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Abstract: This article provides a detailed exploration of the SIR epidemic model, starting with its
meticulous formulation. The study employs a novel approach called the upper and lower bounds
technique to approximate the solution to the SIR model, providing insights into the dynamic interplay
between susceptible S, infected I, and recovered R populations. A new parametric solution to this model
has been presented. Applying the Adomian decomposition method (ADM) allows for the attaining
of highly accurate approximate solutions in the context of the SIR epidemic model. To validate the
accuracy and robustness of the proposed approach, a numerical exploration is conducted, considering a
diverse range of experimental parameters. This numerical analysis provides valuable insights into the
sensitivity and responsiveness of the SIR epidemic model under varying conditions, contributing to the
broader understanding of infectious disease dynamics. The interplay between theoretical formulation
and numerical exploration establishes a comprehensive framework for studying the SIR model, with
implications for refining our ability to predict and manage the spread of infectious diseases.

Keywords: SIR epidemic model; upper bound of solution; lower bound of solution; solution in
parametric form; Adomian decomposition method

MSC: 39A27; 65L10; 34L15; 49M27

1. Introduction

The SIR epidemic model provides a rigorous framework for understanding the tempo-
ral evolution of a population’s susceptibility S, infection I, and recovery R to time t. This
model is described by a set of non-linear ordinary differential equations, as presented in
Equation (1) [1,2]: { dS

dt = −rSI,
dI
dt = rSI − αI.

(1)

These equations encapsulate the dynamics of S, I, and R populations, with the initial
conditions outlined in Equation (2):

S(0) = S0, I(0) = I0, (2)

where r, α, S(0) and I(0) are non-negative constant parameters. The equation describing
the behavior of R evolves from the infected population I, expressed as

R(t) = α
∫ t

0
I(τ)dτ. (3)
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The SIR (Susceptible-Infectious-Removed) model is a fundamental and significant epi-
demiological model due to its simplicity, clarity, and historical importance. Although more
complex and modern models [3–8], have been developed to address specific small differ-
ences in infectious disease dynamics, the SIR model remains valuable. The choice of model
depends on analysis objectives and the level of detail needed.

A substantial body of literature has been dedicated to numerical methods for solving
these equations, such as the homotopy analysis method (HAM) [9]. Recently, in [10],
the authors explored this coupled non-linear system and introduced an approximate
solution through asymptotic approximants.

This paper is devoted to finding the new upper and lower bounds of solutions to
this SIR epidemic model in explicit forms. Further, finding lower and upper bounds for
solutions to differential equations is an important mathematical and analytical tool. It can
provide insights, validation, and practical benefits in understanding and modeling various
physical and engineering systems. These bounds help to characterize the behavior and
limitations of the system under study.

It is often challenging, if possible, to find explicit solutions to some systems. However,
converting such a system to an equivalent second-order nonlinear differential equation can
help in finding solutions in parametric form. As a result, a new solution in parametric form
can be provided.

Overall, the Adomian decomposition method (ADM) [11–23] is a powerful analytical
method for approximating solutions to the SIR epidemic model, contributing significantly
to understanding disease dynamics and informing public health strategies. The ADM
provides an analytical framework that offers closed-form or series solutions, which helps
in obtaining analytical expressions for the SIR model’s behavior over time. Moreover,
the ADM allows for the handling of nonlinear differential equations, enabling the study of
complex epidemic models that often exhibit nonlinear dynamics and providing a more re-
alistic representation of disease spread. The ADM can yield accurate solutions, particularly
for problems with known or expected smooth solutions, contributing to a precise under-
standing of epidemic behavior and dynamics. Therefore, we use the ADM to find excellent
approximation solutions for the SIR epidemic model concerning real scenarios. Results
obtained from the Adomian method are compared with numerical solutions, providing
validation and a better understanding of the model’s behavior.

