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Abstract: The approach to solving linear systems with structured matrices by means of the bidiagonal
factorization of the inverse of the coefficient matrix is first considered in this review article, the
starting point being the classical Björck–Pereyra algorithms for Vandermonde systems, published
in 1970 and carefully analyzed by Higham in 1987. The work of Higham briefly considered the role
of total positivity in obtaining accurate results, which led to the generalization of this approach to
totally positive Cauchy, Cauchy–Vandermonde and generalized Vandermonde matrices. Then, the
solution of other linear algebra problems (eigenvalue and singular value computation, least squares
problems) is addressed, a fundamental tool being the bidiagonal decomposition of the corresponding
matrices. This bidiagonal decomposition is related to the theory of Neville elimination, although
for achieving high relative accuracy the algorithm of Neville elimination is not used. Numerical
experiments showing the good behavior of these algorithms when compared with algorithms that
ignore the matrix structure are also included.

Keywords: bidiagonal decomposition; Björck–Pereyra algorithm; structured matrix; totally positive
matrix; high relative accuracy
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1. Introduction

The second edition of the Handbook of Linear Algebra [1], edited by L. Hogben, is
substantially expanded from the first edition of 2007 and, in connection with our work, it
contains a new chapter by M. Stewart entitled Fast Algorithms for Structured Matrix Compu-
tations (Chapter 62) [2]. This chapter includes, as Section 62.7, the subject of fast algorithms
for Vandermonde systems. Among these algorithms the author incorporates the Björck–
Pereyra algorithm for solving Vandermonde linear systems, indicating the relationship
with polynomial interpolation by using the Newton basis, and the interpretation of this
process as a factorization in terms of bidiagonal matrices.

Section 62.7 also recalls the high relative accuracy of the Björck–Pereyra algorithm
when the (nonnegative) nodes are ordered in increasing order, a fact observed in the error
analysis presented by N. J. Higham in [3].

In connection with high relative accuracy, the book [1] also contains a chapter (no. 59),
due to Z. Drmač, entitled Computing Eigenvalues and Singular Values to High Relative Accuracy
(already available in the first edition as Chapter 46) [4]. In this chapter, the author includes
references to the work of Demmel and Kahan [5] and of Fernando and Parlett [6] on the
computation of singular values of bidiagonal matrices, fundamental references for the
subsequent work of Demmel and Koev (see [7–9]). A brief comment on the bidiagonal
factorization of totally nonnegative matrices and to the work of Koev on the computation
of eigenvalues and singular values is also included in Section 59.3 of that chapter.

We find in that book [1] another chapter closely related to our subject: Chapter 29 due
to S. M. Fallat [10]. Section 29.2 of that chapter (entitled Factorizations) explicitly considers
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the bidiagonal factorization of totally positive matrices. The author writes: Recently, there has
been renewed interest in total positivity partly motivated by the so-called “bidiagonal factorization”,
namely, the fact that any totally positive matrix can be factored into entry-wise bidiagonal matrices.
This result has proven to be a very useful and tremendously powerful property for this class.

Nevertheless, the approach of the chapter is mainly theoretical, and the author does
not include references to numerical linear algebra papers that exploit the bidiagonal fac-
torization of totally positive matrices (the part of the Handbook [1] devoted to numerical
methods is Part III, which includes Chapter 50 through Chapter 64).

We observe the same situation in two other recent relevant books on numerical linear
algebra: the fourth edition of Golub and Van Loan’s Matrix Computations [11] and the
new book by A. Björck Numerical Methods in Matrix Computations [12]. In both works
the authors pay attention to the description of the Björck–Pereyra algorithm for solving
Vandermonde linear systems, in the corresponding chapters devoted to linear system
solving: Chapter 4 (Special Linear Systems) in [11], and Chapter 1 (Direct Methods for Linear
Systems) in [12]. Other separate chapters from both books are devoted to eigenvalue and
singular value problems.

Consequently, to the reader, these problems appear as very different problems: linear
system solving, or eigenvalue and singular value problems. The purpose of the present
work is to show, in the important cases where total positivity is present, the unifying role
of the bidiagonal decompositions of the corresponding matrices to develop a first stage in
algorithms for solving various linear algebra problems with high relative accuracy.

The analysis of the Björck–Pereyra algorithms presented by Higham in [3] showed
(among many other things) the important role of total positivity in the accuracy of the
algorithms. So this property will be of fundamental importance in our account.

Let us recall that, according to the classical respectable definition, a matrix is said to
be totally positive if all its minors are nonnegative, and when all the minors are positive the
matrix is called strictly totally positive [13]. More recently, matrices with all their minors
nonnegative have been called totally nonnegative matrices, this being mathematically more
precise. Recent books on this subject are [14,15]. These monographs cover many aspects of
the theory and applications of totally positive matrices and, although they do not develop
the topic of accurate computations with this type of matrices, they contain useful references
to the work of Demmel and Koev in this field.

The classical Björck–Pereyra algorithms date back to 1970, and now we want to
highlight the important work of Demmel and Koev in the development of these algorithms
with high relative accuracy. In [7] Demmel and Koev called some of these methods Björck–
Pereyra-type methods, acknowledging in this way the importance of the work of Björck
and Pereyra, and in the present work we want to carry out a necessary explanation of the
analogies and differences between Björck–Pereyra-type methods and related methods, the
main analogy being the role of bidiagonal factorization of matrices.

One key fact is that while Björck–Pereyra algorithms for linear systems were related to
the factorization of the inverse A−1 of the coefficient matrix, the use of the bidiagonal factor-
ization of A considered in the work of Koev allowed to extend the accurate computations
to various linear algebra problems different from linear system solving.

This bidiagonal factorization is related to Neville elimination (see [16,17]), and early
applications of it were the solution of Cauchy–Vandermonde linear systems in [18] (in this
case by using the related factorization of A−1) and the computation of eigenvalues and
singular values in [8].

