Lin, S.W.; Zhang, Q.H. The generalized 4-connectivity of hypercubes. Discret. Appl. Math. 2017, 220, 60-67. [CrossRef]
11. Liu, H.Q.; Cheng, D.Q. The generalized 3-connectivity and 4-connectivity of crossed cube. Discuss. Math. Graph Theory 2024, 44, 791-811. [CrossRef]
12. Zhao, S.; Hao, R. The generalized 4-connectivity of exchanged hypercubes. Appl. Math. Comput. 2019, 347, 342-353. [CrossRef]
13. Zhao, S.; Hao, R.; Wu, J. The generalized 4-connectivity of hierarchical cubic networks. Discret. Appl. Math. 2021, 289, 194-206. [CrossRef]
14. Amawy, A.E.; Latifi, S. Properties and performance of folded hypercubes. IEEE Trans. Parallel Distrib. Syst. 1991, $2,31-42$. [CrossRef]
15. Lou, P.K.K.; Hsu, W.J.; Pan, Y. The exchanged hypercube. IEEE Trans. Parallel Distrib. Syst. 2005, 16, 866-874.
16. Qi, H.; Li, Y.; Li, K.Q.; Stojmenovic, M. An exchanged folded hypercube-based topology structure for interconnection networks. Concurr. Comput. Pract. Exp. 2015, 27, 4194-4210. [CrossRef]
17. Li, H.; Li, X.; Sun, Y. The generalized 3-connectivity of Cartesian product graphs. Discrete Math. Theor. Comput. Sci. 2012, 14, 43-54. [CrossRef]
18. Li, S.S.; Li, X.L.; Zhou, W.L. Sharp bounds for the generalized connectivity $\kappa_{3}(G)$. Discret. Math. 2010, 310, 2147-2163. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

[^0]: Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).