2. Solutions to System (1)–(3)

We first begin by converting system (1) and (2) to an equivalent system through the
following transformations:

S = eu, I = ev. (4)

Substituting (4) into (1) and (2), we obtain
du
dt = −rev,
dv
dt = reu − α,

u(0) = ln S0, v(0) = ln I0.
(5)

2.1. Upper and Lower Bounds of Solutions

The following fundamental lemma is an important tool in finding the upper and lower
bounds of system solutions (1)–(3).

Lemma 1. The following system, { du
dt = −rev,
dv
dt = reu − α

(6)
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can be converted into an equivalent first-order nonlinear equation in u,

du
dt

= reu − αu + c1, (7)

where c1 is a constant of integration.

Proof. Differentiating the first equation of Equation (6) with respect to t, we obtain

d2u
dt2 = −r

dv
dt

ev. (8)

We eliminate dv
dt and ev from (8) by using the first and second equations of Equation (6),

and we obtain

d2u
dt2 = r

du
dt

eu − α
du
dt

. (9)

Integrating Equation (9) with respect to t, we obtain Equation (7), which is a first-order
nonlinear equation in the unknown function u.

Conversely, we can reduce Equation (7) to Equation (6) by setting the transformation
du
dt = −rev; thus, Equation (9) can be decoupled into{ du

dt = −rev,
−r dv

dt ev = −r2eveu + αrev,
(10)

which is indeed (6).

We now rewrite Equation (7) in the form

du
dt

= f (t, u), (11)

where f (t, u) = reu − αu + c1 with u(0) = ln S0.
Now, using the well-known exponential inequality eu ≥ 1 + u, u ∈ R, we get

f (t, u) ≥ c1 + r + (r − α)u, (12)

that is,

f (t, u) ≥ g(t, u), (13)

where g(t, u) = c1 + r + (r − α)u.
For comparison purposes, we have the following initial-value problem for the

linear equation:

dw
dt

= c1 + r + (r − α)w, w(0) = u(0) = ln S0. (14)

The solution to w is then easy:

w(t) =
(

ln S0 −
c1 + r
α − r

)
e(r−α)t +

c1 + r
α − r

. (15)

Since g(t, w) is continuous in t and w and Lipschitz in w, we can apply the comparison
theorem to Equation (11) with u(0) = ln S0 to get

u ≥ w, t ≥ 0. (16)
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Consequently,

S ≥ ew, t ≥ 0, (17)

which is the lower bound of S.
To now find the lower bound of I, from the system (5), we take the second equation:

dv
dt

= reu − α. (18)

In view of this and since eu ≥ ew, we obtain

dv
dt

≥ rew − α. (19)

A simple integration from 0 to t leads to

v ≥ r
∫ t

0
ew(τ)dτ − αt + ln I0. (20)

Hence,

ev ≥ e
(

r
∫ t

0 ew(τ)dτ−αt+ln I0

)
. (21)

Consequently,

I ≥ I0e
(

r
∫ t

0 ew(τ)dτ−αt
)

. (22)

It remains, therefore, only to find the upper bounds of S and I. In finding them, we
shall make use of Equations (1). Indeed, from the first equation of Equations (1),

dS
dt

= −rSI (23)

and in view of (22), we obtain

dS
dt

≤ −rI0e
(

r
∫ t

0 ew(τ)dτ−αt
)

S. (24)

It follows that

ln S ≤ −rI0

∫ t

0
e
(

r
∫ ξ

0 ew(τ)dτ−αξ
)

dξ + ln S0, (25)

or

S ≤ S0e−rI0
∫ t

0 e

(
r
∫ ξ

0 ew(τ)dτ−αξ

)
dξ . (26)

Similarly, from the second equation of Equation (1):

dI
dt

= rSI − αI (27)

and in view of (26), we obtain

dI
dt

≤

rS0e−rI0
∫ t

0 e

(
r
∫ ξ

0 ew(τ)dτ−αξ

)
dξ − α

I. (28)
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A simple integration again from 0 to t gives us

ln I ≤ rS0

∫ t

0
Z(τ)dτ − αt + ln I0, (29)

or

I ≤ I0e−αterS0
∫ t

0 Z(τ)dτ , (30)

where

Z(t) = e−rI0
∫ t

0 e

(
r
∫ ξ

0 ew(τ)dτ−αξ

)
dξ . (31)