It is clear that a very important concept in our presentation is that of high relative
accuracy. By using the bidiagonal factorization related to Neville elimination (a key result
being a theorem of [17] included in [8] as Theorem 2.1), Koev presented in [8] algorithms to
compute eigenvalues and singular values of totally positive matrices to high relative accuracy.
The definition of this concept can be seen in the recent paper [19]:
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For a computed quantity x̂, to have high relative accuracy means that it satisfies an error
bound with its true counterpart x

|x̂ − x| ≤ θ|x|,

where θ is a modest multiple of the machine precision ϵ. In other words, the sign and most
significant digits of x must be correct.

As we learn from [20], an algorithm computes to high relative accuracy if it satisfies the
so-called NIC (no inaccurate cancellation) condition. NIC: The algorithm only multiplies,
divides, adds (resp. subtracts) real numbers with like (resp. differing) signs, and otherwise
only adds or subtracts input data.

The rest of the paper is organized as follows. In Section 2 the problem of linear
system solving is considered, a problem to which Björck–Pereyra algorithms and their
generalizations were devoted. Section 3 reviews Neville elimination and the bidiagonal
factorization associated with it, a key theoretical tool for the development of algorithms.
The extension of these algorithms based on a bidiagonal factorization to the problems
of eigenvalue and singular value computation, including a look at the initial history of
this approach, is addressed in Section 4, while Section 5 considers the extension to the
rectangular case, which allows solving least squares problems. The brief Section 6 considers
the class of totally positive tridiagonal matrices, Section 7 includes the reference to very
recent applications to matrices different from collocation matrices as well as the singular
case, and finally, Section 8 is devoted to conclusions.

2. Linear System Solving: The Vandermonde Case and Some Extensions

As recently recalled in [12], it was in 1970 when Björck and Pereyra showed that the
Newton–Horner algorithm for solving a Vandermonde linear system related to polynomial
interpolation could be expressed in terms of a factorization of the inverse of the Vander-
monde matrix as a product of diagonal and lower bidiagonal matrices. In their paper [21]
those authors included, after the numerical experiments, the following sentence:

It seems as if at least some problems connected with Vandermonde systems, which traditionally
have been considered too ill-conditioned to be attacked, actually can be solved with good precision.

Many years later, at the beginning of his brilliant contributions in the field of numerical
linear algebra, Higham gave in [3] an analysis of Björck–Pereyra algorithms and indicated
that when the interpolation nodes are nonnegative and ordered in increasing order then
the corresponding Vandermonde matrix

1 x0 · · · xn
0

1 x1 · · · xn
1

...
...

. . .
...

1 xn · · · xn
n


is totally positive. If, in addition, the components of f (see next paragraph) alternate in sign,
then there is no cancellation and high relative accuracy is obtained.

We follow the clear presentation of [11,12] to show the matrix interpretation of the
Björck–Pereyra algorithm to solve the dual Vandermonde system VTa = f , i.e., the linear
system corresponding to polynomial interpolation, where f is the vector of interpolation
data. These authors call Vandermonde matrix to the transpose V of that matrix, whose first
row is (1, 1, . . . , 1).

So we will consider the linear system with a coefficient matrix (of order n + 1)

VT =


1 x0 · · · xn

0
1 x1 · · · xn

1
...

...
. . .

...
1 xn · · · xn

n

,
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where x0, · · · , xn are the interpolation nodes.
As we read in Section 4.6 of [11] and in Section 1.8.3 of [12], the solution a of VTa = f

is given as

a = (VT)−1 f = LTUT f =

L0(x0)
T · · · Ln−1(xn−1)

T D−1
n−1Ln−1(1) · · · D−1

0 L0(1).

For k = 0, · · · , n − 1, Dk are diagonal matrices:

Dk = diag(1, · · · , 1, xk+1 − x0, · · · , xn − xn−k−1)

(with the k + 1 initial diagonal entries equal to 1).
On the other hand, for k = 0, · · · , n − 1, Lk(α) are lower bidiagonal matrices with all

the diagonal entries equal to 1. For the subdiagonal entries, we have

Lk(α)(j + 1, j) = 0 f or j = 1, · · · , k

and
Lk(α)(j + 1, j) = −α f or j = k + 1, · · · , n + 1.

In Section 3 we will illustrate with an example the precise structure of those matrices
and we will show the differences between this factorization and the factorization related to
Neville elimination.

Let us observe that we can identify two stages in the algorithm, since a = LTUT f = LTc,
where c = UT f . This vector c is the vector of divided differences, i.e., the coefficients of the
interpolating polynomial in the Newton basis. The second stage (a = LTc) corresponds to
the change of basis from the Newton basis to the monomial basis.

This approach was later applied by Boros, Kailath and Olshevsky to design a Björck–
Pereyra-type algorithm for solving Cauchy linear systems. As we read in [22], “for the class
of totally positive Cauchy matrices the new algorithm is forward and backward stable, producing a
remarkable high relative accuracy. In particular, Hilbert linear systems, often considered to be too
ill-conditioned to be attacked, can be rapidly solved with high precision”.

Another generalization (in this case to confluent Vandermonde-like systems) was
presented by Higham (see [23] and Chapter 22 of his book [24]), but in general, the bidi-
agonal structure of the matrices involved in the factorization is lost. More recently a new
generalization of Björck–Pereyra algorithms (now to the case of Szegö–Vandermonde ma-
trices) was introduced in [25], but the authors admit that some matrices involved in the
factorization are not sparse (i.e., they are far from being bidiagonal).

