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Abstract: Based on equivalence relation R on X, equivalence class [x] of a point and equivalence
class [A] of a subset represent the neighborhoods of x and A, respectively. These neighborhoods
play the main role in defining separation axioms, metric spaces, proximity relations and uniformity
structures on an approximation space (X, R) depending on the lower approximation and the upper
approximation of rough sets. The properties and the possible implications of these definitions are
studied. The generated approximation topology τR on X is equivalent to the generated topologies
associated with metric d, proximity δ and uniformity U on X. Separated metric spaces, separated
proximity spaces and separated uniform spaces are defined and it is proven that both are associating
exactly discrete topology τR on X.

Keywords: approximation space; rough set; separation axioms; metric spaces; proximity relations;
uniform structures
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1. Introduction

Originally, Pawlak in [1] initiated the notions of lower approximation set L(A) and
upper approximation set U(A) of subset A of universal set X depending on the equiv-
alence classes formed by equivalence relation R on X. The pair (X, R) is then called an
approximation space. From the set difference, U(A) \ L(A), a boundary region area is
formed and is called the boundary region set B(A). Any subset in (X, R) is then a rough
set (whenever B(A) ̸= ∅) or an exact set (whenever B(A) = ∅). The importance of this
boundary region set is in its role in many real applications; refs. [2,3] are samples of re-
search work of such applications. Decision Theory and Data Mining are the most intercept
branches with the concept of rough sets. Yao in [4,5] extended the research work on rough
sets and explained the algebraic properties of rough sets. Some researchers paid their
attention to the approximation spaces (X, R) constructed by an arbitrary (not equivalence)
relation R on X. As an example, ref. [6] objected to the effects on the notion of rough sets
by reflexive relations or transitive relation or both. Generating approximation topology
τR associated with (X, R) is explained well in [7,8], whenever (X, R) is constructed by
arbitrary relation R on X. Then, we obtain left approximation neighborhoods R < x > and
right approximation neighborhoods < x > R at each point x ∈ X. That is, the notion of
rough sets has a generalized form (as found in [4,9]) in which the definition of Pawlak is a
special case. Kozae, in [10], introduced a generalization of rough sets using the intersection
of left and right approximation neighborhoods R < x > and < x > R, respectively, at
point x ∈ X. The resulting rough sets (in [10]) have fewer boundary region sets than those
defined in [1,4,9], and so it is a good generalized definition. Following that generalized
definition in [10], Ibedou et al. [11,12] introduced two types of generalizations of rough
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sets in the fuzzy case. Also, in this paper, we follow the same strategy. For all basics in
general topology, please refer to [13–15].

The aim of this paper is to construct a proximity relation and a uniformity structure
on an approximation space (X, R), and also define a metric function and separation axioms
based on the rough sets in (X, R). In Section 2, we present (in the sense of Pawlak) some
basics of rough sets and introduce the definitions of separation axioms Ti, i = 0, 1, 2, 3, 4 in
(X, R). In Section 3, we focus on defining metric d on approximation space (X, R) and study
its usual properties. In Section 4, we define proximity relation δ on (X, R) and study its
properties. In Section 5, we define a uniform structure U , similar to that defined in [16],
on (X, R). We study the relations in between notion separation axioms Ti, i = 0, 1, 2, 3, 4 in
(X, R), metric spaces (X, d), proximity spaces (X, δ) and uniform spaces (X,U ) based on
the rough sets defined by an equivalence relation R on X. Finally, in Section 6, we explain
the deviations in these notions whenever R is not an equivalence relation on X.

2. Preliminaries

Throughout the paper, we let X be a universal set of objects, let P(X) be the power set
of X and let 2X denote the set of all characteristic functions on X. Then, in the set theory, it
is well known that there is a one-to-one correspondence between P(X) and 2X . Thus, we
use subset A and characteristic function A without distinction.

Relation R on X is mapping R : X × X → {0, 1} defined by the following: for any
x, y ∈ X,

R(x, y) = 1 if x and y are related and R(x, y) = 0 if x and y are not related.

R is called an equivalence relation on X if it satisfies the following conditions:

(1) R is reflexive, that is, for all x ∈ X, we have R(x, x) = 1,
(2) R is symmetric, that is, R(x, y) = R(y, x) for any x, y ∈ X,
(3) R is transitive, that is, R(x, z) ≤ R(x, y) ∧ R(y, z) for any x, y, z ∈ X,

where R(x, y) ∧ R(y, z) = min{R(x, y), R(y, z)}.
The pair (X, R) is called an approximation space (see [1]).
The equivalence relation R is partitioning X into equivalence classes [x] for each

x ∈ X, where an equivalence class [x] is mapping [x] : X → {0, 1} defined, for each y ∈ X,
as follows:

[x](y) = 1 iff R(y, x) = 1 and [x](y) = 0 iff R(y, x) = 0.

Then, for any x, y ∈ X, we have

x ∈ [y] iff y ∈ [x] iff [x] = [y] iff [x] ∩ [y] ̸= ϕ,

and moreover, [x] and [y] are disjointed:

[x] ∩ [y] = ∅ iff R(x, y) = 0 iff [x](z) ̸= [y](z) for all z ∈ X.

Now, for each A ∈ 2X , the equivalence class [A] of A is defined by

[A] =
∨

x∈A
[x].

Then, [A] = {z ∈ X : there exists x ∈ A with R(x, z) = 1} that is,

[A](z) = 1 iff R(x, z) = 1 for some x ∈ A.