Thus, we have proven the following:

Theorem 1. If (S, I, R) is a solution to the SIR epidemic model (1) and (3), then there are upper
and lower bounds of the solution, such that we have

S1 ≤ S ≤ S2, t ≥ 0, (32)

I1 ≤ I ≤ I2, t ≥ 0 (33)

and

R1 ≤ R ≤ R2, t ≥ 0, (34)

where

S1 = ew, where w(t) =
(

ln S0 −
c1 + r
α − r

)
e(r−α)t +

c1 + r
α − r

, (35)

S2 = S0e−rI0
∫ t

0 e

(
r
∫ ξ

0 ew(τ)dτ−αξ

)
dξ , (36)

I1 = I0e
(

r
∫ t

0 ew(τ)dτ−αt
)

, (37)

I2 = I0e−αterS0
∫ t

0 Z(τ)dτ , Z(t) = e−rI0
∫ t

0 e

(
r
∫ ξ

0 ew(τ)dτ−αξ

)
dξ , (38)

R1 = α
∫ t

0
I1(τ)dτ (39)

and

R2 = α
∫ t

0
I2(τ)dτ, (40)

2.2. Solutions in Parametric Forms

The following lemma is also an important tool in finding solutions in parametric forms
to system (1)–(3).
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Lemma 2. System (6) can be also converted into an equivalent second-order nonlinear equation in v

d2v
dt2 = −r

(
dv
dt

+ α

)
ev. (41)

Proof. Differentiating the second equation of (6) with respect to t, we obtain

d2v
dt2 = r

du
dt

eu. (42)

We eliminate du
dt and eu from the right-hand side of (42) by using the first and second

equations of (6), and we obtain (7).
Conversely, we can reduce Equation (41) to Equation (6) by setting the transformation

dv
dt = reu − α, thus Equation (41) can be decoupled into{ dv

dt = reu − α,
r du

dt eu = −r2eveu,
(43)

which is indeed (6), and this completes the proof.

We rewrite Equation (41) as follows:

d2(v + αt)
dt2 = −re−αt

(
d(v + αt)

dt

)
ev+αt. (44)

Setting w(t) = v + αt gives

d2w
dt2 = −re−αt dw

dt
ew. (45)

The substitution x = −αt leads to

d2w
dx2 =

r
α

ex dw
dx

ew. (46)

Thus, the solution to this second-order nonlinear equation in the unknown w(x) in
parametric form is given by (Section 2.7.3-2 in [24]):

x =
∫ dξ

ξ f (ξ)
+ d2, w = ln

(
α f (ξ)

r

)
−

∫ dξ

ξ f (ξ)
− d2. (47)

where f (ξ) = ξ + ln | ξ | +d1 and di, i = 1, 2 are constants of integration.
We have the following:

Theorem 2. The solution (S, I) in parametric form is given by

t = − 1
α

∫ dξ

ξ f (ξ)
− d2

α
, S =

α

r
f (ξ), I = −1

r
d
dt

[
ln(

α

r
f (ξ))

]
, (48)

where f (ξ) = ξ + ln | ξ | +d1.

3. Analytic Approximate Solutions via Adomian Decomposition Method

We propose here to solve (5) using the Adomian decomposition method (ADM) [11–23].
First, we define the linear operator L, nonlinear operator N, and inverse linear operator

L−1 as

L =
d
dt

, N(u) = eu, N(v) = ev, L−1(.) =
∫ t

0
(.)dη. (49)
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We rewrite (5) in Adomian’s operator-theoretic notation as{
Lu = −rN(v),
Lv = −α + rN(u).