A bidiagonal factorization of the inverse of the coefficient matrix (in this case for
a Cauchy–Vandermonde matrix) related to Neville elimination was presented in [18], a
pioneering paper on this subject which has recently been completed in the light of the work
of Koev (see [26]). Also, in [7] the authors extend the Björck–Pereyra algorithm to solve
totally positive generalized Vandermonde linear systems Gy = b with

G =


xa1

1 xa2
1 · · · xan

1
xa1

2 xa2
2 · · · xan

2
...

...
. . .

...
xa1

n xa2
n · · · xan

n


(where 0 ≤ a1 < a2 < · · · < an are integers and 0 < x1 < x2 < · · · < xn) by computing
a bidiagonal decomposition of G−1 and computing y = G−1b. The authors indicate that
this decomposition, related to Neville elimination [17], reveals the total positivity of G and
yields a Björck–Pereyra-type algorithm for the solution of Gy = b. They also comment that
when b has an alternating sign pattern then their algorithm is subtraction-free so that the
solution y is very accurate, the same fact observed by Higham in [3] when analyzing the
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Björck–Pereyra algorithm. This is a consequence of the fact that the inverse of a totally
positive matrix G has a checkerboard sign pattern:

G−1 =


+ − + −
− + − +
+ − + −
− + − +

.

In their work [20] Demmel and co-workers have briefly indicated the importance of
these Björck–Pereyra-type methods for solving linear systems with several classes of totally
positive matrices (Vandermonde, Cauchy, Pascal, Cauchy–Vandermonde, generalized
Vandermonde, Bernstein–Vandermonde, . . . ). The main fact, however, is that when the
bidiagonal factorization of the coefficient matrix A is related to Neville elimination, then
there are exactly n2 independent nonnegative parameters in the bidiagonal decomposition
which are stored in a matrix B = BD(A) (bidiagonal decomposition of A). Then, starting
from an accurate BD(A), virtually all linear algebra with totally nonnegative matrices can
be performed accurately (i.e., to high relative accuracy) by using algorithms due to P. Koev
(see [27], where P. Koev has also included some algorithms from other authors).

Unfortunately the great book of Björck [12] only considers the papers [7,22], which
include (in the title or in the abstract) the name Björck–Pereyra, and so only the problem of
linear system solving is analyzed, while the application of the bidiagonal factorization to
the computation of eigenvalues and singular values is not addressed.

The great achievement of the work of Koev was to show that, while all these Björck–
Pereyra-type methods pay attention to the factorization of the inverse A−1 of the coefficient
matrix A (which seems natural when solving a linear system Ax = f ), if one uses the
(unique) bidiagonal decomposition of A related to Neville elimination various linear
algebra problems can additionally be solved.

Therefore, our following section is devoted to presenting this bidiagonal decom-
position of A, and to showing the analogies and differences between classical Björck–
Pereyra algorithms and algorithms related to Neville elimination when dealing with totally
positive matrices.

3. Bidiagonal Factorization and Neville Elimination

As recently recalled by J. M. Peña in [28], the work by Gasca and Mühlbach on the
connection between interpolation formulas and elimination techniques made it clear that
what they named Neville elimination had special interest for totally positive matrices.

The paper [28] also considers the history of initial approaches to bidiagonal factoriza-
tion (different from Neville elimination) and addresses (following [29]) the question of its
uniqueness, presenting in its Subsection 5.1 the details of the bidiagonal factorization by
means of Neville elimination.

In the survey paper [30], Gasca and Mühlbach recall the early history of this elimina-
tion technique: “one strategy which we called Neville elimination proved to be well suited to work
with some special classes of matrices, in particular totally positive matrices”. They also remark
on one of the first important applications of this elimination technique: “using the Neville
elimination strategy, in [31,32] tests of algorithmic complexity O(N4) for matrices being strictly
totally positive were derived for the first time”. These two papers were published in 1987, and
later on in [17,33,34] Gasca and Peña greatly improved the previous results on Neville
elimination and total positivity. Their work was one of the starting points for the work
of Demmel and Koev in developing algorithms, starting from the appropriate bidiagonal
decomposition associated with Neville elimination (which is the theoretical tool but not the
algorithm being used with the various classes of structured matrices), made the accurate
solution of many linear algebra problems for totally positive matrices possible, including
eigenvalue and singular value computation (see [7–9]).

For the sake of completeness, we will now recall (following [26,35]) several basic facts
on Neville elimination and total positivity which are very important to obtain the results
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presented in this section. The notation follows the one used in [33,34]. Given k, n ∈ N
(1 ≤ k ≤ n), Qk,n will denote the set of all increasing sequences of k positive integers less
than or equal to n.

Let A be a square real matrix of order n. For k ≤ n, m ≤ n, and for any α ∈ Qk,n
and β ∈ Qm,n, we will denote by A[α|β] the k × m submatrix of A containing the rows
numbered by α and the columns numbered by β.

Neville elimination is a procedure that makes zeros in a matrix adding to a given row
an appropriate multiple of the previous one.

Let A = (ai,j)1≤i,j≤n be a square matrix of order n. The Neville elimination of A
consists of n − 1 steps resulting in a sequence of matrices A1 := A → A2 → . . . → An,
where At = (a(t)i,j )1≤i,j≤n has zeros below its main diagonal in the t − 1 first columns. The
matrix At+1 is obtained from At (t = 1, . . . , n − 1) by using the following formula:

a(t+1)
i,j :=


a(t)i,j , if i ≤ t

a(t)i,j − (a(t)i,t /a(t)i−1,t)a(t)i−1,j , if i ≥ t + 1 and j ≥ t + 1
0 , otherwise.