For each x ∈ X and each A ∈ 2X, we have {x} ⊆ [x] and A ⊆ [A], respectively,
and these equivalence classes, [x] and [A], are called the neighborhoods of x and A, respec-
tively.



Axioms 2024, 13, 199 3 of 14

In general, let us define an equivalence class [B] as follows:

[B](x) =
∨

y∈X

(
B(y) ∧ R(y, x)

)
≡

∨
y∈X

(B ∩ [x])(y). (1)

Remark 1. For A, B ⊆ X where A which is not a singleton or B is not a singleton, we have
[A] ∩ [B] = ∅, which implies A ∩ B = ∅ but not the converse. For example, we let X =
{a, b, c, d, e, f }, R = {(a, a), (b, b), (c, c), (d, d), (e, e), ( f , f ), (b, d), (d, b), (e, f ), ( f , e)}, K =
{a, c, d}, H = {b, e}. Then, [K] = {a, b, c, d}, [H] = {b, d, e, f }. That is, K ∩ H = ∅ while
[K] ∩ [H] = {b, d} ̸= ∅. Thus, for non-singleton sets, A, B may be found [A] ∩ [B] ̸= ∅ but
[A], [B] are not identical as the case with two singletons. A ⊆ [B] and B ⊆ [A] implies [A] = [B],
and in general [A]c ⊆ Ac ⊆ [Ac], [[A]] = [A]. Moreover, A ⊆ B implies [A] ⊆ [B]. We
recall that

[A] ∩ [B] = ∅ implies ([A] ∩ {x} = ∅ for all x ∈ B)

equivuivalent to ([B] ∩ {y} = ∅ for all y ∈ A)

implies ([x] ∩ [y] = ∅ for all x ∈ B, y ∈ A).

Lemma 1. For any A, B ∈ 2X , the following properties are fulfilled:

(1) [A] ⊆ B implies A ⊆ B,
(2) [A ∪ B] = [A] ∪ [B],
(3) [A] ⊆ B implies [Bc] ⊆ Ac, while A ⊆ B implies [B]c ⊆ Ac,
(4) If [A] ⊆ B, then there is K ∈ 2X such that [A] ⊆ K and [K] ⊆ B.

Proof.

(1) This is easily proven using Remark 1.
(2) [A] ∪ [B] ⊆ [A ∪ B] is clear. Now, we let x ∈ [A ∪ B]. Then, there is y ∈ A ∪ B such

that R(x, y) = 1; that is, there is y ∈ A or y ∈ B such that R(x, y) = 1. Thus, x ∈ [A]
or x ∈ [B]. So, x ∈ [A] ∪ [B]; that is, [A ∪ B] ⊆ [A] ∪ [B]. Hence, [A ∪ B] = [A] ∪ [B].

(3) [A] ⊆ B implies Bc ⊆ [A]c; that is, [B]c ⊆ [Bc] ⊆ [A]c ⊆ Ac, while A ⊆ B implies that
[B]c ⊆ [A]c ⊆ Ac.

(4) The proof is straightforward.

Based on the meaning of neighborhoods [x], [A], the lower and the upper approxima-
tions of any subset of X were defined. For subset A of X, we define approximation subsets
A∗, A∗ : X → {0, 1} using

A∗ = {x ∈ X : [x] ∩ Ac = ∅}, A∗ = {x ∈ X : [x] ∩ A ̸= ∅}; that is, for each x ∈ X,

A∗(x) =
{

1 if [x] ∩ Ac = ∅
0 if [x] ∩ Ac ̸= ∅,

(2)

A∗(x) =
{

0 if [x] ∩ A = ∅
1 if [x] ∩ A ̸= ∅.

(3)

Lemma 2. If (X, R) is an approximation space with R an arbitrary relation on X, then, for any
A, B ∈ 2X ,

(1) X∗ = X, ∅∗ = ∅,
(2) A ̸⊆ A∗ ̸⊆ A, A ̸⊆ A∗ ̸⊆ A,
(3) (A∗)∗ ⊆ A∗, (A∗)∗ ⊇ A∗,
(4) (A ∩ B)∗ ⊆ A∗ ∩ B∗, (A ∪ B)∗ ⊇ A∗ ∪ B∗,
(5) (A ∪ B)∗ ⊇ A∗ ∪ B∗, (A ∩ B)∗ ⊆ A∗ ∩ B∗,
(6) A ⊆ B implies that A∗ ⊆ B∗, A∗ ⊆ B∗.
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Proof. The proof is direct.

Whenever R is reflexive, for any A, B ∈ 2X , we have A∗ ⊆ A, A ⊆ A∗, X∗ = X, ∅∗ =
∅, (A ∪ B)∗ = A∗ ∪ B∗, (A ∩ B)∗ = A∗ ∩ B∗.

If R is also transitive, A∗∗ = A∗, A∗∗ = A∗. For any subset A of X, the lower
approximation AR and the upper approximation AR are defined by

AR = A ∩ A∗ , AR = A ∪ A∗.

The boundary region set AB is defined by the set difference, AR \ AR = AB, and
moreover, the accuracy value α(A) of rough set A is given by the ratio

α(A) =
number of elements of AR

number of elements of AR .

Whenever AR ⊈ AR, AB is not empty and set A has a roughness region. Thus, A is
called a rough set. As a special case, if AR = X, AR = ∅. Then, AB = X, and A is called a
totally rough set. However, if AR ⊆ AR, then AB = ∅, and set A is called an exact set.

From Lemma 2 and the definitions of AR and AR, we have the following consequences.

