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Abstract: In this paper, we introduce and study new features for 2-variable (p, q)-Hermite polynomi-
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1. Introduction

Applications of the (p, q)-calculus can be found in other disciplines including quantum
mechanics, statistical physics and number theory. In particular, it has been used to study
the quantum group SUp,q(2), which is a deformation of the Lie group SU(2) and has
applications in quantum field theory. In fact, all the (p, q)-calculus results decrease into
the corresponding results to the q-calculus when p = 1. Similar (p, q)-calculus results
additionally decrease to the corresponding outcomes of ordinary calculus when p = 1
and q → 1. Therefore the (p, q)-calculus is a real generalization of the q-calculus that
allows for non-commutative calculus. It has been used to define (p, q)-analogues of various
special functions and polynomials and has applications in many areas of mathematics and
physics. Recently, (p, q)-calculus got attention from the researchers of various fields of
mathematics and physics. Presented and thoroughly investigated are the (p, q)-analogues
of several conventional special functions, including the Hermite polynomials, Bernoulli
polynomials, Euler polynomials, Beta function, Gamma function, generalized bivariate
(p, q)-Bernoulli–Fibonacci polynomials and generalized bivariate (p, q)-Bernoulli–Lucas
polynomials, family of (p, q)-hybrid polynomials and (p, q)-sine and (p, q)-cosine Fubini
polynomials; for more details, we refer the readers to [1–9] and references therein.

Hermite polynomials are certain of the greatest significant and historical orthogonal
special functions from classical times, and they have been used extensively. It is the col-
lection of differential equation solutions with an oscillator of harmonics that match the
Schrödinger equation in quantum mechanics. These polynomials are very important for
considering classical boundary-value problems in parabolic regions with parabolic coordi-
nates. Hermite polynomials are also found in the field of signal processing as Hermitian
wavelets in the wavelet transform analysis probability, combinatorics as a manifestation of
an Appell series observing the umbral calculus, and numerical computation. The range
of applications whose mathematical description is based on polynomials is very wide
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in approximation theory. For further information, the interested reader may consult the
research papers [10–17].

Hermite polynomials are the series solutions of Hermite differential equations. Recall
that the classical Hermite polynomials Hn(x) (see, e.g., [18]) are defined by means of the
following generating function

e2xt−t2
=

∞

∑
n=0

Hn(x)
tn

n!

and the series definition was stated as follows:

Hn(x) = n!
[n/2]

∑
k=0

(−1)k

k!(n − 2k)!
(2x)n−2k.

Many authors have worked on its generalization in various directions of the famous
Hermitian polynomials. The 2-variable Hermite polynomials Hn(x, y) (see [19]) are defined
by means of the following generating function

e
xt+yt2

=
∞

∑
n=0

Hn(x, y)
tn

n!

and the series definition was stated as follows:

Hn(x, y) = n!
[n/2]

∑
k=0

1
k!(n − 2k)!

xn−2kyk for y ̸= 0,

and
Hn(x, 0) = xn.

It is known that these polynomials satisfy the following parabolic equation (Heat equation)
(see [10,20–22]):

∂2z
∂x2 =

∂z
∂y

,

which is called the diffusion equation of the 2-variable Hermite polynomials Hn(x, y)
(see [22]). In 2021, Raza, Fadel, Nisar and Zakarya [5] introduced and studied the 2-variable
(p, q)-Hermite polynomials Hn,p,q(x, y). They used the following generating function to
generate 2-variable (p, q)-Hermite polynomials Hn,p,q(x, y):

ep,q(xt) ep,q(yt2) =
∞

∑
n=0

Hn,p,q(x, y)
tn

[n]p,q!
(1)

and series definition was stated as follows:

Hn,p,q(x, y) = [n]p,q!
[n/2]

∑
k=0

(x)n−2k
p,q (y)k

p,q

[n − 2k]p,q![k]p,q!
. (2)

Some important properties and relations for the 2-variable (p, q)-Hermite polynomials
Hn,p,q(x, y) were established; for more details, we refer the readers to [5].