In this process, the element

pi,j := a(j)
i,j 1 ≤ j ≤ n, j ≤ i ≤ n

is called (i, j) pivot of the Neville elimination of A. The process would break down if any
of the pivots pi,j (j ≤ i < n) is zero. In that case, we can move the corresponding rows to
the bottom and proceed with the new matrix, as described in [33]. The Neville elimination
can be conducted without row exchanges if all the pivots are nonzero, as it will happen in
our situation. The pivots pi,i are called diagonal pivots. If all the pivots pi,j are nonzero, then
pi,1 = ai,1 ∀i and, by Lemma 2.6 of [33],

pi,j =
det A[i − j + 1, . . . , i|1, . . . , j]

det A[i − j + 1, . . . , i − 1|1, . . . , j − 1]
1 < j ≤ i ≤ n.

The element
mi,j =

pi,j

pi−1,j
1 ≤ j ≤ n − 1, j < i ≤ n,

is called multiplier of the Neville elimination of A. The matrix U := An is upper triangular
and has diagonal pivots on its main diagonal.

The complete Neville elimination of a matrix A consists of performing the Neville elimi-
nation of A for obtaining U and then continuing with the Neville elimination of UT . The
(i, j) pivot (respectively, multiplier) of the complete Neville elimination of A is the (j, i)
pivot (respectively, multiplier) of the Neville elimination of UT , if j ≥ i. When no row
exchanges are needed in the Neville elimination of A and UT , we say that the complete
Neville elimination of A can be conducted without row and column exchanges, and in
this case, the multipliers of the complete Neville elimination of A are the multipliers of the
Neville elimination of A if i ≥ j and the multipliers of the Neville elimination of AT if j ≥ i
(see p. 116 of [17]).

Neville elimination characterizes nonsingular totally positive matrices, according to
the results of [17] recalled as Theorem 8 in [28]:

Theorem 1. A square matrix A is nonsingular totally positive if and only if the Neville elimination
of A and AT can be performed without row exchanges, all the multipliers of the Neville elimination
of A and AT are nonnegative and all the diagonal pivots of the Neville elimination of A are positive.

The bidiagonal decomposition of A and of its inverse A−1 are given in the following
theorems (see [8,9,17,28,33,34], and see [26] for the case of Cauchy–Vandermonde matrices):
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Theorem 2. Let A be a nonsingular totally positive matrix of size n × n. Then, A−1 admits a
factorization in the form

A−1 = G1 · · · Gn−1D−1Fn−1 · · · F1,

where Gi (1 ≤ i ≤ n − 1) are n × n upper triangular bidiagonal matrices, Fi (i = 1, . . . , n − 1) are
n × n lower triangular bidiagonal matrices, and D is a diagonal matrix of order n.

The structure of these matrices is the following:
Fi, Gi (i = 1, . . . , n) are (n + 1)× (n + 1) bidiagonal matrices of the form

Fi =



1
0 1

. . . . . .
0 1

−mi+1,i 1
−mi+2,i 1

. . . . . .
−mn,i 1


, GT

i =



1
0 1

. . . . . .
0 1

−m̃i+1,i 1
−m̃i+2,i 1

. . . . . .
−m̃n,i 1


and D is the diagonal matrix of order n

D = diag{p1,1, p2,2, . . . , pn,n}.

The quantities mi,j are the multipliers of the Neville elimination of the matrix A. The
quantities m̃i,j are the multipliers of the Neville elimination of AT . Finally, the ith diagonal
element of D (i = 1, . . . , n) is the diagonal pivot pii of the Neville elimination of A.

Theorem 3. Let A be a nonsingular totally positive matrix of size n × n. Then, A admits a
factorization in the form

A = F̄n−1 · · · F̄1DḠ1 · · · Ḡn−1

where F̄i (1 ≤ i ≤ n − 1) are n × n lower triangular bidiagonal matrices, Ḡi (1 ≤ i ≤ n − 1) are
n × n upper triangular bidiagonal matrices, and D is a diagonal matrix of order n.

The structure of these matrices is now the following:

F̄i =



1
0 1

. . . . . .
0 1

mi+1,1 1
mi+2,2 1

. . . . . .
mn,n−i 1


, ḠT

i =



1
0 1

. . . . . .
0 1

m̃i+1,1 1
m̃i+2,2 1

. . . . . .
m̃n,n−i 1


and D is the diagonal matrix of order n

D = diag{p1,1, p2,2, . . . , pn,n}.

As in the previous theorem, the quantities mi,j are the multipliers of the Neville
elimination of the matrix A, the quantities m̃i,j are the multipliers of the Neville elimination
of AT , and the ith diagonal element of D (i = 1, . . . , n) is the diagonal pivot pii of the
Neville elimination of A.

Remark 1. The algorithm TNBD in [27] computes the matrix denoted as BD(A) in [9], which
represents the bidiagonal decomposition of A (its entries are the n2 parameters mi,j, m̃i,j and pii
of Theorem 3, as illustrated in the next example). But it is a remarkable fact that the same matrix
BD(A) also serves to represent the bidiagonal decomposition of A−1 (see Example 3.4 in [35]). The
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algorithm TNBD computes BD(A) by performing Neville elimination on A, which involves true
subtractions, and therefore, does not guarantee high relative accuracy.

As we have seen, the matrix BD(A) serves to have a new parameterization of a
totally nonnegative matrix A. Although it does not guarantee high relative accuracy,
the algorithm TNBD of the package TNTool [27] computes BD(A) starting from A. But,
remarkably we also have the other way: starting from B = BD(A), the algorithm TNExpand
of [27] computes (now with high relative accuracy) the matrix A. In addition, the algorithm
TNInverseExpand of Marco and Martínez (also included in [27]) computes, starting from
B = BD(A), the inverse matrix A−1, again with high relative accuracy.

The following example illustrates these facts and the accuracy obtained by using the
algorithm TNInverseExpand.

Example. Starting from

B =



16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1


(the magic square appearing in Dürer’s engraving Melencolia I) we obtain, by means of
the statement A = TNExpand(B), the following matrix (which we can call the Dürer totally
positive matrix):

A =



16 48 96 1248

80 250 610 8810

720 2310 6277 94941

2880 10140 37011 617764


.