Lemma 3. Let (X, R) be an approximation space with R as an arbitrary relation. Then, for any
A, B ∈ 2X , the following properties are fulfilled:

(1) XR = XR = X, ∅R = ∅R = ∅,
(2) AR ⊆ A ⊆ AR,
(3) (AR)R ⊆ AR, (AR)R ⊇ AR,
(4) (A ∩ B)R ⊆ AR ∩ BR, (A ∪ B)R ⊇ AR ∪ BR,
(5) (A ∪ B)R ⊇ AR ∪ BR, (A ∩ B)R ⊆ AR ∩ BR,
(6) A ⊆ B implies that AR ⊆ BR, AR ⊆ BR.

Proof. The proof is straightforward from Lemma 2.

Note that if R is a reflexive relation, the equality holds in (5), Lemma 3, and moreover,
if R is a transitive relation, the equality holds in (3), Lemma 3. Thus, we can deduce that
approximation topology τR on approximation space (X, R) is associated, for each A ⊆ X,
with the interior A◦ and the closure A defined by A◦ = AR and A = AR.

Now, we recall two operators on X and both operators generate topologies on X,
respectively (both are dual).

Mapping c : 2X → 2X is called a closure operator on X (see [14]) if it satisfies the
following conditions: for any A, B ∈ 2X ,

(C.1) c(∅) = ∅,
(C.2) A ⊆ c(A),
(C.3) c(c(A)) = c(A),
(C.4) c(A ∪ B) = c(A) ∪ c(B).
Mapping i : 2X → 2X is called an interior operator on X (see [14]) if it satisfies the

following conditions: for any A, B ∈ 2X ,
(I.1) i(X) = X,
(I.2) i(A) ⊆ A,
(I.3) i(i(A)) = i(A),
(I.4) i(A ∩ B) = i(A) ∩ i(B).

Lemma 4 ([14]). Let c be a closure operator on X. Then, topology τc is generated on X such
that c(A) = A for each A ∈ 2X, where A is the closure of A with respect to topology τc. In fact,
τc = {F ∈ 2X : c(Fc) = Fc}.
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Lemma 5 ([14]). Let i be an interior operator on X. Then, topology τi is generated on X such that
i(A) = A◦ for each A ∈ 2X, where A◦ is the interior of A with respect to topology τi. In fact,
τi = {U ∈ 2X : i(U) = U}.

We let (X, R) be an approximation space. We define mappings i, c : 2X → 2X , respec-
tively, for each A ∈ 2X , as follows:

i(A) =
⋃

[x]∩Ac=ϕ

{x} ≡ AR, (4)

c(A) =
⋃

[x]∩A ̸=ϕ

{x} ≡ AR. (5)

Then, from Lemma 3, we can easily check that i is an interior operator and c is a
closure operator on X. Thus, by Lemmas 5 and 4, there are topologies τi and τc on X such
that i(A) = A◦ and c(A) = A for each A ∈ 2X. Furthermore, we have c(Ac) = i(A)c and
i(Ac) = c(A)c. So, τi = τc, and we denote both of the topologies by τR . Hence, we consider
approximation space (X, R) as the topological space equipped with the interior operator
defined by (4) or the closure operator defined by (5). Moreover, the generated topology on
X is given by

τR = {A ⊆ X : A = A◦} ≡ {A ⊆ X : Ac = Ac}.

Since A◦ = A iff [A] = A, [Ac] = Ac. Also, since A = A iff [Ac] = Ac, [A] = A.
In general, each A ∈ 2X with [A] = A is an open and closed set in (X, R). That is,
AR = AR = A, and then A is an exact set. That means no roughness of A.

Example 1. Let X = {a, b, c} and R = {(a, a), (b, b), (c, c), (a, b), (b, a)}. Then,

[a] = [b] = [{a, b}] = {a, b}, [c] = {c} and [{a, c}] = [{b, c}] = [X] = X.

(1) If A = {a, c} or A = {b, c}. Then, obtain

AR =
⋃

[x]∩{b}=∅

{x} =
⋃

[x]∩{a}=∅

{x} = {c},

AR =
⋃

[x]∩{a,c}̸=∅

{x} =
⋃

[x]∩{b,c}̸=∅

{x} = X.

(2) If A = {a} or A = {b}. Then, obtain

AR =
⋃

[x]∩{b,c}=∅

{x} =
⋃

[x]∩{a,c}=∅

{x} = ∅,

AR =
⋃

[x]∩{a}̸=∅

{x} =
⋃

[x]∩{b}̸=∅

{x} = {a, b}.

(3) Since [{a, b}] = {a, b}, [c] = {c} and [X] = X, the lower approximation and the
upper approximation of any of these subsets are equal, AR = A = AR, and then only subsets
{a, b}, {c}, X are exact sets and the other four non-empty subsets are rough sets.

Example 2. Let X = {a, b, c, d} and R = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (c, d), (d, c)}.
Then, have

[a] = [b] = [{a, b}] = {a, b}, [c] = [d] = [{c, d}] = {c, d},
[{a, c}] = [{b, c}] = [{a, d}] = [{b, d}] = [{a, b, c}]

= [{a, b, d}] = [{a, c, d}] = [{b, c, d}] = [X] = X.

(1) If A ∈ {{a, c}, {b, c}, {a, d}, {b, d}}, AR = ∅ and AR = X. Thus, these subsets are
totally rough sets.

(2) If A ∈ {{a, b, c}, {a, b, d}}, AR = {a, b} and AR = X.