(50)

Next, we apply L−1 to both sides of (50) as{
L−1Lu = −rL−1[N(v)],
L−1Lv = −L−1(α) + rL−1[N(u)],

(51)

where we calculate

L−1Lu(t) =
∫ t

0

du
dτ

dτ = u(t)− u(0), L−1Lv(t) =
∫ t

0

dv
dτ

dτ = v(t)− v(0). (52)

Upon substitution, we have{
u(t) = u(0)− rL−1[N(v)],
v(t) = v(0)− L−1(α) + rL−1[N(u)].

(53)

Using the classic Adomian decomposition method, we decompose the solution into
the solution components to be determined via recursion and the nonlinearity into the
corresponding Adomian polynomials tailored to the particular nonlinearity as

u(t) =
∞

∑
n=0

un(t), v(t) =
∞

∑
n=0

vn(t), N(u) =
∞

∑
n=0

An(t), N(v) =
∞

∑
n=0

Bn(t), (54)

where the first few Adomian polynomials [11,12] are given in the Appendix A.
Upon substitution, we obtain{

∑∞
n=0 un(t) = u(0)− rL−1[∑∞

n=0 Bn(t)],
∑∞

n=0 vn(t) = v(0)− L−1(α) + rL−1[∑∞
n=0 An(t)].

(55)

Then, we establish the Adomian recursion scheme as

u0(t) = ln S(0), v0(t) = ln I(0)− αt,

un+1(t) = −r
∫ t

0 Bn(τ)dτ, n ≥ 0,

vn+1(t) = r
∫ t

0 An(τ)dτ, n ≥ 0.

(56)

The first few components of the solution (u, v) are given by

u0 = ln S(0),

u1 = rI(0)
α (e−αt − 1),

u2 = r2 I(0)S(0)
α2

(
αte−αt + e−αt − 1

)
,

u3 = r3S(0)I(0)
2α3

(
S(0)

(
(α2t2 + 2αt + 2)eαt − 2e2αt)+ I(0)

(
e2αt − 2αteαt − 1

))
e−2αt,

...

(57)
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

v0 = ln I(0)− αt,

v1 = rS(0)t,

v2 = − r2 I(0)S(0)
α2

(
e−αt − 1 + αt

)
,

v3 = − r3S(0)I(0)
4α3

(
4S(0)

(
αt
(
e−αt + 1

)
+ 2

(
e−αt − 1

))
+ I(0)

(
e−2αt − 4e−αt − 2αt + 3

))
...

(58)

Hence,
S(t) = exp(u0 + u1 + u2 + u3 + ...). (59)

Attaining a satisfactory approximate solution for S(t) will enable the determination of
I(t) and R(t) using Equations (5) and (3), respectively. Notably, deriving from the second
equation within system (5), we obtain

dv
dt

= reu − α = rS − α. (60)

Integrating this equation from 0 to t, we obtain

v(t)− v(0) = r
∫ t

0
S(τ)dτ − αt. (61)

Then,
I(t) = I(0)e−αter

∫ t
0 S(τ)dτ , (62)

and

R(t) = α
∫ t

0
I(τ)dτ. (63)

It is important to note that when using the Adomian method, certain considerations
must be taken into account. Indeed, the Adomian decomposition method is a precious tool
for analyzing the SIR model, offering a systematic, analytical, and interpretable solution that
significantly improves our understanding of infectious disease dynamics. It is imperative
to thoroughly examine the convergence of the ADM series.

3.1. Convergence Analysis
3.1.1. Uniqueness Theorem

We can obtain a uniqueness theorem to this system beginning with the initial-value
problem of Equation (7) with u(0) = ln S0.