This means that the bidiagonal decomposition of A is

A =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 4 1





1 0 0 0

0 1 0 0

0 9 1 0

0 0 15 1





1 0 0 0

5 1 0 0

0 6 1 0

0 0 14 1





16 0 0 0

0 10 0 0

0 0 7 0

0 0 0 1




1 3 0 0

0 1 11 0

0 0 1 12

0 0 0 1





1 0 0 0

0 1 2 0

0 0 1 8

0 0 0 1





1 0 0 0

0 1 0 0

0 0 1 13

0 0 0 1


.

Although of size 4 × 4, the condition number of this matrix is κ2(A) = 1.4 × 1011,
which means the computation of the inverse (which we call AIm) by using MATLAB
R2018b will suffer the effect of the high condition number. In fact, by using the exact
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inverse (which we call AIe) computed by Maple we find that the relative error computed
in the spectral norm is

∥AIm − AIe∥2

∥AIe∥2
= 7.1 × 10−10,

while for the inverse matrix AIk computed by using the algorithm TNInverseExpand(B)
we have full accuracy:

∥AIk − AIe∥2

∥AIe∥2
= 1.2 × 10−16.

Now, let us show the differences (also the analogies) between the bidiagonal factor-
ization associated with Neville elimination (stored in B = BD(A)) and the factorization
corresponding to the Björck–Pereyra algorithm, by using as an example the Vandermonde
matrix of order n = 4 with nodes 2, 3, 5, 8:

A =



1 2 4 8

1 3 9 27

1 5 25 125

1 8 64 512


.

For this matrix we have

B = BD(A) =



1 2 2 2

1 1 3 3

1 2 6 5

1 3/2 5/2 90


,

which means

A = F̄3 F̄2 F̄1DḠ1Ḡ2Ḡ3 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 1





1 0 0 0

0 1 0 0

0 1 1 0

0 0 3
2 1





1 0 0 0

1 1 0 0

0 2 1 0

0 0 5
2 1





1 0 0 0

0 1 0 0

0 0 6 0

0 0 0 90




1 2 0 0

0 1 3 0

0 0 1 5

0 0 0 1





1 0 0 0

0 1 2 0

0 0 1 3

0 0 0 1





1 0 0 0

0 1 0 0

0 0 1 2

0 0 0 1


,

and
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A−1 = G1G2G3D−1F3F2F1.

A−1 =



1 −2 0 0

0 1 −2 0

0 0 1 −2

0 0 0 1





1 0 0 0

0 1 −3 0

0 0 1 −3

0 0 0 1





1 0 0 0

0 1 0 0

0 0 1 −5

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1/6 0

0 0 0 1/90





1 0 0 0

0 1 0 0

0 0 1 0

0 0 −5
2 1





1 0 0 0

0 1 0 0

0 −2 1 0

0 0 −3
2 1





1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1


.

On the other hand, the factorization of A−1 corresponding to the matrix interpretation
of the Björck–Pereyra algorithm is the following (see [11]):

A−1 = G1G2G3D−1
2 L2D−1

1 L1D−1
0 L0 =

G1G2G3



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
6





1 0 0 0

0 1 0 0

0 0 1 0

0 0 −1 1





1 0 0 0

0 1 0 0

0 0 1
3 0

0 0 0 1
5




1 0 0 0

0 1 0 0

0 −1 1 0

0 0 −1 1





1 0 0 0

0 1 0 0

0 0 1
2 0

0 0 0 1
3





1 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1


Let us observe that Stage II of the algorithms (corresponding to the product G1G2G3)

is the same for both factorizations. This matrix G1G2G3 is the matrix of change of basis
from the Newton basis to the monomial basis.

On the contrary, Stage I of the algorithm (corresponding to the factorizations D−1F3F2F1
= D−1

2 L2D−1
1 L1D−1

0 L0) is different in the Björck–Pereyra algorithm and in the algorithm
TNSolve which starts from B = BD(A). This first stage corresponds to the computa-
tion of the divided differences, i.e., the coefficients of the interpolating polynomial in the
Newton basis.

For instance, if we solve the linear system Ax = f with f = (9,−9, 9,−9)T the solution
is x = (159,−125, 29,−2)T . The solution of Stage I is c = (9,−18, 9,−2)T (the coefficients
in the Newton basis), which means that

(9) · 1 + (−18)(t − 2) + (9)(t − 2)(t − 3) + (−2)(t − 2)(t − 3)(t − 5) =
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159 − 125t + 29t2 − 2t3.

A recent study of polynomial Lagrange interpolation by using the Newton basis
(instead of the monomial basis), including the bidiagonal factorization of the corresponding
collocation matrices is presented in [36].

We finish this section with some numerical experiments of linear system solving with
Vandermonde and Cauchy matrices. We only include simple experiments with matrices of
small size, and using available algorithms so that the interested reader can easily reproduce
them. All the algorithms of P. Koev put together in the package TNTool are available in [27].

We begin with the Vandermonde case, with a Vandermonde matrix A of order n = 7
corresponding to the nodes 1, 2, 3, 4, 5, 6, 7 (these nodes are the second column of the matrix),
whose condition number is κ2(A) = 2.4× 107. We will solve the linear system Ax = f , with

f = [1/21,−1/21, 1/23,−1/23, 1/29,−1/29, 1/31]T .

We will compare the approximate solutions with the exact solution xe computed
in exact rational arithmetic by using Maple, and the relative errors will be computed in
MATLAB as norm(x− xe, 2)/norm(xe, 2), i.e., we are computing the relative error in the
Euclidean norm.