Axioms 2024, 13, 199 6 of 14

(3) If A ∈ {{a, c, d}, {b, c, d}}, AR = {c, d} and AR = X.
(4) If A ∈ {{a}, {b}}, AR = ∅ and AR = {a, b}.
(5) If A ∈ {{c}, {d}}, AR = ∅ and AR = {c, d}. These subsets appearing in he previous

items (2)–(5) are rough sets.
(6) If A ∈ {{a, b}, {c, d}, X}, determine that the lower approximation and the upper approxi-

mation of any of these subsets are equal, that is, AR = A = AR. Thus, these subsets are exact sets
without roughness.

Example 3. Let X = {a, b, c, d} and R = {(a, a), (b, b), (c, c), (d, d), (b, c), (c, b), (b, d), (d, b),
(c, d), (d, c)}. Then, have

[a] = {a},
[b] = [c] = [d] = [{b, c}] = [{b, d}] = [{c, d}] = [{b, c, d}] = {b, c, d},
[{a, b}] = [{a, c}] = [{a, d}] = [{a, b, c}] = [{a, b, d}] = [{a, c, d}] = [X] = X.

(1) If A ∈ {{a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}}, AR = {a} and AR = X.
These subsets are rough sets. Moreover, the boundary set is AB = {b, c, d}, and the accuracy is 1

4 .
(2) If A ∈ {{b}, {c}, {d}, {b, c}, {b, d}, {c, d}}, AR = ∅ and AR = {b, c, d}. These

subsets are rough sets. Moreover, the boundary set is AB = {b, c, d}, and the accuracy is 0
3 = 0.

(3) If A ∈ {{a}, {b, c, d}, X}, AR = A = AR. These non-empty subsets are exact sets.
Moreover, the boundary set is AB = ∅, and the accuracy is 1.

Example 4. Let (X, R) be a finite approximation space such that [x] = {x} for all x ∈ X (only
equal elements are related). Then, [A] = A for each A ∈ 2X . Thus, any subset A of X is open and
closed, that is, AR = A = AR for all A ∈ 2X , and hence the boundary set is ∅. So, each A ∈ 2X

is an exact subset of X without roughness.

Definition 1. An approximation space (X, R) is said to be
(i) a T0-space if for all x ̸= y ∈ X, then t ̸∈ [y] for all t ∈ [x] or s ̸∈ [x] for all s ∈ [y],
(ii) a T1-space if for all x ̸= y ∈ X, then t ̸∈ [y] for all t ∈ [x] and s ̸∈ [x] for all s ∈ [y],

that is, [x] ∩ [y] = ∅,
(iii) a T2-space if for all x ̸= y ∈ X, then [x] ∩ [y] = ∅,
(iv) regular if for all x ̸∈ F = F, then t ̸∈ [F] for all t ∈ [x] and s ̸∈ [x] for all s ∈ [F],

that is, [x] ∩ [F] = ∅,
(v) a T3 space if it is regular and T1,
(vi) normal if for all F = F, G = G with F ∩ G = ∅, t ̸∈ [G] for all t ∈ [F] and s ̸∈ [F]

for all s ∈ [G], that is, [F] ∩ [G] = ∅,
(vii) a T4 space if it is normal and T1.

Remark 2.

(1) Suppose (X, R) is a T0-space and let x ̸= y ∈ X. Then, either [x] ∩ [y] = ∅ or [x] = [y].
Thus, every approximation space (X, R) cannot be a T0-space except [x] = {x} for all x ∈ X.

(2) (X, R) is a T1-space if and only if [x] = {x} for all x ∈ X if and only if {x} = {x} for all
x ∈ X from Equation (5).

(3) It is obvious that T0, T1 and T2 separation axioms are equivalent definitions in an approxima-
tion space (X, R).

Proposition 1. From Definition 1, T4 ⇒ T3 ⇒ T2 ⇔ T1 ⇔ T0.

3. Metric Distance in Approximation Spaces

Let d : X × X → {0, 1} be a mapping satisfying the following conditions:

(D1) x = y implies that d(x, y) = 0,
(D2) d(x, y) = d(y, x) for all x, y ∈ X,
(D3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X,
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(D4) d(x, y) = 0 implies that x = y.

d is called a metric on X if mapping d satisfies only conditions (D1)–(D3). Then, d is
called a pseudo-metric on X if d satisfies only conditions (D1), (D3). Then, d is called a
quasi-pseudo-metric on X, and if d satisfies only conditions (D1), (D3), (D4), d is called a
quasi-metric on X.

Let (X, R) be an approximation space with an equivalence relation R on X and d :
X × X → {0, 1} a mapping defined as a relation on X in the following way:

d(x, y) =

{
1 if [x] ∩ {y} = ∅
0 if [x] ∩ {y} ̸= ∅.

(6)

From (6), it is obvious that x = y implies d(x, y) = 0. Since [x] ∩ {y} = ∅ ≡
[y] ∩ {x} = ∅, d(x, y) = d(y, x). Also, it is clear that d(x, z) ≤ d(x, y) + d(y, z). On the
other hand, if [x] = [y] = {x, y}, then, clearly, d(x, y) = 0 but x ̸= y. Thus, d defines a
pseudo-metric on X. In this case, the pair (X, d) is called a pseudo-metric space induced
by (X, R) and we write the topology on X induced by d or associated to d as τd . The pair
(X, τd) is the associated topological space.

It is clear that there is a distance between x and y in X if and only if [x] ∩ {y} = ∅.
For each x ∈ X and each A ∈ 2X , the distance between x and A, denoted by d(x, A),

is defined as follows:
d(x, A) =

∧
y∈A

d(x, y)

which is equivalent to

d(x, A) =

{
1 if [x] ∩ A = ∅
0 if [x] ∩ A ̸= ∅.