In this work, we devote our attention to investigate new various features of 2-variable
(p, q)-Hermite polynomials and introduce some new ones. The features of 2-variable
(p, q)-Hermite polynomials, such as differential equations, integral and summation rep-
resentations are studied and established in Sections 3 and 4. Finally, in Section 5, we will
conclude this paper by highlighting some significant research directions that could be
studied in the future.
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2. Preliminaries

In this section, we recall some basic definitions, notations and known results, which
will be used and discussed further in this paper. The (p, q)-number [α]p,q [23] is specified as

[α]p,q =
pα − qα

p − q
for 0 < q < p ≤ 1 and α ∈ N.

Presented is the value of the (p, q)-factorial [23]:

[m]p,q! =

{
∏m

r=1[r]p,q, m ∈ N,
1, m = 0.

The (p, q)-binomial coefficients [23] is defined by[
n
k

]
p,q

=
[n]p,q!

[n − k]p,q![k]p,q!
for k = 0, 1, . . . , n,

which for p = 1 and q → 1, gives the following usual binomial coefficients [18][
n
k

]
=

[n]!
[n − k]![k]!

for k = 0, 1, . . . , n.

The raising (p, q)-power [1] is defined by

(x ⊕ a)n
p,q =

n

∑
m=0

[
n
m

]
p,q

p(
m
2 )q(

n−m
2 )xman−m. (3)

In particular, when a = 0, Equation (3) yields

(x)n
p,q = p(

n
2)xn. (4)

From the above equation, it is straightforward to prove that

(bx)n
p,q = bn(x)n

p,q.

In q-calculus, there are two (p, q)-exponential functions, designated by ep,q(x) and Ep,q(x),
that have been described as [1]:

ep,q(x) =
∞

∑
n=0

p(
n
2) xn

[n]p,q!
(5)

and

Ep,q(x) =
∞

∑
n=0

q(
n
2) xn

[n]p,q!
, (6)

alternatively. The following relationship between ep,q(x) and Ep,q(x) is known (see [1]):

ep,q(x)Ep,q(−x) = 1. (7)

In [24], a function f has a specific formula to describe its (p, q)-derivative with respect
to x is given by

Dp,q,x f (x) =

{ f (px)− f (qx)
(p−q)x , x ̸= 0,

f
′
(0), x = 0.

More specifically, we have

Dp,q,x( f (x)g(x)) = f (px)Dp,q,xg(x) + g(qx)Dp,q,x( f (x)),
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Dp,q,xxn = [n]p,qxn−1,

Dp,q,xep,q(αx) = αep,q(αpx)

and
Dp,q,xEp,q(αx) = αEp,q(αqx).

The following are the derivatives of the (p, q)-exponential functions that correspond to the
mth order (see [24]):

Dm
p,q,xep,q(αx) = αn p(

m
2 )ep,q(αpmx) for m ≥ 1 (8)

and
Dm

p,q,xEp,q(αx) = αmq(
m
2 )ep,q(αqmx) for m ≥ 1.

where symbol Dm
p,q,x indicated the mth (p, q)-derivative with regard to x.

Moreover, an expression (p, q) integral for f is provided via [24]:∫ a

0
f (x)dp,qx = (p − q)a

∞

∑
n=0

pn

qn+1 f
(

pn

qn+1 a
)

for | p
q
|< 1. (9)

From Equation (9), it is clear that

∫ b

a

(
f (x)dp,qx + g(x)dp,qx

)
=
∫ b

a
f (x)dp,qx +

∫ b

a
g(x)dp,qx. (10)

Given is the (p, q)-definite integral of the (p, q)-derivative of a function f (see [24]):

∫ b

a
Dp,q f (x)dp,qx = f (b)− f (a). (11)

In [5], the (p, q)-partial derivative of formula in terms of x and y is given by

Dp,q,x Hn,p,q(x, y) = [n]p,q Hn−1,p,q(px, y), n ≥ 1 (12)

and
Dp,q,y

(
Hn,p,q(x, y)

)
= [n]p,q[n − 1]p,qHn−2,p,q(x, py), n ≥ 2, (13)

alternatively. According to [5], the pure recurrence relation for Hn,p,q(x, y) is as described
below:

Hn+1,p,q(x, y) (14)

= xHn,p,q(px, p2y) + [n]p,qy
(

pHn−1,p,q(qx, p2y) + qHn−1,p,q(qx, pqy)
)
= 0 for n ≥ 1.