First, we compute the solution by means of the MATLAB function A\f, and the
corresponding relative error is 4.1 × 10−14. Next, the system is solved by the Björck–
Pereyra algorithm by using the algorithm VTsolve, which can be obtained from the m-
files of Chapter 4 of the book of Golub and Van Loan [11], available in this web page:
www.cs.cornell.edu/cv/GVL4/M-Files/M-Home.htm (accessed on 1 April 2024).

In this case, the relative error is 2.6 × 10−16, which confirms the high relative accuracy
to be expected of this algorithm when f has an alternating sign pattern.

Finally, we compute the solution of the linear system by using the algorithm TNSolve
of P. Koev, by previously computing B = BD(A) by means of the algorithm TNVandBD of P.
Koev. In this case, the relative error is 2.6 × 10−16, which again confirms the high relative
accuracy to be expected of this algorithm when f has an alternating sign pattern.

In the second example, the coefficient matrix is a Hilbert matrix A of order n = 7,
constructed in MATLAB by means of the instruction A = hilb(7), whose condition number
is κ2(A) = 4.7 × 1086. We will solve the linear system Ax = f , with

f = [1/21,−1/21, 1/23,−1/23, 1/29,−1/29, 1/31]T .

As before, we will compare the approximate solutions with the exact solution xe
computed in exact rational arithmetic by using Maple, and the relative errors will be
computed in MATLAB as norm(x− xe, 2)/norm(xe, 2).

First, we compute the solution by means of the MATLAB function A\f, and the
corresponding relative error is 4.0 × 10−9. Next, the system is solved by the BKO algorithm
of Boros, Kailath and Olshevsky, which can be taken from page 277 of their paper [22]. In
this case, the relative error is 1.3 × 10−16, which confirms the high relative accuracy to be
expected of this algorithm when f has an alternating sign pattern.

Finally, we compute the solution of the linear system by using the algorithm TNSolve
of P. Koev by previously computing B = BD(A) by means of the algorithm TNCauchyBD of
P. Koev, with the instruction B = TNCauchyBD(x,y) by defining x = [0,1,2,3,4,5,6] and
y = [1,2,3,4,5,6,7]. In this case, the relative error is 1.4 × 10−16, which again confirms
the high relative accuracy to be expected of this algorithm when f has an alternating
sign pattern.

4. Eigenvalue and Singular Value Problems

In Section 59.3 of the already commented chapter [4], Z. Drmač refers to the work of
Koev [8,9] to recall that if the totally nonnegative matrix A is given implicitly by its bidiag-
onal decomposition then all its singular values (and eigenvalues, too) can be computed to

www.cs.cornell.edu/cv/GVL4/M-Files/M-Home.htm
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high relative accuracy. The author also recalls that an accurate bidiagonal representation is
possible provided that certain minors can be accurately computed.

These results are not included in the recent books of Björck [12] and Golub–Van
Loan [11] but are important to indicate that the same bidiagonal factorization (with n2 param-
eters stored in the matrix B = BD(A)) is the starting point for accurately computing the
eigenvalues and the singular values of A. By using the algorithms TNEigenValues and
TNSingularValues of the package TNTool [27], one can compute the eigenvalues and the
singular values (respectively) of A to high relative accuracy.

The application of the bidiagonal decomposition for computing eigenvalues and
singular values of totally positive matrices developed by P. Koev [8,9] has an important
precedent in the work of Demmel and coworkers [37]. In Section 9 of [37], devoted to the
class of totally positive matrices, the authors indicate that “achieving high relative accuracy
requires not just total positivity but an appropriate parameterization that permits minors to be
evaluated to high relative accuracy”.

Some years later, in Section 2 of [8] the author acknowledges these contributions
of [37], and in Section 3 he adds a fundamental tool: the results on Neville elimination and
total positivity introduced by Gasca and Peña in [17,33,34]. Koev shows that being able to
compute to high relative accuracy all n2 initial minors is a necessary and sufficient condition
for accurately computing the bidiagonal decomposition BD(A) of a totally positive matrix.

In Section 7 of [8] we find the main idea for the construction of accurate algorithms: “In
other words, BD(A) determines the eigenvalues and the singular values of A accurately”. In addition,
it is indicated that the final step of the algorithms TNEigenValues and TNSingularValues is
the computation of the singular values of a bidiagonal matrix by using the LAPACK routine
DLASQ1 ([5,6]) (which must be compiled to be used in the MATLAB algorithms), and it is
known to introduce only a small additional relative error ([6]).

As we read in the introduction of [8], “when traditional algorithms are used to com-
pute the eigenvalues or the singular values of an ill-conditioned TN matrix, only the
largest eigenvalues and the largest singular values are computed with guaranteed relative
accuracy. The tiny eigenvalues and singular values may be computed with no relative
accuracy at all, even though they may be the only quantities of practical interest” . We will
illustrate with two simple examples the good behavior of the algorithms TNEigenValues
and TNSingularValues when applied to ill-conditioned totally positive matrices.

The first matrix we consider is a Hilbert matrix of order 10, constructed in MATLAB
by means of the instruction A = hilb(10). Let us recall that a Hilbert matrix is a special
case of a Cauchy matrix with generic entries cij = 1/(xi − yj). The condition number of
this matrix is κ2(A) = 1.6 × 1013.

We can compute B = BD(A) by means of the algorithm TNCauchyBD of P. Koev, with
the instruction B = TNCauchyBD(x,y), by defining

x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], y = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

(P. Koev is using as entries of the Cauchy matrix cij = 1/(xi + yj)). Then the eigenvalues
are computed by means of the instruction TNEigenValues(B).

Then these eigenvalues are also computed by means of the standard MATLAB in-
struction eig(A). We compare the approximate value of the smallest eigenvalue with the
“exact” value obtained by using Maple with extended precision, and we obtain for the
value computed by means of eig(A) a relative error of 9.3 × 10−5, while for the algorithm
TNEigenValues the relative error is 3.4 × 10−16.