(7)

For any A, B ∈ 2X, the distance between A and B, denoted by d(A, B), is defined
as follows:

d(A, B) =
∧

x∈A

∧
y∈B

d(x, y)

which is equivalent to

d(A, B) =

{
1 if [A] ∩ B = ∅
0 if [A] ∩ B ̸= ∅.

(8)

Then, from (7), we can rewrite Equations (2) and (3), respectively, as follows:

A∗(x) =

{
1 if d(x, Ac) = 1
0 if d(x, Ac) = 0,

(9)

A∗(x) =

{
0 if d(x, A) = 1
1 if d(x, A) = 0.

(10)

Thus, from Equations (4) and (5), obtain

intτd
(A) = A◦ = AR = A∗ =

⋃
d(x,Ac)=1

{x}, (11)

clτd
(A) = A = AR = A∗ =

⋃
d(x,A)=0

{x}, (12)

where intτd
(A) and clτd

(A) denote the interior and the closure of A with respect to topology
τd , respectively. So, it can easily be seen that τd = τR .

Pseudo-metric d on the approximation space (X, R) is a metric on X, if
x ̸= y ∈ X implies d(x, y) = 1, that is, [x] = {x} for all x ∈ X. The associated topo-
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logical space (X, τd) proves that it is a normal topological space. Based on the definition
of a metric d, and that R is given by R(x, x) = 1 for all x ∈ X, otherwise R(x, y) = 0,
(X, τd) is a T1 space. Thus, (X, τd) is a T4 space, which means satisfying all the Ti separation
axioms; i = 0, 1, 2, 3. Recall that (X, τd) in this case is exactly a discrete topological space,
i.e., all subsets are open and closed. Moreover, Equations (7) and (8) could be rewritten as

d(x, A) =

{
1 if x ̸∈ A
0 if x ∈ A,

d(A, B) =

{
1 if A ∩ B = ∅
0 if A ∩ B ̸= ∅.

Proposition 2. Let (X, d) be a pseudo-metric space and let τd be the topology associated to d. Then,
(X, τd) is a normal space. Moreover, if d is a metric, then (X, τd) is a T4 space.

Proof. We suppose d is a metric on X. From Equation (6), we determine that x ̸= y if
d(x, y) = 1 if [x] ∩ {y} = [y] ∩ {x} = ∅, and then y ̸∈ [x] and x ̸∈ [y]. Hence, (X, τd) is a
T1 space.

We let F = clτd
F ∈ 2X , G = clτd

G ∈ 2X with F ∩ G = ∅. Then, we have

F ⊆ Gc = intτd
(Gc) and G ⊆ Fc = intτd

(Fc).

Thus, [F] ⊆ [Gc] = Gc and [G] ⊆ [Fc] = Fc. We assume that [F] ∩ [G] ̸= ∅, say,
t ∈ [F] ∩ [G]. Then, there exist x ∈ F and y ∈ G such that R(x, t) = 1 and R(t, y) = 1.
Thus, R(x, y) = 1. So, x ∈ [G] ⊆ Fc and y ∈ [F] ⊆ Gc and both are contradictions. Hence,
[F] ∩ [G] = ∅. Therefore, (X, τd) is normal.

4. Proximity Relation in Approximation Spaces

Binary relation δ on 2X is called a nearness relation or a proximity on X, provided that
the negation of δ, denoted by δ (called a farness relation), for any A, B, K ∈ 2X , fulfills the
following conditions (see [15]):

(P1) AδB implies BδA,
(P2) (A ∪ B)δK if and only if AδK and BδK,
(P3) A = ∅ or B = ∅ implies AδB,
(P4) AδB implies A ∩ B = ∅,
(P5) if AδB. Then, there is L ∈ 2X such that AδL and Lc δB.
The pair (X, δ) is called a proximity space. Note that δ is the negation of δ, that is,

AδB ≡ A ̸ δB.
(P1) and (P2) imply the following condition:
(P2′) Kδ(A ∪ B) if and only if KδA and KδB.
In the following proposition, we show that there is a proximity on an approximation

space (X, R).

Proposition 3. Let (X, R) be an approximation space and let δ be a binary relation on 2X defined,
for any A, B ∈ 2X , as follows:

AδB if and only if [A] ∩ B = ∅.

Then, δ is a proximity on X. In this case, δ is called a proximity on X induced by R and the
pair (X, δ) is called a proximity space of (X, R).

Proof. (P1) Suppose AδB for any A, B ∈ 2X. Then, by the definition of δ, [A] ∩ B = ∅.
Thus, [A] ⊆ Bc. So, by Lemma 1 (3), [B] ⊆ Ac. Hence, BδA.
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(P2) Suppose (A ∪ B)δK for any A, B, K ∈ 2X. Then, clearly, [A ∪ B] ∩ K = ∅. Thus,
by Lemma 1 (2), ([A] ∪ [B]) ∩ K = ∅, that is, ([A] ∩ K) ∪ ([B] ∩ K) = ∅. So, [A] ∩ K = ∅
and [B] ∩ K = ∅. Hence, AδK and BδK.

Conversely, suppose AδK and BδK. Assume that (A ∪ B)δK, that is, [A ∪ B] ∩ K ̸= ∅.
Then, there is x ∈ K and R(x, y) = 1 for some y ∈ A ∪ B. Thus, R(x, y) = 1 for some y ∈ A
or y ∈ B. So, x ∈ [A] or x ∈ [B], that is, [A] ∩ K ̸= ∅ or [B] ∩ K ̸= ∅. Both are contradicting
AδK and BδK. Hence, (A ∪ B)δK.