The shift operators La,x and La,y for any (p, q)-function of two variables f (x, y) are
defined as [5]:

La,x f (x, y) = f (ax, y) (15)

and
La,y f (x, y) = f (x, ay),

where a is a constant. From Equation (15), the shift operator La,x satisfy the following
properties:

La,xLb,x f (x, y) = f (abx, y) = Lab,x f (x, y). (16)

In particular, for a = b, we have

La2,x f (x, y) = f (a2x, y) = La,xLa,x f (x, y) = L2
a,x f (x, y). (17)
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Since L−1
a,x is the reverse of the operator La,x, that is L−1

a,x La,x = I, which I is an identity
operator that produces I f (x, y) = f (x, y). Then, from Equation (15), we have

L−1
a,x f (ax, y) = f (x, y).

Replacing ax by x in the above equation, we acquire

L−1
a,x f (x, y) = f

(
1
a

x, y
)
= f (a−1x, y),

which on using Equation (15), gives

L−1
a,x f (x, y) = La−1,x f (x, y).

Using induction method, Equations (16) and (17), gives

Lar ,x f (x, y) = Lr
a,x f (x, y) for r ∈ Z.

In a similar way, it has been demonstrated that La,y has the characteristics that follow:

Lab,y f (x, y) = La,yLb,y f (x, y)

and
Lar ,y f (x, y) = Lr

a,y f (x, y) for r ∈ Z.

3. New Properties of 2-Variable (p, q)-Hermite Polynomials

During this part, we establish some features about 2-variable (p, q)-Hermite polynomi-
als such as differential equations and integral representations. Further, from Equation (2),
it can be easily verified that

Hn,p,q(ax, a2y) = anHn,p,q(x, y), (18)

wherein a has a fixed value.
Applying the 2nd order (p, q)-partial derivative of both the sides of Equation (1) with

respect to x, then using Equation (8) for m = 2, we get

pt2ep,q(pxt)ep,q(yt2) =
∞

∑
n=0

D2
p,q,x Hn,p,q(x, y)

tn

[n]p,q!
.

Again, applying the Equation (1) on the left part of previous equation, provides us

p
∞

∑
n=2

Hn−2,p,q(p2x, y, z)
tn

[n − 2]p,q!
=

∞

∑
n=0

D2
p,q,x Hn,p,q(x, y)

tn

[n]p,q!
.

Therefore, when the corresponding values of t from each aspect are compared, we obtain

D2
p,q,x Hn,p,q(x, y) = [n]p,q[n − 1]p,q p Hn−2,p,q(p2x, y) (n ≥ 2). (19)

In the context of Equations (13), (18) and (19) it is easy to verify that the 2V(p, q)HP
Hn,p,q(x, y) satisfy the following (p, q)-partial differential equation :

D2
p,q,x Hn,p,q(x, p3y) = p Dp,q,y Hn,p,q(p2x, p2y), Hn,p,q(x, p3y), Hn,p,q(x, 0) = (x)n

p,q. (20)

Equation (20), is called the (p, q)-analogue of diffusion equation, which for p = 1, gives the
for the q-analogue of diffusion equation for 2-variable q-Hermite polynomials Hn,q(x, y) [5].
Further, for p = 1, q → 1−, gives the classical diffusion equation for 2-variable Hermite
polynomials Hn(x, y) (see [10,22]).
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Example 1. The following correlations of (p, q)-diffusion equations for 2-variable (p, q)-Hermite
polynomials can be obtained immediately by applying (20):

D2
1,2/3,x H2,1,2/3(x, y)− D1,2/3,yH2,1,2/3(x, y) = 0,

D2
2/3,3/5,x H2,2/3,3/5(x, 8/27y)− 2/3 D2/3,3/5,y H2,2/3,3/5(4/9x, 4/9y) = 0,

D2
3/4,4/5,x H3,3/4,4/5(x, 16/64y)− 3/4 D3/4,4/5,yH3,3/4,4/5(9/16x, 9/16y) = 0.

