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Abstract: In this paper, we explore a study focused on a two-variable extension of matrix Bessel
polynomials. We initiate the discussion by introducing the matrix Bessel polynomials involving
two variables and derive specific differential formulas and recurrence relations associated with
them. Additionally, we present a segment detailing integral formulas for the extended matrix Bessel
polynomials. Lastly, we introduce the Laplace–Carson transform for the two-variable matrix Bessel
polynomial analogue.
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1. Introduction

In modern mathematics, special functions play a crucial role in various disciplines.
Special versions of these functions have proven invaluable in various fields, including
probability theory, computer science, mathematical physics, engineering, and many other
areas (see [1,2]).

Bessel polynomials are important due to their natural occurrence in seemingly unre-
lated situations. For example, they appear in the solution of the wave equation in spherical
polar coordinates (see [3]), in network synthesis and design (see [4]), in the analysis of
the Student t-distribution (as shown in [5]), and in the development of a matrix approach
suitable for solving differential equations with multiple orders and fractions of orders.
In addition, Bessel polynomials play a role in the representation of the energy spectrum
functions for a family of isotropic turbulence fields (see [6]).

In 1949, Krall and Frink [3] presented an article on what they termed Bessel poly-
nomials. Within this work, they introduced the elementary Bessel polynomials in the
following manner:

Yϵ(x) =
ϵ

∑
s=0

(
ϵ

s

) (
ϵ + s

s

)
s! (

x
2
)s

= 2F0(−ϵ, ϵ + 1;−;− x
2
),

(1)
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where 2F0 is the Gauss hypergeometric function of a two-numerator as

2F0(−ϵ, ϵ + 1;−; z) =
∞

∑
s=0

(−ϵ)s(ϵ + 1)s

n!
zn. (2)

The generalized Bessel polynomials, denoted as Yϵ(µ, ν; x) and extending the Bessel
polynomials Yϵ by introducing two parameters, are defined based on the research by Krall
and Frink [3] as follows:

Yϵ(µ, ν; x) =
ϵ

∑
k=0

(
ϵ

k

)
(ϵ + µ − 1)k (

x
ν
)k

= 2F0(−ϵ, µ + ϵ − 1;−;− x
ν
).

(3)

where (µ)k is the Pochhammer symbol, defined by

(µ)k =

{
µ(µ + 1)...(µ + k − 1) = Γ(µ+k)

Γ(µ) , k ≥ 1,
1, k = 0.

(4)

They also obtained certain recurrence relations between these polynomials and one
generating function for the Bessel polynomials proper and also provided some of their
qualities including orthogonality and the linkages between them and Bessel functions.

Recently, numerous approaches have been employed to study these polynomials,
demonstrating their utility in various research fields (see, e.g., [7–11]).

The Laplace–Carson transform of the function G(s) for all s ≥ 0 is defined as [12]

L
{

G(s)
}

= p
∫ ∞

0
G(s) e−ps ds = g(p), (5)

where L is Laplace–Carson transform operator.
The field of generalized special matrix functions has undergone significant devel-

opment in recent years. This interest is due to various reasons. Focusing on practical
applications, one realizes that the use of new classes of special matrix functions in certain
physical problems has led to solutions that are difficult to obtain using traditional analyt-
ical and numerical methods. In this context, Hermite, Chebyshev, Jacobi, Laguerre, and
Gegenbauer matrix polynomials have been introduced and studied (see, e.g., [13–17]).

The objective of this paper is to present a novel two-variable analogue, denoted as
Y(θ,ϑ)

ϵ (z, w), and to derive specific outcomes related to the two-variable matrix Bessel poly-
nomials Y(θ,ϑ)

ϵ (z, w). Additionally, we explore applications involving the Laplace–Carson
transform of functions.

The structure of this article is outlined as follows: In Section 2, we give a brief intro-
duction to certain matrix functions that are important for the further development of the
article. In Section 3, we introduce a novel extension of Bessel matrix polynomials called
Y(θ,ϑ)

ϵ (z, w) and state several theorems on recurrence relations and the derivation formula
for this extension. Section 4 deals with various integral formulas for the Bessel matrix
polynomials Y(θ,ϑ)

ϵ (z, w). In Section 5, we give theorems on the Laplace–Carson transform
of functions containing the new extension of the matrix Bessel polynomials Y(θ,ϑ)

ϵ (z, w).
The concluding remarks and future work are presented in Section 6.

2. Some Definitions and Notations

Let Cr be the r-dimensional complex vector space and Cr×r denote all square complex
matrices of order r. A positive stable matrix θ in Cr×r is denoted as Re(λ) > 0 for all
λ ∈ σ(θ), where σ(θ) is the set of all Eigenvalues of θ and θn ̸= 0, then we call
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Pn(z) = θnzn + θn−1zn−1 + θn−2zn−2 + .... + θ0,

a matrix polynomial in z of degree n.
In the matrix complex space Cr×r, we use I to represent the identity matrix and O for

the zero matrix.
The spectrum of a matrix θ in Cr×r is defined as the set of all its Eigenvalues and

is denoted by σ(θ). If g(z) and h(z) are holomorphic functions defined on an open set
D ⊆ C and θ is a matrix in Cr×r, such that σ(θ) ⊂ D, then the commutative property
g(θ)h(θ) = h(θ)g(θ) holds ( [18,19]).