(P3), (P4) The proofs are straightforward.
(P5) Suppose AδB for any A, B ∈ 2X. Then, clearly, [A] ∩ B = ∅, that is, [A] ⊆ Bc.

Thus, there is H ⊆ Bc such that [A] ⊆ H ⊆ [H] ⊆ Bc. Thus, AδHc and HδB, which is
equivalent to there is L ∈ 2X such that AδL and Lc δB.

Let δ be a proximity on an approximation space (X, R). Consider two mappings,
intδ, clδ : 2X → 2X defined, for each A ∈ 2X , respectively, as follows:

intδ A =
⋃

{x}δAc

{x} ≡
⋃

[x]∩Ac=∅

{x} ≡
⋃

d(x,Ac)=1

{x} ≡ AR ≡ A◦ (13)

and
clδ A =

⋃
{x}̸δA

{x} ≡
⋃

[x]∩A ̸=∅

{x} ≡
⋃

d(x,A)=0

{x} ≡ AR ≡ A. (14)

Then, it can easily be checked that intδ is an interior operator and clδ a closure operator
on X. Thus, by Lemmas 4 and 5, there is topology τ

δ
(called the topology associated to) on

X. In fact,
τ

δ
= {K ⊆ X : K = intδK} ≡ {K ⊆ X : Kc = clδ(Kc)}.

The pair (X, τ
δ
) is the associated topological space to (X, δ). It is obvious that τ

δ
= τR .

Proximity δ on approximation space (X, R) is said to be separated if x ̸= y ∈ X implies
{x}δ{y}. It is obvious that δ is a separated proximity if and only if [x] = {x} for all x ∈ X,
that is, (X, τ

δ
) is a T1-space if and only if the pseudo-metric d is a metric.

In the following Proposition, it is proven that topological space (X, τ
δ
) associated to

proximity space (X, δ) is a T4 space.

Proposition 4. Let (X, δ) be the proximity space for an approximation space (X, R) and let τ
δ

be
the topology associated to δ. Then, (X, τ

δ
) is a normal space. Moreover, if δ is separated, (X, τ

δ
) is

a T4 space.

Proof. Clear as given in Proposition 2 and from Equations (13) and (14).

Proposition 5. Let (X, τR) be a topological approximation space. Then, the constructed proximity
δ on X fulfills, for any A, B ∈ 2X , the following property:

AδB if and only if A δ B.

Proof. From conditions (P1), (P2), A δ B if A δ B if AδB. Also, A δ B if A δ B if AδB.

Let (X, d) be the pseudo-metric space induced by an approximation space (X, R).
Then, we can define proximity δ on X in the following way: for any A, B ∈ 2X ,

AδB iff d(A, B) = 1 or AδB iff d(A, B) = 0. (15)

It is easy to see that δ satisfies Conditions (P1)–(P5) depending on the properties of the
pseudo-metric d. Moreover, if d is a metric on X, δ is a separated proximity on X. Thus,
the resulting interior operators and closure operators in both of (X, d) and (X, δ) (as shown
in Equations (11)–(14)) generate equivalent topologies τd and τ

δ
. So, both of them are
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equivalent to discrete topology τR generated on X. Hence, all subsets of X have identical
lower approximations and upper approximations.

In this case,

d(A, B) = 1 iff AδB iff A ∩ B = ∅, d(A, B) = 0 iff AδB iff A ∩ B ̸= ∅.

5. Uniform Structure in Approximation Spaces

In this section, we study the relation between the uniform spaces and the Ti separation
axioms given in Section 2, the defined pseudo-metric in Section 3 and the defined proximity
in Section 4.

For a non-empty set X, the top relation and the bottom relation on X, denoted by T
and B, are relations on X, respectively, defined, for any x, y ∈ X, as follows:

T(x, y) = 1 and B(x, y) = 0.

2X×X denotes the bounded set of all relations on X.
For each R ∈ 2X×X, the inverse relation of R, denoted by R−1, is a relation on X

defined, for any x, y ∈ X, as follows:

R−1(x, y) = R(y, x).

Binary operations ∧ and ∨ on 2X×X between arbitrary relations are defined, for any
R1, R2 ∈ 2X×X and any x, y ∈ X, by

(R1 ∧ R2)(x, y) = R1(x, y) ∧ R2(x, y) and (R1 ∨ R2)(x, y) = R1(x, y) ∨ R2(x, y).

For any R1, R2 ∈ 2X×X , the composition of R1 and R2, denoted by R1 ◦ R2, is a relation
on X defined as follows: for any x, z ∈ X,

(R1 ◦ R2)(x, z) =
∨

y∈X
R1(x, y) ∧ R2(y, z). (16)

The order relation ≤ on 2X×X is defined, for any R1, R2 ∈ 2X×X and x, y ∈ X, by

R1 ≤ R2 iff R1(x, y) ≤ R2(x, y).

Definition 2. Filter M on X × X is mapping M : 2X×X → {0, 1} satisfying the following
conditions:

(i) M(T) = 1, (M(B) = 0 to be a proper filter),
(ii) R1 ≤ R2 implies M(R1) ≤ M(R2) for all R1, R2 ∈ 2X×X ,
(iii) M(R1 ∧ R2) ≥ M(R1) ∧M(R2) for all R1, R2 ∈ 2X×X .

The inverse M−1 of M is defined by M−1(R) = M(R−1) for all R ∈ 2X×X .
The principal filter [x, y] on X ×X of a pair (x, y) in X ×X is defined, for each R ∈ 2X×X, by

[x, y](R) = R(x, y).