Afterwards, we will demonstrate the next outcome:

Theorem 1. The subsequent (p, q)-differential equation for (p, q)-Hermite polynomials of 2-
variables holds true:

yL−2
p,x Lq,x

(
1 +

(
q
p

) n
2

L√ p
q ,x

)
H

′′
n,p,q(x, y) + pxH

′
n,p,q(x, y)− [n]p,q p2−nLp,x Hn,p,q(x, y) = 0, (21)

in which L.,x represents the shift operator described in (15).

Proof. Substituting n by (n − 1) into the expression (14) and after using Equation (18) in
the resulting formula, we arrive at

Hn,p,q(x, y)− xpn−1Hn−1,p,q(x, y)

− [n − 1]p,qy

(
pn−1Hn−2,p,q

( q
p

x, y
)
+ qn−1Hn−2,p,q

(
x,

p
q

y
))

= 0, n ≥ 2. (22)

From Equation (15), we possess

Hn−2,p,q

( q
p

x, y
)
= L q

p3 ,x Hn−2,p,q(p2x, y). (23)

Moreover, from Equations (15) and (18), we obtain

Hn−2,p,q

(
x,

p
q

y
)
=

(√
p
q

)n−2

L √
q

p2√p
,x

Hn−2,p,q

(
p2x, y

)
. (24)

Using Equations (15), (23) and (24) in Equation (22), we get

Hn,p,q(x, y)− xpn−1Lp−1,x Hn−1,p,q(px, y)− [n − 1]p,qy
(

pn−1L q
p3 ,x

+ qn−1

(√
p
q

)n−2

L√ q
p p−2,x

)
Hn−2,p,q(p2x, y) = 0, n ≥ 2. (25)

Now, using Equation (12) in Equation (25) and denoting Dp,q,x Hn,p,q(x, y) by H
′
n,p,q(x, y),

we get

Hn,p,q(x, y)− xpn−1

[n]p,q
Lp−1,x H

′
n,p,q(x, y)− y

p[n]p,q

(
pn−1Lp−3q,x

+
qn

p

(√
p
q

)n

L
p
−5
2 q

−1
2 ,x

)
H

′′
n,p,q(x, y) = 0,
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or, equivalently,

yL−3
p,x

(
pnLq,x + qn

(√ p
q

)n
L√

pq,x

)
H

′′
n,p,q(x, y)

+ xpn+1L−1
p,x H

′
n,p,q(x, y)− p2[n]p,qHn,p,q(x, y) = 0.

It, with additional simplifying, leads to the claim (21).

Example 2. The following correlations of (p, q)-differential equations for 2-variable (p, q)-Hermite
polynomials can be obtained immediately by applying (21):

yL−2
p,x Lq,x

(
1 + L√ p

q ,x

)
H

′′
0,p,q(x, y) = p2Lp,x H0,p,q(x, y)− pxH

′
0,p,q(x, y),

yL−2
p,x Lq,x

(
1 +

(
q
p

) 1
2

L√ p
q ,x

)
H

′′
1,p,q(x, y) = [1]p,q pLp,x H1,p,q(x, y)− pxH

′
1,p,q(x, y),

yL−2
p,x Lq,x

(
1 +

(
q
p

)
L√ p

q ,x

)
H

′′
2,p,q(x, y) = [2]p,q Lp,x H2,p,q(x, y)− pxH

′
2,p,q(x, y),

yL−2
p,x Lq,x

(
1 +

(
q
p

) 3
2

L√ p
q ,x

)
H

′′
3,p,q(x, y) = [3]p,q p−1Lp,x H3,p,q(x, y)− pxH

′
3,p,q(x, y),

yL−2
p,x Lq,x

(
1 +

(
q
p

)2

L√ p
q ,x

)
H

′′
4,p,q(x, y) = [4]p,q p−2Lp,x H4,p,q(x, y)− pxH

′
4,p,q(x, y),

yL−2
p,x Lq,x

(
1 +

(
q
p

) 5
2

L√ p
q ,x

)
H

′′
5,p,q(x, y) = [5]p,q p−3Lp,x H5,p,q(x, y)− pxH

′
5,p,q(x, y).