Furthermore, if θ is a matrix in Cr×r with σ(θ) ⊂ D and θϑ = ϑθ, where ϑ is a different
matrix, then the commutative property g(θ)h(ϑ) = h(ϑ)g(θ) is satisfied.

If θ is a positive stable matrix in Cr×r, then the gamma matrix function Γ(θ) is defined
as in the References (see, e.g., [19–24]):

Γ(θ) =
∫ ∞

0
tθ−Ie−t dt where tθ−I = e(θ−I) ln t. (6)

The matrix function of Beta is provided if θ and ϑ are positive stable matrices in Cr×r (see,
e.g., [19–24]):

β(θ, ϑ) =
∫ 1

0
tθ−I(1 − t)ϑ−I dt . (7)

Also, let θ, ϑ, and θ + ϑ be positive stable matrices in Cr×r and θϑ = ϑθ, then (see [18–20])

β(θ, ϑ) = Γ(θ)Γ(ϑ)Γ−1(θ + ϑ) . (8)

In Cr×r, if θ is a matrix that allows

θ + ϵI is invertible for all ϵ ≥ 0 , (9)

then the Pochhammer matrix symbol version is given by (see [19]):

(θ)ϵ = θ(θ + I)(θ + 2I).....(θ + (ϵ − 1)I) where ϵ ≥ 1 and (θ)0 = I. (10)

The following property is satisfied by the extended Pochhammer matrix symbol
(see [25]):

(θ)n+ϵ = (θ)ϵ(θ + nI)n. (11)

Let θ and ϑ be commuting matrices in Cr×r satisfying the (9), for any natural number m ≥ 0,
the ϵ-th generalized matrix Bessel polynomial Ym(θ, ϑ; w) is defined by [26]

Yϵ(θ, ϑ; w) =
ϵ

∑
s=0

(
ϵ

s

)
(θ + (ϵ + s − 2)I)(s) (w ϑ−1)s, (12)

where (ϵ
s) is a binomial coefficient. It is the solution of the matrix differential equation

showing this matrix polynomial as a solution.

w2 Y
′′
ϵ (θ, ϑ; w) + (θw + ϑ)Y

′
ϵ(θ, ϑ; w)

= ϵ(θ + (ϵ − 1)I)Yϵ(θ, ϑ; z).
(13)

Using the hypergeometric matrix series, the generalized Bessel matrix polynomials may be
derived as follows:

Yϵ(θ, ϑ; w) = 2F0(−ϵI, θ + (ϵ − 1)I;−;−w ϑ−1).
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Laguerre matrix polynomials may be defined in [16] by

Lθ
ϵ(z) =

ϵ

∑
s=0

(−1)s

s! (ϵ − s)!
(θ + I)ϵ [(θ + I)s]

−1 zs. (14)

The Whittaker matrix function Wθ,−θ+I/ϵ+2(z) is defined [26] by the matrix function
Wθ,−θ+I/ϵ+2(z) defined [26] by

Wθ,−θ+I/ϵ+2(z) = e−z/2 zθ
ϵ

∑
k=0

(−1)k(−ϵI)k ((ϵ + 1)I − 2θ)k

k! zk

= e−z/2 zθ
2F0(−ϵI, (ϵ + 1)I − 2θ;−;−1

z
).

(15)

We also see that the Whittaker matrix functions and Laguerre’s matrix polynomials
are the fundamental components of the generalized Bessel matrix polynomials. In fact,
we have

Yϵ(θ, ϑ; w) = n! (−w ϑ−1)ϵ L−2ϵI−θ+I
ϵ (

ϑ

w
),

and
Yϵ(θ, ϑ; w) = eϑ/2w (w ϑ−1)I−θ/2 WI−θ/2,(θ−I)/2+ϵI (

ϑ

w
).

The integral representation is an immediate result of (12) as

Yϵ(θ, ϑ; w) =Γ−1(θ + (ϵ − 1)I)
∫ ∞

0
tθ+(ϵ−2)I

1F0(−ϵI;−;−t w ϑ−1) e−tdt

=Γ−1(θ + (ϵ − 1)I)
∫ ∞

0
tθ+(ϵ−2)I(I + t w ϑ−1)ϵe−tdt.