It is clear that [x, x](R) = R(x, x) for all R ∈ 2X×X. Then, Rref(X) ⊆ [x, x], where
Rref(X) denotes the set of all reflexive relations on X.

For any two filters M and K, we say that M is finer than K, denoted by M ≺ K, if for
each R ∈ 2X×X ,

M ≺ K iff M(R) ≤ K(R).
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Definition 3. Let M and K be two filters on X × X such that [x, y] ≺ M and [y, z] ≺ K for any
x, y, z ∈ X. Then, the composition of M and K, denoted by M◦K, is a filter on X × X defined,
for each R ∈ 2X×X , by

(M◦K)(R) =
∨

(R1◦R2)≤R

M(R1) ∧K(R2). (17)

The notion of uniformity was introduced by Weil in [15]. Here, we construct a uniform
structure in an approximation space (X, R).

Definition 4. Uniformity U on X is a filter on X × X satisfying the following conditions:
(U1) [x, x] ≺ U for all x ∈ X,
(U2) U = U−1,
(U3) (U ◦ U ) ≺ U .
The pair (X,U ) is called a uniform space.

From the above definition, we can easily see that Req(X) ⊆ U , where Req(X) denotes
the set of all equivalence relations on X.

Definition 5. Let U be a filter on X × X such that [x, x] ≺ U for all x ∈ X and let M : 2X → 2
be a filter on X. Then, the image of M with respect to U , denoted by U [M], is the mapping
U [M] : 2X → 2 defined in [16], for each R ∈ 2X×X and each B ∈ 2X , by

(U [M])(A) =
∨

R[B]∩Ac=∅

(
U (R) ∧M(B)

)
, (18)

where R ∈ 2X×X , B ∈ 2X and set R[B] ∈ 2X is defined so that

(R[B])(x) =
∨

y∈X

(
B(y) ∧ R(y, x)

)
≡ [B](x). (19)

From Equation (1), determine that R[B] ≡ [B] for all B ∈ 2X .

It is obvious that U [M] is a filter on X.
The principal filter [ẋ] on X at a point x ∈ X is defined by [ẋ](A) = A(x) for all

A ∈ 2X . It is clear that [ẋ]({x}) = 1 for all x ∈ X.
Let U be a uniformity on a set X and let intU , clU : 2X → 2X be the mappings defined,

respectively, as follows: for each R ∈ 2X×X , any A, B ∈ 2X and each x ∈ X:

(intU A)(x) = (U [ẋ])(A) ≡
∨

[B]∩Ac=∅

(
U (R) ∧ B(x)

)
, (20)

(clU A)(x) =
∨

[B]∩A ̸=∅

(
U (R) ∧ B(x)

)
. (21)

Then, it can easily be proven that intU and clU are the interior and the closure operators
on X, respectively. Thus, there is topology τU on X induced by intU or clU .

Since any equivalence relation R on X is an element of a uniformity U on X, in an
approximation space (X, R), from Equations (4) and (5), obtain

intU A ≡ intδ A ≡ intτd
A ≡ A◦ ≡ AR (22)

and
clU A ≡ clδ A ≡ clτd

A ≡ A ≡ AR. (23)
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Uniformity U on X is said to be separated, if for all x ̸= y ∈ X there is R ∈ RE(X) such
that U (R) = 1 and R(x, y) = 0, that is, [x] ∩ [y] = ∅. In this case, pair (X,U ) is called a
separated uniform space.

As in Section 2, T2 ≡ T1 ≡ T0 as separation axioms. So, separated uniform spaces
satisfy all these axioms.

Generated topology τR on approximation space (X, R) is explained during the lower
and the upper sets of a rough set. It is equivalent to induced topology τδ generated
by constructed proximity δ on X, and also is equivalent to the generated topology τd
by pseudo-metric d constructed on X. Moreover, all these topologies are equivalent to
generated topology τU the constructed uniformity U on X. According to the definitions
of a metric, a separated proximity and a separated uniformity, obtain a similar result to
Proposition 2 and Proposition 4 related to the defined separation axioms in Section 2.

Proposition 6. Let X be a set, U a uniform structure on X and τU the topology induced by U .
Then, (X, τU ) is a normal space, and moreover

(X,U ) separated if and only if (X, τU ) is a T4-space.

Proof. The proof is coming from Equations (22) and (23) and from the proofs of Proposition 2
and Proposition 4.

6. Arbitrary Relation in Approximation Spaces

In this section, we recall the strategy of Kozae in [10]. We let R be an arbitrary relation
on X. Then, the right and left neighborhoods (the after and fore sets) of element x ∈ X are
sets in 2X given, respectively, by

xR = {y ∈ X : R(x, y) = 1}, Rx = {y ∈ X : R(y, x) = 1}.

We let < x > R ∈ 2X be defined as

< x > R =


⋂

x∈pR
pR if there exists p : x ∈ pR,

∅ otherwise
(24)

and R < x >∈ 2X be defined as

R < x > =


⋂

x∈Rp
Rp if there exists p : x ∈ Rp,

∅ otherwise.
(25)

< x > R, R < x > are called minimal right neighborhoods and minimal left neighbor-
hoods of x ∈ X;

R < x > R = < x > R ∩ R < x > (26)

is called the minimal neighborhood of x ∈ X.
For any subset A of X, the lower approximation AR and the upper approximation AR

are defined by AR = A ∩ A∗ , AR = A ∪ A∗, where

A∗ = {x ∈ X : R < x > R ∩ Ac = ∅}, A∗ = {x ∈ X : R < x > R ∩ A ̸= ∅} (27)

The resulting lower and upper approximation sets AR, AR of set A are typically
those defined by Kozae in [10]. The interior operator and the closure operator defined,
respectively, in Equations (4) and (5) did not satisfy the common properties of interior and
closure operators to generate a topology on (X, R). In the case R is a reflexive relation,
A◦ = AR = A∗, A = AR = A∗, but this is still not sufficient to generate a topology on
(X, R). At least, in Equations (4) and (5), R needs to be reflexive and transitive to produce



Axioms 2024, 13, 199 13 of 14

topology τR on (X, R). In the case R is an equivalence relation, the well-known definition
of Pawlak [1] is obtained, and Equations (4) and (5) define topology τR on X.