We then derive the integral representations about 2-variable (p, q)-Hermite polynomi-
als Hn,p,q(x, y) in the following manner:

Theorem 2. The definite (p, q)-integral of Hn,p,q(x, y) with regard to x is as follows:

∫ b

a
Hn,p,q(x, y)dp,qx = p

Hn+1,p,q

(
b
p , y
)
− Hn+1,p,q

(
a
p , y
)

[n + 1]p,q
. (26)

Proof. Using Equation (12), we get

∫ b

a
Hn,p,q(x, y)dp,qx =

p
[n + 1]p,q

∫ b

a
Dp,q,x Hn+1,p,q

( x
p

, y
)

dp,qx,

which yields the assertion (26) when applying Equation (11) on the right hand side.

Following that, we determine the subsequent outcome:

Theorem 3. The definite (p, q)-integral of Hn,p,q(x, y) with respect to y is as follows:

∫ d

c
Hn,p,q(x, y)dp,qy = p

Hn+2,p,q

(
x, d

p

)
− Hn+2,p,q

(
x, c

p

)
[n + 1]p,q[n + 2]p,q

. (27)
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Proof. Using Equation (13), we get

∫ b

a
Hn,p,q(x, y)dp,qy =

p
[n + 1]p,q[n + 2]p,q

∫ b

a
Dp,q,yHn+2,p,q

(
x,

y
p

)
dp,qy,

This, when applied to Equation (11) on the right side, yields assertion (27).

We can obtain the following result in light of Theorems 2 and 3:

Corollary 1. The formula that follows is the double (p, q)-integration of Hn,p,q(x, y):

∫ d

c

∫ b

a
Hn,p,q(x, y)dp,qx dp,qy

=
[n]p,q!p2

[n + 3]p,q!

(
Hn+3,p,q

( b
p

,
d
p

)
+ Hn+3,p,q

( a
p

,
c
p

)
− Hn+3,p,q

( b
p

,
c
p

)
− Hn+3,p,q

( a
p

,
d
p

))
. (28)

Proof. Integrating Equation (26) with regard to y by finding the limit through c through d
and utilizing Equation (10), that we get∫ d

c

∫ b
a Hn,p,q(x, y)dp,qx dp,qy

=
p

[n + 1]p,q

( ∫ d

c
Hn+1,p,q

( b
p

, y
)

dp,qy −
∫ d

c
Hn+1,p,q

( a
p

, y
)

dp,qy

)
,

Hence, according to Equation (27), provides

∫ d

c

∫ b

a
Hn,p,q(x, y)dp,qx dp,qy

=
p2

[n + 1]p,q[n + 2]p,q[n + 3]p,q

(
Hn+3,p,q

( b
p

,
d
p

)
+ Hn+3,p,q

( a
p

,
c
p

)
− Hn+3,p,q

( b
p

,
c
p

)
− Hn+3,p,q

( a
p

))
. (29)

From Equation (29), we obtain the assertion (28).

4. New Summation Models for Hn,p,q(x, y) and (p, q)-Derivatives

In this section, we will create some summation models for the (p, q)-Hermite poly-
nomials Hn,p,q(x, y) and their (p, q)-derivatives. First, we get several summation models
for 2V(p, q)HP by employing the generating function of Hn,p,q(x, y) and the identities (5)
and (7). The summing models for (p, q)-Hermite polynomials of 2-variables are the ones
that follow:

Theorem 4. The summation models for (p, q)-Hermite polynomials of 2-variables are given below:

[n/2]

∑
r=0

q(
r
2)(−y)r Hn−2r,p,q(x, y)
[r]p,q![n − 2r]p,q!

=
p(

n
2)xn

[n]p,q!
. (30)

(1) If n = 2m (m ∈ N), then

2m

∑
r=0

q(
r
2)(−x)r H2m−r,p,q(x, y)
[r]p,q![2m − r]p,q!