In the second example, we compute the singular values of the Pascal matrix of order 10,
constructed in MATLAB by means of the instruction A = pascal(10). Now the condition
number is κ2(A) = 4.1 × 109.

It is interesting to observe that for Pascal matrices we have an exact B = BD(A):
the matrix with all the entries equal to 1 (see [38]), which is constructed in MATLAB
as B = ones(n,n). Then, the singular values are computed by means of the instruction
TNSingularValues(B).
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These singular values are also computed by means of the standard MATLAB instruc-
tion svd(A). We compare the approximate value of the smallest singular value with the
“exact” value obtained by using Maple with extended precision, and we obtain for the
value computed by means of svd(A) a relative error of 1.7 × 10−9, while for the algorithm
TNSingularValues the relative error is 6.5 × 10−16.

We see the effect of the ill-conditioning of the Hilbert and Pascal matrices when using
the standard MATLAB functions eig and svd, while the algorithms TNEigenValues and
TNSingularValues (starting from an accurate BD(A)) give high relative accuracy.

The availability of the algorithms of Koev in [27] has encouraged the search for
new algorithms for the bidiagonal decomposition of various classes of totally positive
structured matrices, including matrices from new application fields such as [39]. The
financial applications considered in [39] have recently been addressed in [40] where for the
class of Green matrices, an algorithm of linear complexity is presented to compute (for a
full matrix) the bidiagonal factorization.

It can be interesting to end this section with a look at the initial history of the appli-
cation of BD(A) to solve linear algebra problems. The last paragraph of the introduction
of [22] (published in 1999) contained the following sentence: “The results of this paper were
available since 1994 as ISL reports at Stanford University, and they were reported at several con-
ferences. They have influenced a recent interest in the connections between accuracy and total
positivity (e.g., [18,37]).”

In fact, both the very important paper [37] (which was still a LAPACK working note)
and our early contribution on the use of the bidiagonal factorization related to Neville
elimination [18] cited the preprint version of [22], but it is illustrative to see how its authors
defended their priority in this work, which is an indication of the importance they were
giving to it.

Six years later, Demmel and Koev cited in their paper [7] the papers [18,22,41], related
to the solution of structured linear systems. Curiously, although the title of [41] contains
the term Björck–Pereyra, it is not related to bidiagonal factorization, while [18] uses it.
As explained in the introduction of [18] (the editor needed to know if there was a new
algorithm), “the main difference between this algorithm and the algorithm proposed in [41] comes
from the fact that the algorithm presented here uses the factorization in terms of bidiagonal matrices,
extending to the case of Cauchy–Vandermonde matrices the results about the factorization of Cauchy
matrices given in [22]. In contrast, in [41] the main tool is the construction of the triangular
matrices L and U by using the connection between a Cauchy–Vandermonde linear system and the
rational interpolation problem associated with it”.

Also, it must be observed that [7] does not contain a reference to [37], since it only
deals with linear system solving. The great idea of Koev, presented in [8] was to extend the
use of the bidiagonal factorization to some other linear algebra problems, like eigenvalue
and singular value computation. In this fundamental work [8] the author acknowledges
the inspiration received from [37]. Although the term BD(A) (and its precise meaning) is
introduced in [8], Koev writes that “by using the Cauchy–Binet identity, Demmel et al. [37]
established that all minors of a TN matrix are determined accurately by the entries of BD(A).” On
the other hand, the paper by Fernando and Parlett [6], which is the origin of the algorithm
DLASQ1 (a relevant issue in the work of Koev) was an important reference in [37].

5. The Rectangular Case

Linear system solving and eigenvalue computation correspond to the case in which
A is a square matrix but, as seen in [9], this bidiagonal decomposition also exists for
rectangular matrices. For instance, an algorithm for computing it for the case of Bernstein–
Vandermonde matrices is presented in [35] (see algorithm TNBDBVR in [27]).

Let us recall that in the square case, the matrices must be nonsingular. For the ex-
tension to the rectangular case, we must take into account the following comment in the
Introduction of [9]:
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“The existence and uniqueness of the bidiagonal decomposition is critical to the design
of our algorithms. Therefore, we restrict the class of totally nonnegative matrices under
consideration to only those that are leading contiguous submatrices of square nonsingular totally
nonnegative matrices”.

These rectangular matrices arise in a natural way when solving least squares prob-
lems. In this context, and returning to our guide book [1], we find this subject studied
in Chapter 52, entitled Least Squares Solution of Linear Systems [42]. In Sections 52.4 and
52.5, mainly following the classical book of Björck [43], the authors recall the use of the
QR factorization of A (of size m × n with m ≥ n), which leads to solving a (square) linear
system Rx = QTb. As read in [42], the algorithm that is least sensitive to the influence of
rounding errors is based on the QR factorization of A, as first suggested by G. H. Golub
in [44].

For this purpose, P. Koev includes in [9] a new gem for computing with totally positive
matrices: the QR factorization of a totally positive matrix A. Starting from B = BD(A) (the
bidiagonal decomposition of A), the algorithm TNQR computes Q and BD(R) (the bidiago-
nal decomposition of the triangular factor R). This algorithm has been used in [45] to solve
least squares problems by using the Bernstein basis, including the accurate computation of
the projection matrix (the hat matrix of statistics). An extension to the bivariate setting has
recently been carried out in [46].

An important concept in the extension to the bivariate setting is the Kronecker product
of two matrices (which has recently been analyzed in connection with optimal properties
of the tensor product of B-bases in [47]), although in [46] a generalized Kronecker product is
used. In [47] optimal properties of collocation matrices of the tensor product of normalized
B-bases are proved, by extending to the bivariate case the results of [48].