Since f (t, u) = reu − αu + c1 has ∂ f
∂u = reu − α, which is not bounded, f is not Lips-

chitzian. If we assume that there is a solution u to this initial-value problem which remains
in [0, b],, then, in the restricted region (t, u) ∈ [0, ∞)× [0, b], we have

f (t, u1)− f (t, u2) = r(eu1 − eu2)− α(u1 − u2) for all u1, u2 ∈ [0, b]. (64)

Applying the Mean Value Theorem to the function r(eu1 − eu2), we obtain

f (t, u1)− f (t, u2) = (reu∗ − α)(u1 − u2), u1 ≤ u∗ ≤ u2. (65)

Thus,

| f (t, u1)− f (t, u2) |≤| reb − α || u1 − u2|. (66)

Hence, f (t, u) is Lipschitzian with L1 =| reb − α|.
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Assuming that u1 and u2 are two different solutions to this initial-value problem,

| d
dt
(u1 − u2) |≤ L1 | u1 − u2 | for all u1, u2 ∈ [0, b]. (67)

Using Gronwall’s inequality, we obtain | u1 − u2 |≤ 0. Thus, u1 = u2.
Hence, the solution u to this initial-value problem exists and is unique. In view of this,

we conclude that the solution (u, v) to (6) exists and is unique.
Consequently,

Theorem 3. The SIR epidemic model has only one solution (S, I, R).

3.1.2. Convergence Theorem

The series solution obtained using the ADM converges with rapidity, and successive
terms (ui, vi) are easily computed. For the proof of the convergence of Adomian’s method,
we refer to the useful reference [25], in which Cherruault [25] proposed an interesting
technique to prove the convergence under suitable and reasonable hypotheses for the
numerical resolution of nonlinear equations. To examine this convergence, let us take the
initial-value problem of Equation (7) with u(0) = ln S0, which is equivalent to the above
system (50). For every convergent series u(t) = ∑∞

n=0 un(t), we define N(u) = ∑∞
n=0 An,

so that N(∑n
i=0 ui(t)) = ∑n

i=0 Ai(u0, u1, ..., ui).
The Adomian technique is equivalent to determine the sequences (Un) [25]:

Un = u0 + u1 + ... + un. (68)

A simple computation leads to

An = N(Un)−
n−1

∑
i=0

Ai. (69)

Let X = C[0, T] be a Banach space of all continuous functions on [0, T] with norm ∥ u ∥,
where ∥ u ∥= maxt∈[0,T] | u | . Consider the sequence of partial sums (Un) with n > m. Thus,

∥ Un − Um ∥= max
t∈[0,T]

| Un − Um |= max
t∈[0,T]

|
n

∑
i=m+1

ui(t)|. (70)

Hence,

∥ Un − Um ∥= max
t∈[0,T]

|
∫ t

0

n−1

∑
i=m

[−αui(τ) + rAi(τ)]dτ|. (71)

Use ∑n−1
i=m Ai = N(Un−1)− N(Um−1) and ∑n−1

i=m ui = Un−1 − Um−1 to get

∥ Un − Um ∥= max
t∈[0,T]

|
∫ t

0
[−α(Un−1 − Um−1) + r(N(Un−1)− N(Um−1))]dτ|. (72)

Since N is Lipschitzian with L1 =| reb − α |,

∥ Un − Um ∥≤ L1T ∥ Un−1 − Um−1||. (73)

Similar arguments can be applied as in [26] to show that (Un) is a Cauchy sequence in X.
Thus,

Theorem 4. The series solution u(t) = ∑∞
n=0 un(t) for the initial-value problem of Equation (7)

with u(0) = ln S0 obtained via the ADM converging if 0 < L1T < 1 and |u1(t)| < ∞.
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4. Numerical Explorations and Analysis

In the beginning, we will investigate the numerical solutions to the SIR epidemic
model (1) and (3) with the initial conditions (2) using the numerical solution using a
Fehlberg fourth-fifth order Runge–Kutta method with a degree-four interpolant [27–30].
This method is also known as the Runge–Kutta–Fehlberg (RKF45) method and offers
several advantages over traditional fixed-step methods like the standard fourth-order
Runge–Kutta method. Indeed, solving ordinary differential equations using numerical
methods is advantageous due to its adaptivity, higher accuracy, efficient error estimation,
versatility, and widespread applicability.