In the case R is an arbitrary relation on (X, R), the separation axiom T0 could be
satisfied and the separation axiom T1 is not satisfied. That is, the given equivalence
T0 iff T1 iff T2 in Section 2 is not correct.

Remark 3. Whenever R is arbitrary relation on X, we have to replace [x] with R < x > R
in all the notations introduced in Sections 2–5. If R is not reflexive, it may be R(x, x) = 0,
that is, R < x > R ∩ {x} = ∅. Hence, condition (D1) is not satisfied and we can not build
pseudo-metric d on (X, R) according to Equation (6). According to Equation (13), we may have
{x}δ{x} which is a contradiction to condition (P4), and then we cannot build proximity δ on
(X, R). Also, condition (U1) is not satisfied, and so construction of uniformity U on (X, R) is
not possible. If R is not symmetric, Conditions (D2), (P1) and (U2) are not satisfied, and thus
it fails to build a metric (pseudo-metric), a proximity or a uniformity in (X, R), but it could be a
quasi-metric (quasi-pseudo-metric), a quasi-proximity or a quasi-uniformity in (X, R). Also, if R is
not transitive, Conditions (D3), (P5) and (U3) are not satisfied, and thus it fails to build any of
metric (pseudo-metric), proximity or uniformity in (X, R).

Examples 1–4 are given for equivalence relations. Now, we offer an example of
arbitrary relation R on X.

Example 5. Let R be a relation on set X = {a, b, c, d} as shown below.

R a b c d
a 1 1 0 0
b 1 0 1 1
c 0 1 0 0
d 0 1 0 1

aR = {1, 1, 0, 0}, bR = {1, 0, 1, 1}, cR = {0, 1, 0, 0}, dR = {0, 1, 0, 1} and
Ra = {1, 1, 0, 0}, Rb = {1, 0, 1, 1}, Rc = {0, 1, 0, 0}, Rd = {0, 1, 0, 1}. Then,
< a > R = {1, 0, 0, 0}, < b > R = {0, 1, 0, 0}, < c > R = {1, 0, 1, 1},
< d > R = {0, 0, 0, 1} and R < a >= {1, 0, 0, 0}, R < b >= {0, 1, 0, 0},
R < c >= {1, 0, 1, 1}, R < d >= {0, 0, 0, 1} and then, R < a > R = {1, 0, 0, 0},
R < b > R = {0, 1, 0, 0}, R < c > R = {1, 0, 1, 1}, R < d > R = {0, 0, 0, 1}.

(1) For subset A = {1, 1, 0, 0}, we compute A∗, A∗ as follows: A∗ = AR = {1, 1, 0, 0} = A,
A∗ = AR = {1, 1, 1, 0}, and thus AB = {0, 0, 1, 0}, and the accuracy value is 2

3 .
(2) For subset K = {0, 0, 1, 0}, we compute K∗, K∗ as follows: K∗ = {0, 0, 0, 0} ≡ ∅,

K∗ = K = {0, 0, 1, 0}, and then KR = {0, 0, 0, 0}, KR = K = {0, 0, 1, 0}, and thus
KB = {0, 0, 1, 0}, and the accuracy value is 0

1 = 0.
(3) For subset H = {1, 1, 0, 1} we have H∗ = {1, 1, 0, 1} = HR = H, H∗ = HR =

{1, 1, 1, 1} ≡ X, and thus HB = {0, 0, 1, 0}, and the accuracy value is 3
4 .

From Remark 3, we determine that R < c > R = {1, 0, 1, 1} ̸= {0, 0, 1, 0}, and thus this
example cannot satisfy any axiom of the separation axioms as given in Definition 1.

Also, from R < a > R, R < b > R, R < c > R, R < d > R computed in this example, we
can deduce function ρ (neither a metric nor a pseudo-metric) as follows:

ρ a b c d
a 0 1 1 1
b 1 0 1 1
c 0 1 0 0
d 1 1 0 0
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7. Conclusions

This aim of paper was to construct a proximity relation and a uniformity structure
on approximation space (X, R) and also define metric function and separation axioms
based on the rough sets in (X, R). We presented some basics of rough sets and introduced
the definitions of separation axioms Ti, i = 0, 1, 2, 3, 4 in (X, R). We focused on defining
metric d on approximation space (X, R) and studied its usual properties. We defined
proximity relation δ on (X, R) and studied its properties. Following the definition of
uniformity structure U introduced by Gahler on (X, R), we studied the relations in between
notion separation axioms Ti, i = 0, 1, 2, 3, 4 in (X, R), metric spaces (X, d), proximity
spaces (X, δ) and uniform spaces (X,U ) based on the rough sets defined by an equivalence
relation R on X. At last, we explained the deviations in these notions whenever R is not
an equivalence relation on X. In a future work, we will discuss these results and their
applications in the fuzzy approximation spaces, the soft approximation spaces and the soft
fuzzy approximation spaces.
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