(16)

The orthogonality of the generalized Bessel matrix polynomials on the unit circle with
regard to the weight matrix function ((cf. [26]):

ρ(w) =
1

2πi

∞

∑
ϵ=0

Γ(θ)Γ−1(θ + (n − 1)I) (
−ϑ

w
)n. (17)

This is satisfied by the associated matrix nonhomogeneous equation

(w2ρ(w))
′
= (θw + ϑ)ρ(w)− 1

2πi
[(θ − I)(θ − 2I)]w. (18)

For n ̸= ϵ, we have ∫
C

ρ(w)Yϵ(θ, ϑ; w)Yn(θ, ϑ; w) dw = 0.

Now, a few features of the Pochhammer symbol are needed in our present study.

Lemma 1 ([6,27]). If θ be a positive stable matrix in Cr×r, and m, s, and r are non-negative integer
numbers, then we obtain

1.

(−mI)m−s = (−1)m−s (mI)! [(s)!]−1, (19)

2.

(−m)r+s = (−m)r (−m + r)s, (20)
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3.

(m − s)! = (−1)s m!
(−m)s

, (21)

4.

(−mI − θ)n−r = (−1)m−r Γ(θ(m + 1)I) Γ−1(θ + (s + 1)I), (22)

5.

Γ(θ + (m + 1)I) Γ−1(θ + (s + 1)I) = (θ + I)m [(θ + I)s]
−1, (23)

6.

(
θ + I

)
m

((
θ + I

)
m−s−r

)−1
= (−1)r+s (− (θ − mI)

)
r+s, (24)

7.

(
θ
)

m−s = (−1)s (θ
)

m

(((
1 − m

)
I − θ

)
s

)−1

, (25)

8.

Γ(θ − mI) = (−1)m Γ(θ)
(
(I − θ)m

)−1
. (26)

3. The Matrix Bessel Polynomial Y(θ,ϑ)
ϵ (z, w)

In this section, we introduce the matrix Bessel polynomial Y(θ,ϑ)
ϵ (z, w) of two variables

and discuss some important basic properties of it as follows.

Definition 1. Let θ and ϑ be positive stable matrices in Cr×r satisfying the condition (9), then the
matrix Bessel polynomials of two variables Y(θ,ϑ)

ϵ (z, w) is given by

Y(θ,ϑ)
ϵ (z, w)

= (θ + I)ϵ (ϑ + I)ϵ

ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 zv

v!
wr

r!
.

(27)

Remark 1. The following lists some particular results on matrix Bessel polynomials:

1. Replace θ by (1 − 2ϵ)I − θ and ϑ by (1 − 2ϵ)I − ϑ in (27), then we obtain

Y((1−2ϵ)I−θ, (1−2ϵ)I−ϑ)
ϵ (z, w)

= ((2 − 2ϵ)I − ϑ)n((2 − 2ϵ)I − θ)n (28)

×
ϵ

∑
v=0

ϵ−v

∑
r=0

(−nI)v+r

((
(2 − 2ϵ)I − θ

)
v

)−1 ((
(2 − 2ϵ)I − ϑ

)
r

)−1 zv

v!
wr

r!
.

2. Also, from (27), we can deduce that

Y(θ,ϑ)
ϵ (z, w) = Y(ϑ,θ)

ϵ (z, w). (29)
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3. If we put w = 0 in (27), we find that

Y(θ,ϑ)
ϵ (z, 0) = (−z)ϵ (ϑ + I)ϵ Y(I,−ϑ+(1−2ϵ))

ϵ (z). (30)

4. If putting w = 0 and ϑ = O in (27), we obtain the relation:

Y(θ,O)
ϵ (z, 0) = (−z)ϵ ϵ! Y(I,−θ+(1−2ϵ))

ϵ (z). (31)

Theorem 1. Suppose that θ and ϑ are matrices in Cr×r satisfying the condition (9) such that ϵ, s,
and r are non-negative integer numbers and where all matrices are commutative, then we have

Y(θ,ϑ)
ϵ (z, w)

= (θ + I)ϵ (−w)ϵ
ϵ

∑
r=0

ϵ−r

∑
s=0

(−ϵ)r+s (−ϵI − ϑ)r+s

((
θ + I

)
r

)−1( z
w

)r 1
(−w)s

1
r! s!

. (32)

Proof. Using the R.H.S. of (32), we determine that

(θ + I)ϵ (−w)ϵ
ϵ

∑
r=0

ϵ−r

∑
s=0

(−ϵ)r+s (−ϵI − ϑ)r+s

((
θ + I

)
r

)−1( z
w

)r 1
(−w)s

1
r! s!

= (θ + I)ϵ (−w)ϵ
ϵ

∑
r=0

ϵ−r

∑
s=0

(−ϵ)r+s (−ϵI − ϑ)r+s

((
θ + I

)
r

)−1
zr w−r−s (−1)s 1

r! s!
.

By using (24), we have

= (θ + I)ϵ (−1)ϵ
ϵ

∑
r=0

ϵ−r

∑
v=0

(−ϵ)ϵ−v (−ϵI − ϑ)ϵ−v

((
θ + I

)
r

)−1
zr wv (−1)ϵ−r−v 1

r! (ϵ − r − v)!
.