In Figure 1, we present the numerical solutions to the SIR epidemic model (1) and (3)
with the initial conditions (2). Left panel: α = 2., r = 1/5, I(0) = 25, S(0) = 75, R(0) = 0.
Mid panel: α = 2.73, r = 0.0178, I(0) = 7, S(0) = 254, R(0) = 0. Right panel: α = 0.0164,
r = 2.9236× 10−5, I(0) = 2, S(0) = 4206, R(0) = 0. These initial conditions and the values of
the parameters of the system are well-chosen from [9,10], which are excellent cases with the
SIR epidemic model.

Figure 1. The numerical solutions to the SIR epidemic model (1) and (3) where the susceptible (S),
infected (I), and recovered (R) populations are plotted versus time, with the initial conditions (2).
(Left panel) α = 2., r = 1/5, I(0) = 25, S(0) = 75, R(0) = 0 from [9]. (Mid panel) α = 2.73,
r = 0.0178, I(0) = 7, S(0) = 254, R(0) = 0 from [9]. (Right panel) α = 0.0164, r = 2.9236 × 10−5,
I(0) = 2, S(0) = 4206, R(0) = 0 from [10]. The representation is as follows: the solid black line
corresponds to S(t), the dashed blue line to I(t), and the dash-dotted red line to R(t). The solutions
are in units of people and t is in months.

Here, we emphasize the essential point that is an essential property of the SIR model.
The “positivity property” is a key concept in epidemiological modeling. It refers to the fact
that variables like the number of individuals in different compartments, such as those who
are susceptible, infected, or recovered, cannot be negative. This is because, in the context of
infectious disease dynamics, it is impossible to have a negative number of individuals in
any of these compartments. Therefore, the positivity property is an essential characteristic
that must be considered when modeling the spread of infectious diseases.

Certainly, we observe from Equations (1)–(3) that d
dt
(
S(t) + I(t) + R(t)

)
= 0, establish-

ing S(t) + I(t) + R(t) = S(0) + I(0) + R(0) = N, where N represents the total population.
It can be straightforwardly demonstrated that S(t) ≥ 0 and I(t) ≥ 0 [2]. Furthermore,
the essential characteristic is demonstrated in the numerical results illustrated in Figure 1.

Conversely, in Figure 2, we present the parametric solutions to the SIR epidemic model
for the initial conditions α = 2, r = 1/5, I(0) = 25, S(0) = 75, R(0) = 0. The parametric
solutions to the SIR epidemic model offer several advantages in understanding and an-
alyzing the dynamics of infectious diseases. In essence, parametric solutions to the SIR
epidemic model facilitate a comprehensive understanding of infectious disease dynamics,
providing insights into how different factors influence the spread and control of diseases
and aiding in the development of effective public health strategies.
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Figure 2. The parametric numerical solution to the SIR epidemic model (1) and (3) with the initial
conditions (2). For the case α = 2, r = 1/5, I(0) = 25, S(0) = 75, R(0) = 0 from [9].

In addition, to explore the finding of a good approximation for the SIR epidemic
model, we suggest a useful, powerful technique that is called the Adomian decomposition
method (ADM), which is used to solve nonlinear ordinary and partial differential equa-
tions. Its advantages lie in its simplicity, efficiency, and applicability to a wide range of
nonlinear problems. However, the application of the ADM to the SIR epidemic model
provides robust approximate solutions. Specifically, the method decomposes the nonlinear
differential equations governing the dynamics of susceptible S, infected I, and recovered R
populations into a series of functions. This decomposition enables the iterative solution
of each constituent. In the context of the SIR model’s nonlinear differential equations
representing the changing rates of S, I, and R populations, ADM effectively breaks down
these equations into a series of functions. This breakdown allows for the step-by-step
determination of individual terms within the solution series. Meanwhile, it is essential to
consider the reduction in numerical volume and the swift convergence of the approximate
solutions for further progress. Our suggestion to employ the ADM technique that accounts
for these factors is crucial for effective progress. The iterative process of the ADM involves
computing Adomian polynomials and their associated coefficients. This computation
method generates an approximate solution, which can be refined by including additional
terms in the series expansion. Utilizing ADM facilitates the acquisition of an analytical
approximation for the solution to the SIR epidemic model. This analytical approximation
proves instrumental in comprehending disease dynamics, predicting its behavior under
diverse conditions, and evaluating the effects of interventions or parameter variations on
the transmission of infectious diseases.