=
p(

m
2 )ym

[m]p,q!
. (31)

(2) If n = 2m + 1 (m ∈ N∪ {0}), then

2m+1

∑
r=0

q(
r
2)(−x)r H2m+1−r,p,q(x, y)
[r]p,q![2m + 1 − r]p,q!

= 0. (32)
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Proof. In the context of the Equation (7), it is clear

ep,q(xt) ep,q(yt2)Ep,q(−yt2) = ep,q(xt),

which on using Equations (1), (5) and (6) gives

∞

∑
n=0

Hn,p,q(x, y)
tn

[n]p,q!

∞

∑
r=0

q(
r
2)(−y)rt2r

[r]p,q!
=

∞

∑
n=0

p(
n
2)xntn

[n]p,q!
,

or, equivalently,

∞

∑
n=0

∞

∑
r=0

Hn,p,q(x, y)q(
r
2)(−y)r tn+2r

[n]p,q![r]p,q!
=

∞

∑
n=0

p(
n
2)xntn

[n]p,q!
,

which after utilizing the subsequent series arrangement method as in [18]:

∞

∑
n=0

∞

∑
m=0

A(m, n) =
∞

∑
n=0

[n/2]

∑
m=0

A(m, n − 2m),

we get
∞

∑
n=0

[n/2]

∑
k=0

Hn−2r,p,q(x, y)q(
r
2)(−y)r tn

[n − 2r]p,q![r]p,q!
=

∞

∑
n=0

p(
n
2)xntn

[n]p,q!
.

Therefore, when the corresponding values of t from each side are compared, yields the
assertion (30).

Once more, utilizing Formula (7), the result is

Ep,q(−xt) ep,q(xt)ep,q(yt2) = ep,q(yt2).

Utilizing Formulas (1), (5) and (6) in the above equation, we receive

∞

∑
n=0

∞

∑
r=0

q(
r
2)(−x)r Hn,p,q(x, y) tn+r

[n]p,q![r]p,q!
=

∞

∑
n=0

p(
n
2)ynt2n

[n]p,q!
,

which after utilizing the subsequent series arrangement method as in [18]:

∞

∑
n=0

∞

∑
k=0

A(k, n) =
∞

∑
n=0

n

∑
k=0

A(k, n − k),

gives
∞

∑
n=0

n

∑
r=0

q(
r
2)(−x)r Hn−r,p,q(x, y)tn

[r]p,q![n − r]p,q!
=

∞

∑
n=0

p(
n
2)ynt2n

[n]p,q!
. (33)

When each of the even as well as odd values of t from each side of Equation (33), are
compared, we get the assertions (31) and (32). The proof is completed.

Remark 1. It is worth mentioning that the corresponding expression of the summation models,
provided in Equation (32), is as outlined below:

2m

∑
r=0

q(
r
2)(−x)r H2m+1−r,p,q(x, y)
[r]p,q![2m + 1 − r]p,q!

=
q(

2m+1
2 )x2m+1

[2m + 1]p,q!
. (34)

We derive the subsequent summation models for the (p, q)-derivative of Hn,p,q(x, y)
from Theorem 1 and Remark 1:
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Corollary 2. The following summation models hold

[n/2]

∑
r=0

q(
r
2)(−p2y)rDp,q,x Hn+1−2r,p,q(x, p2y)

[r]p,q![n + 1 − 2r]p,q!
=

(px)n
p,q

[n]p,q!
, (35)

2m

∑
r=0

q(
r
2)(−px)rDp,q,x H2m+1−r,p,q(x, p2y)

[r]p,q![2m + 1 − r]p,q!
=

(p2y)m
p,q

[m]p,q!
(36)

and
2m

∑
r=0

q(
r
2)(−px)rDp,q,x H2m+2−r,p,q(x, p2y)

[r]p,q![2m + 2 − r]p,q!
=

q(
2m+1

2 )(px)2m+1

[2m + 1]p,q!
. (37)