Putting ϵ − r − s = v and rearranging the terms, we obtain

(θ + I)ϵ (−w)ϵ
ϵ

∑
r=0

ϵ−r

∑
s=0

(−ϵ)r+s (−ϵI − ϑ)r+s

((
θ + I

)
r

)−1( z
w

)r 1
(−w)s

1
r! s!

= (θ + I)ϵ (ϑ + I)ϵ

ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 zv

v!
wr

r!

= Y(θ,ϑ)
ϵ (z, w).

This complete the proof.

Theorem 2. If we assume that θ and ϑ are matrices in Cr×r satisfying the condition (9) such that
ϵ, p, q, and r are non-negative integer numbers and where all matrices are commutative, then we
have that

∂p+q

∂zp ∂wq Y(θ,ϑ)
ϵ (z, w)

= (−ϵ)p+q (−ϵI − θ)p+q (−ϵI − ϑ)p+q

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1
Y(θ+pI,ϑ+qI)

ϵ−p−q (z, w).
(33)

Proof. By using the definition in (27), we obtain

∂p

∂zp Y(θ,ϑ)
ϵ (z, w) = (θ + I)ϵ (ϑ + I)ϵ

ϵ

∑
v=p

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 zv−p

(v − p)!
wr

r!

and
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∂q

∂wq Y(θ,ϑ)
ϵ (z, w) = (θ + I)ϵ (ϑ + I)ϵ

ϵ

∑
v=0

ϵ−v

∑
r=q

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 zv

v!
wr−q

(r − q)!
.

Now, we find that

∂p+q

∂wp+q Y(θ,ϑ)
ϵ (z, w)

= (θ + I)ϵ (ϑ + I)ϵ

ϵ

∑
v=p

ϵ−v

∑
r=q

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 zv−p

(v − p)!
wr−q

(r − q)!

= (θ + I)ϵ (ϑ + I)ϵ

ϵ−p

∑
v=0

ϵ−v−p

∑
r=0

(−ϵI)v+p+r+q

((
θ + I

)
v+p

)−1 ((
ϑ + I

)
r+q

)−1 zv

v!
wr

r!
.

By using (20), we have

∂p+q

∂wp+q Y(θ,ϑ)
ϵ (z, w)

= (θ + I)ϵ (ϑ + I)ϵ (−ϵI)p+q
(
(θ + I)p

)−1 (
ϑ + I)q

)−1(
(θ + I)ϵ−p−q

)−1 (
(I + ϑ)ϵ−p−q

)−1

× (θ + I)ϵ−p−q(ϑ + I)ϵ−p−q

×
n−p

∑
v=0

ϵ−v−p

∑
r=0

(−ϵ + p + q)v+r

((
(θ + 1)I + P

)
v

)−1((
(1 + q)I + ϑ

)
r

)−1 zv

v!
wr

r!

=
(
(θ + I)p

)−1 ((
ϑ + I)q

)−1
(−ϵ)p+q (−θ − ϵI)p+q (ϑ − ϵI)p+q Y(θ+pI,ϑ+qI)

ϵ−p−q (z, w)

and this finish the proof.

Recurrence Relation of Y(θ,ϑ)
ϵ (z, w)

A recurrence relation of Y(θ,ϑ)
ϵ (z, w) will be stated in the next theorem.

Theorem 3. Let parameters θ and ϑ be positive stable matrices in Cr×r satisfying the condition
(9), where ϵ and r are non-negative integer numbers and where all matrices are commutative, then
we obtain

Y(θ,ϑ)
ϵ (z, w)

= (θ + I)ϵ (ϑ + I)ϵ Y(θ,ϑ)
ϵ−1 (z, w) − z(ϑ + ϵI) Y(θ+I,ϑ)

ϵ−1 (z, w) − z(θ + ϵI)Y(θ,ϑ+I)
ϵ−1 (z, w).

(34)

Proof. The Bessel matrix polynomials are expanded in double series using (27) in this
case, and it is sufficient to show that the coefficient of zv wr is the same on both sides of
Equation (34). Form the definition in (27), we have the L.H.S. as

Y(θ,ϑ)
ϵ (z, w)

= (θ + I)ϵ (ϑ + I)ϵ

ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 zv

v!
wr

r!
,

then, we find the coefficient of zv wr given by

(θ + I)ϵ (ϑ + I)ϵ (−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 1
v!

1
r!

. (35)
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Also, we see the R.H.S. of Equation (34) as follows:

(θ + ϵI) (ϑ + ϵI) Y(θ,ϑ)
ϵ−1 (z, w) − z(ϑ + ϵI) Y(θ+I,ϑ)

ϵ−1 (z, w)

− z(θ + ϵI) Y(θ,ϑ+I)
ϵ−1 (z, w)

= z(θ + ϵI) (ϑ + ϵI) (θ + I)ϵ−1 (ϑ + I)ϵ−1

×
ϵ

∑
v=0

ϵ−v

∑
r=0

(−(ϵ − 1)I)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 zv

v!
wr

r!