For the sake of completeness, we recall following [48], the basic notions on B-bases,
an important concept in Computer Aided Geometric Design. A system of functions is TP
(totally positive) when all its collocations matrices are TP. In CAGD, the functions u0, · · · , un
also satisfy Σn

i=0ui(t) = 1 for all t ∈ I (i.e., the system (u0, · · · , un) is normalized), and a
normalized TP system is denoted by NTP. It is known that shape-preserving representations
are associated with NTP bases. A TP basis (b0, · · · , bn) of a space of functions U defined
on a real interval I is a B-basis of U if for any TP basis (u0, · · · , un) of U we can write
(u0, · · · , un) = (b0, · · · , bn)A, with A being a real nonsingular TP matrix of order n + 1.
Given a space with an NTP basis, there exists a unique TP basis of the space with optimal
shape-preserving properties, which is the normalized B-basis of the space. An important
normalized B-basis is the Bernstein basis of the space of polynomials of degree less than or
equal to n on [0, 1].

Finally, we observe that another important situation where the bidiagonal factorization
for the rectangular case is used is the computation of singular values of rectangular matrices
(one of its applications being the computation of the spectral condition number of a matrix),
as seen in Section 7 of [35], and also the computation of the Moore–Penrose inverse, as
carried out in [13].

6. The Tridiagonal Case

In this section, we briefly consider the case in which the totally positive matrix A
is also symmetric and tridiagonal. An important example of symmetric and tridiagonal
matrices are the Jacobi matrices associated with a family of orthogonal polynomials, and
in this context, the eigenvalues of the Jacobi matrices are the zeros of the corresponding
orthogonal polynomials ([49,50]), which consequently can be computed with high relative
accuracy starting from an accurate BD(A).

An example of this situation (where the Jacobi matrices are totally positive) has
been analyzed in [51], and more recently in [52]. Although in [51] Gaussian quadrature
formulae were considered, only the nodes were computed in that paper, since the accurate
computation of the eigenvectors of the corresponding Jacobi matrices (necessary to compute
the weights) could not be achieved with MATLAB.
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While the LAPACK subroutine DLASQ1 (used by the algorithm TNEigenValues) pro-
vides high relative accuracy in the computation of the nodes, for the computation of
the weights (presented in Section 4 of [52]) the LAPACK subroutine DBDSQR is used to
compute the right singular vectors of a bidiagonal matrix. The initial stage is again the
accurate computation of the bidiagonal factorization of the corresponding totally positive
Jacobi matrices.

An interesting aspect of this symmetric and tridiagonal case is the fact that now Neville
elimination is the same as Gaussian elimination, and the bidiagonal decomposition of A
is precisely A = LDLT , where L is now not only lower triangular but also bidiagonal.
Although the author does not pay explicit attention to total positivity, the algorithmic
advantages of using the LDLT factorization have been shown by B. N. Parlett in [53].

The problem of accurate computations with tridiagonal matrices by using the bidiago-
nal factorization has also been addressed in a different context in [54].

7. Recent Extensions

Recent research on the application of the bidiagonal factorization of totally positive
matrices deals with matrices that are not collocation matrices but different classes of
matrices, namely Wronskian matrices and Gram matrices, defined as follows (see [55]).

Let (u0, . . . , un) be the basis of a space U of functions defined on a real interval I. If the
space U is formed by n-times continuously differentiable functions and t ∈ I, the Wronskian
matrix at t is defined by

W(u0, . . . , un)(t) := (u(i−1)
j−1 (t))1≤i,j≤n+1,

where u(i)(t), i ≤ n, denotes the ith derivative of u at t.
Now, let U be a Hilbert space of functions on the interval [0, T], T ≤ +∞, with a given

inner product

⟨u, v⟩ =
∫ T

0
u(t)v(t)dt,

defined for any u, v ∈ U. Then, given linearly independent functions v0, . . . , vn in U, the
corresponding Gram matrix is the symmetric matrix G given by

G(v0, . . . , vn) := (⟨vi−1, vj−1⟩)1≤i,j≤n+1.

Some applications of the Gram matrices of the Bernstein basis are considered in [56].
On the other hand, although Wronskian and Gram matrices are very different, interestingly
several applications of these matrices are presented together in [57]. The use of the bidi-
agonal decomposition to achieve accurate computations with different classes of totally
positive Wronskian and Gram matrices has been presented, for instance, in [55,58–60].

Finally, it must be remarked that another recent line of research related to our subject
is to consider the singular case, i.e., to allow matrices of arbitrary rank. An example of this
work is the paper [19], in which new explicit expressions for bidiagonal decompositions of
totally positive Vandermonde and related matrices are derived.

8. Conclusions

The starting point of our work has been the paper of Björck and Pereyra of 1970 [21],
where they showed that the Newton–Horner algorithm for solving a Vandermonde sys-
tem associated with polynomial interpolation could be interpreted in connection with a
factorization of the inverse of the Vandermonde matrix as a product of bidiagonal matrices.

Our main goal has been to show how this approach to solving linear systems has been
extended to solve several other linear algebra problems, such as eigenvalue and singular
value computation, or least squares problems. The main tool is the use of the bidiagonal
decomposition of the corresponding matrix (not only of its inverse, as in the Björck–Pereyra
algorithm), stored as B = BD(A).
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This idea, first presented in the work of Koev [8] (see also [20]), along with the avail-
ability of his algorithms, has encouraged the search for new algorithms for the bidiagonal
decomposition of various classes of totally positive structured matrices.

It must be remarked that although a superficial reading (or careless writing) of our ref-
erences could suggest that Neville elimination is the method to construct those algorithms,
the fact is that Neville elimination is a fundamental theoretical tool but not the algorithmic
tool (see Section 5 in [13], where a necessary comment on the paper [61] is included). For
achieving high relative accuracy, the algorithms must be adapted to the specific structure
of each class of matrices.
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