In Figure 3, we present a comparison between the numerical solutions to the SIR
epidemic model with the fourth order of the solutions that are obtained using the ADM
techniques for the initial conditions I(0) = 25, S(0) = 75, R(0) = 0 with the parameters
α = 2, r = 1/5 [9,10]. The visual representation is delineated as follows: the dashed blue
line depicts the numerical solution, the dotted black line illustrates the third-order solution
derived using ADM, and the solid red line represents the fourth-order approximation
attained through the ADM technique. The evident observation reveals a remarkable con-
currence between the numerical solution and the fourth-order solutions obtained through
the ADM technique for the function S(t). There is appropriate agreement with numerical
and fourth-order solutions by the ADM for the I(t) and R(t) functions.

In Figure 4, we present a comparison between the numerical solutions to the SIR
epidemic model with the fifth order of the solutions that are obtained using the ADM
techniques for the initial conditions I(0) = 7, S(0) = 254, R(0) = 0 with the parameters
α = 2.73, r = 0.0178, which involve a scenario studied by Khan et al. [9,10] to simulate the
1966 bubonic plague outbreak in Eyam, England [9,10]. The figure displays the numerical
solution as solid lines and the fifth-order solution obtained using the ADM technique
as dashed lines. S, I, and R correspond to the black, blue, and red lines, respectively.
Upon careful observation, it is evident that there is a significant agreement between the
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numerical solution and the fifth-order solutions obtained through the ADM technique
for the functions at small values of t. For large values of t in months, numerical and
fifth-order solutions obtained through the ADM for the functions have an appropriate
agreement. The solutions are given in units of people. The right panel demonstrates a
flawless alignment between the numerical solutions and the sixth-order solutions achieved
through ADM. This highlights a significant advantage wherein ADM, even with lower
orders of decomposition, can achieve remarkable agreement with the numerical solutions.

Figure 3. ADM and numerical solution to the SIR epidemic model (1) and (3) with the initial
conditions (2). For the case α = 2, r = 1/5, I(0) = 25, S(0) = 75, R(0) = 0 from [9]. The representation
is as follows: the solid red line corresponds to the numerical solution, and the dashed black line is the
fourth-order solution obtained using the ADM technique.

Figure 4. ADM and numerical solutions to the SIR epidemic model (1) and (3) with the initial conditions (2).
For the case α = 2.73, r = 0.0178, I(0) = 7, S(0) = 254, R(0) = 0 from [9]. (Left panel) The representation
is as follows: the solid lines correspond to the numerical solution, and the dashed lines are the fifth-order
solution obtained using the ADM technique. (Right panel) The dotted lines represent the sixth-order
solution obtained using the ADM. Black line: S, blue lines: I, and red lines: R.

Figure 5 showcases a comparative analysis between the numerical solutions to the
SIR epidemic model and the sixth-order solutions obtained using the ADM techniques.
This evaluation pertains to specific initial conditions: I(0) = 2, S(0) = 4206, R(0) = 0,
combined with the parameters α = 0.0164 and r = 2.9236 × 10−5. In the left panel,
a comparison between the seventh-order solutions obtained through the ADM and the
numerical solutions reveals a notable discrepancy at larger time values, whereas, in the
right panel, employing the eighth-order ADM solutions notably enhances the agreement.
It should be noted that this scenario is a reference to a study conducted on the COVID-19
outbreak in Japan [10,31]. A slight increase in the order of decomposition in the ADM
demonstrates improved concordance between numerical solutions and those derived via
the ADM method. The ADM technique offers a valuable approach that delivers a strong
approximation for the SIR epidemic model using lower-order decompositions, contrasting
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with other methods necessitating higher-order series expansions [10]. By increasing the
order of decomposition, we can effectively handle situations where both α and r are small.
This approach ensures that we maintain the required level of accuracy in our results.