− z (ϑ + ϵI) (θ + 2I)ϵ−1 (ϑ + I)ϵ−1

×
ϵ

∑
v=0

ϵ−v

∑
r=0

(−(ϵ − 1)I)v+r

((
θ + 2I

)
v

)−1 ((
ϑ + I

)
r

)−1 zv

v!
wr

r!

− w (θ + ϵI) (θ + I)ϵ−1 (ϑ + 2I)ϵ−1

×
ϵ

∑
v=0

ϵ−v

∑
r=0

(−(ϵ − 1)I)v+r

((
θ + I

)
v

)−1 ((
ϑ + 2I

)
r

)−1 zv

v!
wr

r!

= (ϑ + I)ϵ (θ + I)ϵ

ϵ

∑
v=0

ϵ−v

∑
r=0

(−(ϵ − 1)I)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 zv

v!
wr

r!

− (θ + 2I)ϵ−1 (ϑ + I)ϵ

ϵ

∑
v=0

ϵ−v

∑
r=0

(−(ϵ − 1)I)v+r

((
θ + 2I

)
v

)−1 ((
ϑ + I

)
r

)−1 zv+1

v!
wr

r!

− (θ + I)ϵ (ϑ + 2I)ϵ−1

ϵ

∑
v=0

ϵ−v

∑
r=0

(−(ϵ − 1)I)v+r

((
θ + I

)
v

)−1 ((
ϑ + 2I

)
r

)−1 zv

v!
wr+1

r!
.

The coefficient of zv wr of the R.H.S is

(θ + I)ϵ (ϑ + I)ϵ (−(ϵ − 1)I)v+r

((
θ + I

)
v

)−1((
ϑ + I

)
r

)−1 1
v!

1
r!

− (2I + θ)ϵ−1 (ϑ + I)ϵ (−(ϵ − 1)I)v+r−1

((
2I + θ

)
v−1

)−1 ((
ϑ + I

)
r

)−1 1
(v − 1)!

1
r!

− (θ + I)ϵ (2I + ϑ)ϵ−1 (−(ϵ − 1)I)v+r−1

((
θ + I

)
v

)−1 ((
2I + ϑ

)
r−1

)−1 1
v!

1
(r − 1)!

.

(36)

We find this from (36) as

(ϑ + I)ϵ (θ + I)ϵ (−(ϵ − 1)I)v+r−1 (−ϵ + v + r − v − r)I

×
((

θ + I
)

v

)−1 ((
ϑ + I

)
r

)−1 1
v!

1
r!

= (ϑ + I)ϵ (θ + I)ϵ (−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 1
v!

1
r!

.

(37)

Hence, from (35) and (37), the coefficient of zv wr is the same on both sides of Equation (34),
and this complete the proof.

4. Some Integrals Involving the Matrix Bessel Polynomial Y(θ,ϑ)
ϵ (z, w)

In this section, our attention is directed towards presenting integral representations
for the matrix Bessel polynomial Y(θ,ϑ)

m (z, w) in the form of theorems.
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Theorem 4. Let θ, ϑ, and R be positive stable matrices in Cr×r satisfying the condition (9) and
where all matrices are commutative, then we obtain∫ ∞

0
e−t tR−I Y(θ,ϑ)

ϵ (
a
tz

,
b

tw
) dt

= Γ(R) (ϑ + I)ϵ (θ + I)ϵ ×
ϵ

∑
p=0

(
(I − R)p

)−1 (
(θ + I)p

)−1
(−ϵI)p

(−a/z)p

p!
(38)

p

∑
r=0

(
ϑ + I)r

)−1
(−pI)r (−(θ + pI))r

(bz/aw)r

r!
.

Where a, b > 0

Proof. By using the definition (27) in the L.H.S., we obtain

(ϑ + I)ϵ (θ + I)ϵ

ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 (a/z)v

v!

× (b/w)r

r!

∫ ∞

0
e−ttR−(v+r+1)I dt

= (θ + I)ϵ (ϑ + I)ϵ

ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 (a/z)v

v!
(b/w)r

r!
Γ(R − (v + r)I)

= Γ(R) (ϑ + I)ϵ (θ + I)ϵ

ϵ

∑
v=0

ϵ−v

∑
r=0

(−1)v+r(−ϵI)v+r

((
I − R

)
v+r

)−1 ((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1

× (a/z)v

v!
(b/w)r

r!
.

By substituting p = v + r, rearranging the terms, and using (1), we obtain

= Γ(R) (ϑ + I)ϵ (θ + I)ϵ

ϵ

∑
p=0

p

∑
r=0

(−1)p (−ϵI)p

((
I − R

)
p

)−1 ((
θ + I

)
p−r

)−1 ((
ϑ + I

)
r

)−1

× (a/z)p−r

(p − r)!
(b/w)r

r!