Proof. Using Equation (12), we get

Dp,q,x Hn+1−2r,p,q(x, p2y) = [n + 1 − 2r]p,qHn−2r,p,q(px, p2y),

which on using Equation (18) and simplifying, gives

Hn−2r,p,q(x, y) =
Dp,q,x Hn+1−2r,p,q(x, p2y)

pn−2r[n + 1 − 2r]p,q
. (38)

Using Equation (38) in Equation (30), we get the assertion (35). Similarly, using
Equations (12) and (18), we get

H2m−r,p,q(x, y) =
Dp,q,x H2m+1−r,p,q(x, p2y)

p2m−r[2m + 1 − r]p,q
. (39)

We acquire the claim (36) by combining Equations (4) and (39) in Equation (31). We can
deduce from Equation (39) that

H2m+1−r,p,q(x, y) =
Dp,q,x H2m+2−r,p,q(x, p2y)
p2m+1−r[2m + 2 − r]p,q

. (40)

Using Equation (40) in Equation (34), we get the assertion (37).

Remark 2. The subsequent alternatives are obtained by applying Equation (18) to the right-side of
Equations (36) and (37):

2m

∑
r=0

q(
r
2)(−x)rDp,q,x H2m+1−r,p,q(

x
p , y)

[r]p,q![2m + 1 − r]p,q!
=

(y)m
p,q

p[m]p,q!

and
2m

∑
r=0

q(
r
2)(−x)rDp,q,x H2m+2−r,p,q(

x
p , y)

[r]p,q![2m + 1 − r]p,q!
=

q(
2m+1

2 )(x)2m+1

[2m + 1]p,q!
,

respectively.

Likewise, we obtain the subsequent summation expressions for (p, q)-derivative of
2V(p, q)HP Hn,p,q(x, y) with regard to y utilising Equations (13) and (18) in Equations (30),
(31) and (34):

Corollary 3. The summation models for the (p, q)-derivative of Hn,p,q(x, y) are listed below:

[n/2]

∑
r=0

q(
r
2)(−p2y)rDp,q,yHn−2r+2,p,q(px, py)

[r]p,q![n − 2r + 2]p,q!
=

(px)n
p,q

[n]p,q!
,
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2m

∑
r=0

q(
r
2)
(
−√

px
)r

Dp,q,y H2m+2−r,p,q

(√
px, y

)
[r]p,q![2m + 2 − r]p,q!

=
(py)m

p,q

[m]p,q!

and
2m

∑
r=0

q(
r
2)
(
−√

px
)r

Dp,q,y H2m+3−r,p,q

(√
px, y

)
[r]p,q![2m + 3 − r]p,q!

=
q(

2m+1
2 )
(√

px
)2m+1

[2m + 1]p,q!
.

Example 3. The following correlations of (p, q)-summation models for 2-variable (p, q)-Hermite
polynomials can be obtained immediately by applying (30) and (35):

H4,p,q(x, y)
[4]p,q!

−
yH2,p,q(x, y)

[2]p,q!
+

qy2

[2]p,q!
=

p6x4

[4]p,q!
,

Dp,q,x H5,p,q(x, p2y)
[5]p,q!

−
p2yDp,q,x H3,p,q(x, p2y)

[3]p,q!
+

p4y2Dp,q,x H1,p,q(x, p2y)
[2]p,q!

=
(px)4

p,q

[4]p,q!
,

5. Recommendations for Future Research

We conclude this article by highlighting some important research directions that could
be considered in the future.

Since in (p, q)-calculus, we have two types of exponential functions, we exploit this
opportunity to introduce some other kinds of 2-variable(p, q)-Hermite polynomials. In
view of the following identity (see [25,26]):

ep,q(a) Ep,q(b) =
∞

∑
n=0

(a ⊕ b)n
p,q

[n]p,q!
, (41)

we have

ep,q(xt) Ep,q(yt2) =
∞

∑
n=0

(xt ⊕ yt2)n
p,q

[n]p,q!
, (42)

We now create another form of the two-variable (p, q)-Hermite polynomials Hn,p,q(x, y) in
the following manner:

ep,q(xt) Ep,q(yt2) =
∞

∑
n=0

Hn,p,q(x, y)
tn

[n]p,q!
. (43)