Figure 5. ADM and numerical solutions to the SIR epidemic model (1) and (3) with the initial
conditions (2). For the case α = 0.0164, r = 2.9236 × 10−5, I(0) = 2, S(0) = 4206, R(0) = 0 from
Japan’s COVID-19 outbreak data [10,31]. (Left panel) The representation is as follows: the solid lines
correspond to the numerical solution, and the dashed lines are the seventh-order solution obtained
using the ADM technique. (Right panel) The eighth-order solutions obtained using the ADM and
the numerical solutions. Black line: S, blue lines: I, and red lines: R. Here, t = 0 is 22 January
2020 [10,31].

The proposed technique, which is directly stated, is said to offer a more efficient
approach. This suggests that the proposed method can provide a solution of comparable
quality while requiring fewer terms in the series expansion. This efficiency could have
practical implications, such as reducing computational resources, simplifying calculations,
or speeding up the modeling process. In essence, this point emphasizes the efficiency
and effectiveness of the proposed technique in obtaining accurate solutions to the SIR
model while streamlining the computational demands associated with other referenced
methods [10]. On the other hand, the positive property persists in all the obtained results
(Figures 3–5).

Further, by comparing the results obtained through the ADM with numerical solutions,
we can gain valuable insights into the convergence behavior. If the ADM solutions closely
match the numerical solutions for a variety of scenarios, it indicates that the convergence is
favorable. This information can be instrumental in improving the accuracy and reliability
of the ADM model.

The inclusion of additional terms in the series expansion can improve convergence. As we
progressively refine the solution, we often assess the convergence behavior (Figures 4 and 5).

5. Conclusions

In conclusion, this research offers a comprehensive examination of the SIR epidemic
model, delving into its meticulous formulation and employing innovative methodologies.
The upper and lower bounds technique provides valuable insights into the interactions
among susceptible, infected, and recovered populations and contributes to enhancing our
theoretical comprehension through the derivation of an existence and uniqueness theorem.
Moreover, applying the Adomian decomposition method demonstrates its effectiveness in
yielding highly accurate approximate solutions to the SIR model.

Furthermore, the validation process, which involves numerical exploration across diverse
experimental parameters, underscores the proposed approach’s accuracy and robustness. This
numerical analysis sheds light on the SIR model’s sensitivity and adaptability under varying
conditions, enriching our broader comprehension of infectious disease dynamics.
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The suggested techniques explicitly highlight the useful efficiency, implying that it can
provide an accurate satisfactory solution while utilizing fewer terms of the series expansion
in the ADM method. This efficiency could have significant practical applications such as re-
ducing the demand for computational resources, streamlining calculations, and expediting
the modeling process.

This study has created a strong framework for studying the SIR model by combining
theoretical formulation with numerical exploration. The findings of this study have sig-
nificant implications for enhancing our predictive capabilities and improving strategies to
manage and reduce the transmission of infectious diseases effectively.

Author Contributions: Conceptualization, L.B., S.B. and A.K.; methodology, L.B., A.K. and S.B.;
software, S.B.; validation, L.B., A.K. and S.B.; formal analysis, A.K., L.B. and S.B.; investigation, A.K.,
L.B. and S.B.; writing original draft preparation, L.B., A.K. and S.B.; writing review and editing, A.K.,
L.B. and S.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported and funded by the Deanship of Scientific Research at Imam
Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RG23018).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This paper focuses on theoretical analysis and does not involve
experiments and data.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. List of the Adomian Polynomials Ai for N(u) = eu [11–13]
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The Adomian polynomials of Bi for N(v) = ev can be obtained in a similar form by
using the functions vi instead of ui.
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