= Γ(R) (ϑ + I)ϵ (θ + I)ϵ

ϵ

∑
p=0

(
(I − R)p

)−1 (
(θ + I)p

)−1
(−ϵI)p

(−a/z)p

p!

×
p

∑
r=0

(
(ϑ + I)r

)−1
(−pI)r (−θ − pI)r

(bz/aw)r

r!
.

This concludes the proof.

Theorem 5. For θ andϑ, R and K are matrices in Cr×r such that RK = KR and satisfying the
condition (9), then we obtain∫ 1

0
tR−I (1 − t)K−I Y(θ,ϑ)

ϵ (
zt
a

,
wt
b
) dt

= (θ + I)ϵ (ϑ + I)ϵ β(K, R)
ϵ

∑
p=0

(
(R + K)p

)−1 (
(θ + I)p

)−1
(−ϵI)p (R)p

(z/a)p

p!
(39)

p

∑
r=0

(
(ϑ + I)r

)−1
(−pI)r (−θ − pI)r

(aw/bz)r

r!
.

where a, b > 0
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Proof. By using the L.H.S. of (39) and (27), we find that

(ϑ + I)ϵ (θ + I)ϵ

ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 (z/a)v

v!
(w/b)r

r!

×
∫ 1

0
tR+(v+r−1)I (1 − t)K−I dt

= (ϑ + I)ϵ (θ + I)ϵ

ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 (z/a)v

v!
(w/b)r

r!

× Γ(R + (v + r)I) Γ(K) Γ−1(R + K + (v + r)I)

= Γ(R)Γ(K) Γ−1(R + K) (ϑ + I)ϵ (θ + I)ϵ

m

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1((
ϑ + I

)
r

)−1

×
(
(R + k)v+r

)−1
(R)v+r

(z/a)v

v!
(w/b)r

r!
,

By putting v + r = p and rearranging the terms, we have

= (ϑ + I)ϵ (θ + I)ϵ β(R, K)

×
ϵ

∑
p=0

p

∑
r=0

(−ϵI)p

((
θ + I

)
p−r

)−1((
ϑ + I

)
r

)−1 (
(R + k)p

)−1
(R)p

(z/a)p−r

(p − r)!
(w/b)r

r!

= (ϑ + I)ϵ (θ + I)ϵ β(R, K)
ϵ

∑
P=0

p

∑
r=0

(−ϵI)p

((
θ + I

)
p

)−1((
ϑ + I

)
r

)−1 ((
R + K

)
p

)−1

× (R)p (−pI)r (−θ − pI)r
(z/a)p

p!
(aw/bz)r

r!

= (ϑ + I)ϵ (θ + I)ϵ β(R, K)

×
ϵ

∑
P=0

((
θ + I

)
p

) ((
R + K

)
p

)
(R)p

(z/a)p

p!

p

∑
r=0

(
(ϑ + I)r

)−1
(−pI)r (−θ − pI)r

(aw/bz)r

r!

This complete the proof.

Theorem 6. If θ and ϑ are positive stable matrices in Cr×r such that θϑ = ϑθ and satisfy
the condition (9), then the matrix Bessel polynomials Y(θ,ϑ)

ϵ (z, w) satisfy the following integral
representation as∫ 1

0
zθ (1 − z)ϑ−θ−I Y(θ,ϑ)

ϵ (z/a, w/b) dz

= Γ−1(ϑ + (ϵ + 1)I) Γ(θ + (ϵ + 1)I) Γ(ϑ − θ) Y(ϑ,ϑ)
ϵ (1/a, w/b),

(40)

where a, b > 0.

Proof. By using the L.H.S. of (40) and (27), we obtain

(ϑ + I)ϵ (θ + I)ϵ

ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 (1/a)v

v!
(w/b)r

r!

×
∫ 1

0
zθ+vI (1 − z)ϑ−θ−I dz

= (ϑ + I)ϵ (θ + I)ϵ

ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 (1/a)v

v!
(w/b)r

r!

× Γ−1(ϑ + (v + 1)I)Γ(θ + (v + 1)I) Γ(ϑ − θ)

= (θ + I)ϵ (ϑ + I)ϵ Γ−1(ϑ + I) Γ(θ + I) Γ(ϑ − θ)



Axioms 2024, 13, 202 11 of 15

×
ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 (1/a)v

v!
(w/b)r

r!

= (θ + I)ϵ (ϑ + I)ϵ Γ(θ + I) Γ(ϑ − θ) Γ−1(ϑ + I)
((

ϑ + I
)

ϵ

)−1 ((
ϑ + I

)
ϵ

)−1
Y(ϑ,ϑ)

ϵ (1/a, w/b)

= Γ−1(ϑ + (ϵ + 1)I) Γ(θ + (ϵ + 1)I) Γ(ϑ − θ) Y(ϑ,ϑ)
ϵ (1/a, w/b).

This leads to the assertion (40).