Using Equation (41) in Equation (43), we get

∞

∑
n=0

(xt ⊕ yt2)n
p,q

[n]p,q!
=

∞

∑
n=0

Hn,p,q(x, y)
tn

[n]p,q!
. (44)

Using Equation (3) and the subsequent series rearrangement technique (see [18]), the left
side of Equation (44) is expanded as as follows:

∞

∑
n=0

n

∑
k=0

A(n − k, k) =
∞

∑
n=0

[n/2]

∑
k=0

A(n − 2k, k)

and then comparing the equal powers of t from the both sides of the resultant equation,
gives the following series definition of 2V(p, q)HP Hn,p,q(x, y):

Hn,p,q(x, y) = [n]p,q!
[n/2]

∑
k=0

xk(y)n−2k
p,q q(

k
2)

[n − 2k]p,q![k]p,q!
.
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Applying the (p, q)-partial derivative of each side of Equation (43) with regard to x, then
once more using Equation (43), then comparing the equal values of t of each of the sides of
the resulting equation, we receive

Dp,q,xHn,p,q(x, y) = [n]p,qHn−1,p,q(px, y) for n ≥ 1.

Likewise, taking the (p, q)-partial derivative of each side of Equation (43) with respect
to y, then done once again using Equation (43) and matching the identical values of t from
the two sides of the resulting equation, we obtain

Dp,q,y

(
Hn,p,q(x, y)

)
= [n]p,q[n − 1]p,qHn−2,p,q(x, qy) for n ≥ 1.

We believe that the above newly discovered results will help us obtain new results
such as recurrence relations, (p, q)-differential equation, summation formulas and inte-
gral representations related to other kinds of 2-variable (p, q)-Hermite polynomials in
future studies.

6. Conclusions

In this paper, we establish new various features of 2-variable (p, q)-Hermite polynomi-
als, such as diffusion equation, differential equations, integral and summation representa-
tions as follows:

• (p, q)-Diffusion equation (see Equation (20)):

D2
p,q,x Hn,p,q(x, p3y) = p Dp,q,y Hn,p,q(p2x, p2y).

• (p, q)-Differential equation (see Theorem 1):
The subsequent (p, q)-differential equation for (p, q)-Hermite polynomials of 2-variables
holds true:

yL−2
p,x Lq,x

(
1 +

(
q
p

) n
2

L√ p
q ,x

)
H

′′
n,p,q(x, y)

+ pxH
′
n,p,q(x, y)− [n]p,q p2−nLp,x Hn,p,q(x, y) = 0,

in which L.,x represents the shift operator described in (15).
• Integral representations (see Theorems 2 and 3):

(i) The definite (p, q)-integral of Hn,p,q(x, y) with regard to x is as follows:

∫ b

a
Hn,p,q(x, y)dp,qx = p

Hn+1,p,q

(
b
p , y
)
− Hn+1,p,q

(
a
p , y
)

[n + 1]p,q
.

(ii) The definite (p, q)-integral of Hn,p,q(x, y) with respect to y is as follows:

∫ d

c
Hn,p,q(x, y)dp,qy = p

Hn+2,p,q

(
x, d

p

)
− Hn+2,p,q

(
x, c

p

)
[n + 1]p,q[n + 2]p,q

.

• Summation representations (see Theorem 4):
The summation models for (p, q)-Hermite polynomials of 2-variables are given below:

[n/2]

∑
r=0

q(
r
2)(−y)r Hn−2r,p,q(x, y)
[r]p,q![n − 2r]p,q!

=
p(

n
2)xn

[n]p,q!
.
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(1) If n = 2m (m ∈ N), then

2m

∑
r=0

q(
r
2)(−x)r H2m−r,p,q(x, y)
[r]p,q![2m − r]p,q!

=
p(

m
2 )ym

[m]p,q!
.

(2) If n = 2m + 1 (m ∈ N∪ {0}), then

2m+1

∑
r=0

q(
r
2)(−x)r H2m+1−r,p,q(x, y)
[r]p,q![2m + 1 − r]p,q!

= 0.

As applications, some new features for 2-variable (p, q)-Hermite polynomials are
presented in Sections 3 and 4.
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