Theorem 7. Let θ and ϑ be positive stable matrices in Cr×r such that θϑ = ϑθ satisfies the
condition (9), then we have∫ t

0
zθ (t − x)−ϑ−2ϵI Y(θ,ϑ)

ϵ (z/a, w/b) dz = tθ+ϑ+(1−2ϵ)I Γ(θ + (1 + m)I)

× Γ−1(θ − ϑ + (2 − ϵ)I) Γ
(
(1 − 2ϵ)I − ϑ

)
Y(θ−ϑ+(1−2ϵ)I,ϑ)

ϵ (t/a, w/b),
(41)

where a, b > 0

Proof. By using the L.H.S. of (41) and (27), we obtain

(ϑ + I)ϵ (θ + I)ϵ

ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 (1/a)v

v!
(w/b)r

r!

×
∫ t

0
zθ+vI (t − z)−ϑ−2nI dz.

Substituting z = tu, we obtain

= (ϑ + I)ϵ (θ + I)ϵ

ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 (1/a)v

v!
(w/b)r

r!

× tθ−ϑ+(v−2ϵ+1)I
∫ 1

0
uθ+vI (1 − u)−ϑ−2nI du

= (θ + I)ϵ (ϑ + I)ϵ tθ+ϑ−(2ϵ−1)I

×
ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 (t/a)v

v!
(w/b)r

r!

× Γ−1(θ − ϑ + (v − 2ϵ + 2)I) Γ(θ + (v + 1)I)Γ((1 − 2ϵ)I − ϑ)

= (θ + I)ϵ (ϑ + I)ϵ Γ−1(θ − ϑ + (−2ϵ + 2)I) Γ(θ + I)Γ((1 − 2M)I − ϑ)

×
ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ − ϑ + (2 − 2ϵ)I

)
v

)−1 ((
I + ϑ

)
r

)−1 (t/a)v

v!
(w/b)r

r!
tθ+ϑ−(2ϵ−1)I

= tθ+ϑ+(1−2ϵ)I Γ−1(θ − ϑ + (2 − ϵ)I))

× Γ(θ + (1 + ϵ)I) Γ
(
(1 − 2ϵ)I − ϑ

)
Y(θ−ϑ+(1−2ϵ)I,ϑ)

ϵ (t/a, w/b),

and this complete the proof.

5. The Laplace–Carson Matrix Transform

In this section, we introduce the Laplace–Carson transform of the extended matrix
Bessel polynomial. Initially, we provide the definition of the Laplace–Carson transform for
matrix functions.
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Definition 2. Let F(u, s) be a function defined on the collection of all the positive stable matrices
observed in Cr×r, then the two-dimensional Laplace–Carson transform is provided by:

F(u, s) = L
{

f (z, w) : (z, w) → (u, s)
}

= u s
∫ ∞

0

∫ ∞

0
e−uz−sw f (z, w) dz dw (42)

such that the integral on the right side of the equation exists.

Theorem 8. Suppose that θ and ϑ are in Cr×r satisfying the condition (9) and where all matrices
are commutative, then we obtain the Laplace–Carson transform as

L
{
(z/a)θ (w/b)ϑ Y(θ,ϑ)

ϵ (z/a, w/b) : (z, w) → (u, s)
}

= Γ(θ + (ϵ + 1)I) Γ(ϑ + (ϵ + 1)I) (au)−θ (bs)−ϑ
(

1 − (1/au)− (1/bs)
)ϵ

,
(43)

where Re(u) > 0, Re(s) > 0.

Proof. By using Definition 2, we find that

L.H.S = us
∫ ∞

0

∫ ∞

0
e−uz−sw (z/a)θ (w/b)ϑ Y(θ,ϑ)

ϵ (z/a, w/b) dz dw

= us K
ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 (1/a)θ+vI

v!
(1/b)ϑ+rI

r!

×
∫ ∞

0
e−uzzθ+vIdz

∫ ∞

0
e−swwϑ+rI dw

where K = (θ + I)ϵ (ϑ + I)ϵ. Putting uz = t and sw = n, we have

= K
ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1
Γ(θ + (v + 1)I) Γ(ϑ + (r + 1)I)

×
[
(au)θ+vI

]−1 [
(bs)ϑ+rI

]−1 1
v!

1
r!

= K Γ(θ + I) Γ(ϑ + I)
[
(au)θ

]−1 [
(bs)ϑ

]−1 ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r
(1/au)v

v!
(1/bs)r

r!

= Γ(θ + (n + 1)I) Γ(ϑ + (n + 1)I)
[
(au)θ

]−1 [
(bs)ϑ

]−1 (
1 − (1/au)− (1/bs)

)ϵ
,

which is the required proof.

Theorem 9. Suppose that θ and ϑ are in Cr×r, satisfying the condition (9) and where all matrices
are commutative, then we obtain

L
{

Y(θ,ϑ)
ϵ (z/a, w/b) : (z, w) → (u, s)

}
= A F2(−ϵI, I, I; θ + I, ϑ + I; 1/au, 1/bs), (44)

where A = (θ + I)ϵ (ϑ + I)ϵ and F2 is the second Appell’s matrix function defined in [28] as

F2(θ, ϑ, ϑ
′
; R, R

′
; z, w) =

ϵ

∑
v=0

ϵ−v

∑
r=0

(θ)v+r(ϑ)v (ϑ
′
)r

(
(R)v

)−1 (
(R

′
)r

)−1 zv

v!
wr

r!
.
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Proof. Using Definition 2, we have

L.H.S = us
∫ ∞

0

∫ ∞

0
e−uz−sw Y(θ,ϑ)

ϵ (z/a, w/b) dz dw

= us A
ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 (1/a)v

v!
(1/b)r

r!

×
∫ ∞

0
e−uzzvdz

∫ ∞

0
e−swwr dw

= us A
n

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1

× Γ(v + 1)Γ(r + 1) × 1
uv+1

1
sr+1

(1/a)v

v!
(1/b)r

r!

= A
ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 1
(au)v

1
(bs)r

(1)v

v!
(1)r

r!

= A F2(−ϵI, I, I; θ + I, ϑ + I; 1/au, 1/bs),

which is the required proof.

Theorem 10. Let θ and ϑ be matrices in Cr×r, satisfying the condition (9) and where all matrices
are commutative, then we obtain

L
{

Y(θ,ϑ)
ϵ (z/a, 1/b) sin

√
z w : (z, w) → (u, s)

}
(45)

= 2πusA (4us + 1)−3/2 ψ1(−ϵI, (3/2)I; θ + I, ϑ + I; (4s/a)(4us + 1)−1, 1/b)

where A = (θ + I)ϵ (ϑ+ I)ϵ, and the Humbert matrix function ψ1(θ, ϑ; R, R
′
; z, w) of two complex

variables is given in [29] as

ψ1(θ, ϑ; R, R
′
; z, w) =

ϵ

∑
v=0

ϵ−v

∑
r=0

(θ)v+r(ϑ)v

(
(R)v

)−1 (
(R

′
)r

)−1 zv

v!
wr

r!

Proof. Using Definition 2, we obtain

L.H.S = us
∫ ∞

0

∫ ∞

0
e−uz−sw Y(θ,ϑ)

ϵ (z/a, 1/b) sin
√

z w dz dw

Since sin
√

z w =
∞

∑
k=0

(−1)k

Γ(2k + 2)
(zw)k+ 1

2 , then,we get

= us A
ϵ

∑
v=0

ϵ−v

∑
r=0

∞

∑
k=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 (1/a)v

v!
(1/b)r

r!

× (−1)k

Γ(2k + 2)

∫ ∞

0
e−uzzv+k+ 1

2 dz
∫ ∞

0
e−swwk+ 1

2 dw

= us A
ϵ

∑
v=0

ϵ−v

∑
r=0

∞

∑
k=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 (1/a)v

v!
(1/b)r

r!

× (−1)k

Γ(2k + 2)
Γ(v + k + 3/2) Γ(k + 3/2)

uv+k+3/2 sk+3/2 .
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By using the duplication form of the gamma function, we obtain

= A us
√

π u−3/2 s−3/2
ϵ

∑
v=0

ϵ−v

∑
r=0

∞

∑
k=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 (1/a)v

v!
(1/b)r

r!

× (−1)k

Γ(k + 1)
Γ(v + k + 3/2) Γ(k + 3/2)
Γ(k + 3/2) 22k+1 uv (us)k

=
1
2

A
( π

us

) 1
2

ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 (1/a)vΓ(v + 3/2)
v!

(1/b)r

r!

×
∞

∑
k=0

(
v +

3
2

)
k

(1/4us)k

k!

= A
Γ( 3

2 )
√

π

2
√

us

×
ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 (1/a)v(3/2)v

uvv!
(1/b)r

r!

(
1 +

1
4us

)
)−v− 3

2

= A
1
4

π (us)−
1
2

(
4us

4us + 1

) 3
2

×
ϵ

∑
v=0

ϵ−v

∑
r=0

(−ϵI)v+r

((
θ + I

)
v

)−1 ((
ϑ + I

)
r

)−1 ((3/2)v

v!
(1/b)r

r!

(
4s

a(4us + 1)

)v

= 2πusA (4us + 1)−3/2ψ1(−ϵI, (3/2)I; θ + I, ϑ + I; (4s/a)(4us + 1)−1, 1/b).

This concludes the proof of Theorem 10.

6. Conclusions

The article examines a two-variable counterpart of matrix Bessel polynomials and
investigates specific differential formulas and recurrence relations associated with them.
Part of the integral formula for this new extension of matrix Bessel polynomials is also
presented. In addition, we presented the Laplace–Carson transform for the analogous
matrix Bessel polynomial with two variables. Future research efforts could be devoted
to unveiling further properties and features of these polynomials. This could include the
exploration of extended and generalized forms, as well as integral representations. The
analysis of these facets may contribute to a deeper understanding of the polynomials and
their behavior.
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